Course: MATH 115A, Linear Algebra, Lecture 6, Spring 2015
Prerequisite: MATH 33A, Linear algebra and applications.
Course Content: Linear independence, bases, orthogonality, the Gram-Schmidt process,
linear transformations, eigenvalues and eigenvectors, and diagonalization of matrices. This course
should develop your ability to write rigorous proofs.
Last update: 20 May 2015
Lecture Meeting Time/Location: Monday, Wednesday and Friday,
2PM-250PM, MS 5127
Instructor: Steven Heilman, heilman(@-symbol)ucla.edu
Office Hours: Mondays, 9AM-11AM, Wednesdays 1PM-2PM, MS
7370
TA: Sangjin Lee, sangjinlee(@-symbol)math.ucla.edu
TA Office Hours: Tuesdays 3PM-4PM, Wednesdays 4PM-5PM, MS 3919
Discussion Session Meeting Time/Location: Tuesdays and Thursdays,
2PM-250PM, MS 5137
Required Textbook: Linear Algebra, Friedberg, Insel and Spence, 4th
Ed., Custom Edition for UCLA
Other Textbooks (not required): Linear Algebra: an introductory approach, C. W. Curtis
TA Course Website: here
First Midterm: April 24, 2PM-250PM, KNSY PV 1200B
Second Midterm: May 18, 2PM-250PM, KNSY PV 1200B
Final Exam: June 11, 1130AM-230PM, PAB 1434A
Other Resources:
115A, Tao, Fall 2002: I would highly recommend
reading these lecture notes. My own lecture notes below are meant to be a more condensed presentation of similar material. So, if you
prefer a more thorough treatment, I recommend these notes (and the book).
An
introduction to mathematical
arguments, Michael Hutchings,
An Introduction to Proofs,
How to Write Mathematical Arguments
Exam Procedures: Students must bring their UCLA ID cards to the
midterms and to the final exam. Phones must be turned off. Cheating on
an exam results in a score of zero on that exam. Exams can be
regraded at most 15 days after the date of the exam.
Exam Resources: Here
is a page containing old exams
for a similar linear algebra course. Occasionally these exams will cover
slightly different material than this class, or the material will be in a
slightly different order, but generally, the concepts
should be close if not identical.
Here are solutions to
this
second midterm. (Note this practice midterm is much longer than our
exam.)
Here are solutions to
this
practice final. (Skip question 7; also questions 5,6 and 8 are a bit
challenging.)
Homework Policy:
Tentative Schedule: (This schedule may change slightly during the course.)
Week | Monday | Tuesday | Wednesday | Thursday | Friday |
1 | Mar 30: 1.2, Vector spaces | Apr 1: 1.3, Subspaces | Apr 2: No homework due | Apr 3: 1.4, 1.5, Linear systems, Linear independence | |
2 | Apr 6: 1.5, 1.6, Linear independence, bases | Apr 8: 1.6, Dimension | Apr 9: Homework 1 due | Apr 10: 2.1, Linear transformations | |
3 | Apr 13: 2.1, Linear transformations | Apr 14: 1.6, Lagrange interpolation | Apr 15: 2.1, 2.2, Null spaces, range, coordinate bases | Apr 16: Homework 2 due | Apr 17: 2.2, Matrix representation |
4 | Apr 20: 2.3, Matrix Multiplication | Apr 22: 2.4, Invertibility | Apr 23: Homework 3 due | Apr 24: Midterm #1 | |
5 | Apr 27: 2.4, Isomorphism | Apr 29: 2.4, 2.5, Change of coordinates | Apr 30: Homework 4 due | May 1: 3.1-4.3, Row operations | |
6 | May 4: 3.1-4.3, Rank of matrices | May 6: 4.4, Review of determinants | May 7: Homework 5 due | May 8: 5.1, Diagonal matrices | |
7 | May 11: 5.1, Eigenvalues and eigenvectors | May 13: 5.2, Diagonalization | May 14: Homework 6 due | May 15: 5.2, Characteristic polynomials | |
8 | May 18: Midterm #2 | May 20: 6.1, Inner products | May 21: No homework due. | May 22: 6.1, 6.2, Norms, orthogonal bases | |
9 | May 25: No class | May 27: 6.2, Gram-Schmidt orthogonalization, complements | May 28: Homework 7 due | May 29: 6.3, Adjoints | |
10 | Jun 1: 6.4, Normal operators | Jun 3: 6.4, Self-adjoint operators | Jun 4: Homework 8 due | Jun 5: Review of course |
Advice on succeeding in a math class: