115A Final Practice Solutions
These are solutions to the practice midterm here: http://math.berkeley.edu/sites/
default/files/pages/FO3_Final Exam-K.Ribet_.pdf

1. QUESTION 1

Let A be an n x n matrix. Assume there exists a nonzero row vector y such that yA = y.
Prove there exists a nonzero column vector x such that Ax = z.

Solution. yA—y =0, i.e. y(A—1I,) = 0. That is, there exists a linear combination of the
rows of A — I,, that yields the zero vector. From a Corollary from the notes (Corollary 3.15
from the third set of notes), we conclude that A — I,, has rank less than n. (Since the rank
of A— 1, is equal to the dimension of the span of its rows.) From the rank-nullity theorem,
A — I, has a nonzero vector in its null space. That is, there exists a nonzero vector x such
that (A — I,,)x = 0. That is, there exists a nonzero vector x such that Ax = z, as desired.

2. (QUESTION 2

Let A, B be n x n matrix over a field F. Assume A? = A and B? = B. Prove that A and
B are similar if and only if they have the same rank.

Solution. Suppose A and B are similar. That is, there exists an invertible matrix () such
that A = QBQ™'. Since invertible matrices preserve the rank (Lemma 3.10 from the third
set of notes), we conclude that rank(A) = rank(B), as desired.

Now, suppose A and B have the same rank. We need to find an invertible matrix () such
that A = Q7' B(Q. From Exercise 8 of homework 5, if v € F", then there exist unique vectors
n,w and n’,w’ such that n € N(La), w € R(La), n" € N(Lp), w' € R(Lg) and such that
v=mn+wand v =n +w'. (Note that since w € R(L,), there exists z € F" such that
Az = w, so using A% = A, we have A%z = Aw = Az = w, so Aw = w. Similarly, Buw' = w'.)

Since A and B have the same rank, their null spaces have the same dimension k, and
their ranges have the same dimension n — k, for some 0 < k < n. So, let (ai,...,ax) be a
basis for N(La4), let (by,...,bx) be a basis for N(Lg), let (agi1,...,a,) be a basis for R(L,)
and let (bgy1,...,b,) be a basis for R(Lg). By the uniqueness property discussed above
(and Exercise 7 on homework 1), we conclude that o = (ay,...,a,) is a basis of F™ and
p = (by,...,b,) is a basis of F". So, let T" be a linear transformation such that T'(a;) = b;
for all 1 <7 < mn. (Such a T exists by Theorem 4.4 in the second set of notes.) Note that
(T8 is the identity matrix by the definition of T, so T is invertible (by Corollary 6.11 in
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the second set of notes). So, if v is the standard basis of F", and if we define @ = [T]] as
the matrix representation of 7" in the standard basis, then, for any v € F”, when we write
n+w=v=>y aa with a; € F for all 1 <i <n, we get
Av = A(Z aiai) = A( Z aiai) = Z a,;a;
i=1 i=k+1 i=k+1

(recall Aa; = a; for all k+1 <i<n,and Bb; =b; forall k+1 <7 <mn), so

Q 'BQu = Q_IBQ(Z Q;a;) = Q_IB(Z b)) = Q7 Z a;b;) = Z Q;a;.
i=1 i=1

i=k+1 i=k+1
That is, A = Q 'BQ, as desired.
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3. QUESTION 3

Suppose T": V' — V is a linear transformation on a finite-dimensional inner product space.
Let T* be the adjoint of T'. Show that every v € V can be written uniquely as v = a + b
where a € N(T') and b € R(T™).

Solution 1. Define W := N(T)t. We claim that R(T*) = N(T)*. To see this, let
x € R(T*). Then, there exists z € V such that 7%z = x. Note that, for any y € N(T),
we have (z,y) = (T"2,y) = (2,Ty) = 0. That is, z € N(T)*. Therefore, R(T*) C N(T)*.
From the dimension theorem for orthogonal complements (Corollary 4.18 in the fifth set of
notes), dim(N (7)) + dim(N(T)*) = dim(V). From the rank-nullity theorem, dim(N (7)) +
dim(R(T)) = dim(V). Combining these two equalities, dim(N(7)*) = dim(R(T')). Using,
e.g. the matrix representation of 7', Theorem 5.12 in the fifth set of notes, and Exercise 5.16 in
the fifth set of notes, we know that dim(R(7T')) = dim(R(T*)). In conclusion, dim(N (7)*) =
dim(R(T*)). Since R(T*) C N(T)*, and both are subspaces of equal dimension, we conclude
that in fact R(T*) = N(T)* (by Theorem 7.1 in the first set of notes).

In conclusion, R(T*) = N(T)*. So, by Corollary 4.9 in the fifth set of notes, every vector
v € V can be written uniquely as v = a + b where a € N(T') and b € N(T)* = R(T*).

Solution 2. Define W := N(T)t. We claim that R(T*) = N(T)*. As a preliminary
claim, we show that N(T*) = R(T)*. To see this, note that z € N(T*) if and only if
T*x = 0, if and only if (T*x,y) = 0 for all y € V' (by the Riesz Representation Theorem,
Theorem 5.6 in the fifth set of notes), if and only if (x,Ty) = 0 for all y € V| if and only
if v € R(T)*. So, N(T*) = R(T)*. Now, taking the orthogonal complement of both sides,
we get N(T*)t = R(T). Then, using 7% in place of T' and noting that T** = T, we get
N(T)t = R(T*), as desired.

In conclusion, R(T*) = N(T)*. So, by Corollary 4.9 in the fifth set of notes, every vector
v € V can be written uniquely as v = a + b where a € N(T') and b € N(T)* = R(T*).

4. QUESTION 4

Let A be a symmetric real matrix such that Tr(A?) = 0. Show that A = 0.

Solution. Suppose A has entries a;; where 1 < ¢,7 < n. Let 1 < i < n, then entry
(i,4) of the matrix A? is Z?Zl a;jaj;, by the definition of matrix multiplication. Since A is
symmetric, we have a;;a;; = a?j. In conclusion,
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i=1 j=1 i=1 j=1
A sum of squared real numbers can only be zero if all of the real numbers are zero. That is,
we must have a;; = 0 for all 1 < 4,5 < n.

5. QUESTION 5

Let T: V — W be a linear transformation between finite-dimensional vector spaces. Let
X be a subspace of W. Let T'(X) be the set of vectors in V' that map to X. Show that
T71(X) is a subspace of V and that dim7'(X) > dimV — dimW + dimX. (I found this
question to be pretty hard myself.)

Solution 1. Assume for now that 771(X) is a subspace of V. (We verify this in Solution
2.) Now, note that T: T7'(X) — X is a linear transformation. So, by the rank-nullity
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theorem, we have dim(77'(X)) = dim(X N R(T)) + nullity(T'). Here R(T) denotes the
range of T: V. — W, and nullity(T) is the nullity of 7: V" — W. (Note that, since X is
a subspace, 0 € X, so T7'X contains the null space of T: V' — W, so the null space of
T: T7(X)— X is equal to the null space of T: V — W.) From Exercise 12 on Homework
2, dim(X NR(T)) = dim(X) 4+ dim(R(T")) — dim(X + R(T)). Since X + R(T) C W, we have
dim(X + R(T")) < dim(W), so —dim(X + R(T)) > —dim(WW). Putting everything together,

dim(771(X)) = dim(X) + nullity(7) + dim(R(T)) — dim(X + R(T))
> dim(X) + nullity(7") + dim(R(T")) — dim(W).
Finally, using the rank-nullity theorem again, nullity(7") + dim(R(7")) = dim(V"). That is,
dim(T71(X)) > dim(X) + dim(V) — dim(W)

Solution 2. We first verify that T—!(X) is a subspace of V. Let a,b € T71(X), and let
a € F. Then there exist z,y € X such that T(a) = z and T'(b) = y. Since T is linear, we
have T'(a+b) = x +y. Since X is a subspace of W, we have x +y € X. So, by definition of
T71(X), we know that a+b € T-(X). That is, T~'(X) is closed under addition. Now, since
T is linear, we have T'(aa) = oT'(a) = ax. Since X is a subspace of W, we have ax € X.
So, by definition of T7!(X), we have aa € T~'(X). That is, T~(X) is closed under scalar
multiplication. In summary, 7-'(X) is a subspace of V.

For the dimension calculation, we find it easier to prove this assertion for matrices. Using
coordinate representations and isomorphisms as necessary, it suffices to prove: if A is an
n X m matrix, and if X is the subspace of F" consisting of all vectors that are zero in the
first k entries, then L,: F™ — F" satisfies dim(L;*(X)) > m — n + dim(X). (Since all
vector spaces of fixed dimension are isomorphic, for the purposes of this problem, we can
use our favorite subspace X, as just described.)

Let s be equal to the dimension of the span of the first £ rows of A. Note that s < k by
the definition of s. Also, by the definition of X, we know that L;'(X) is the set of vectors
v in F™ such that the first k entries of Av are zero. That is, (if we use the standard inner
product), L;'(X) is the set of vectors in F™ which are perpendicular to the first k rows
of A. That is, LZl(X ) is the orthogonal complement of the span of the first & rows of A.
By the definition of s, and the dimension theorem for complemented subspaces (Corollary
4.18 in the fifth set of notes), we therefore have dim(L;*(X)) = m — s. We are required to
show that dimZ;'(X) > dimF™ — dimF" 4+ dimX. That is, we are required to show that
m—s > m—n+(n—k). Equivalently, we are required to show that —s > —k. Equivalently,
we are required to show that s < k. But we already showed that s < k, so we are done.

6. QUESTION 6

Suppose V is a real finite-dimensional inner product space and T: V — V is a linear
transformation such that (T'(x),T(y)) = 0 whenever z,y € V satisfy (x,y) = 0. Assume
there is a nonzero v € V such that | T'(v)|| = ||v||. Show that 7" is orthogonal. (I thought
this problem was fairly difficult.)

Solution 1. Let x € V' with x # 0 such that (z,v) = 0. Define A := ||v|| / ||z|| and let y :=
Az. Then |jy|| = ||v]| and (y,v) = 0. So, (v+y,v—y) = |[v]|> = |ly]|* = 0. So, by assumption
on T, we have 0 = (T(v+y),T(v—y)) = | To||" — | Ty|l*, so lly|” = ||v]|* = | To|* = | Ty]".
Using the definition of 3, we therefore have |Tz||* = |A* | Ty||> = [A] [|y||* = ||=||>. That
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is, |Tz||* = ||z||* for all € V with (z,v) = 0. Since any = € V can be written uniquely
as r = n + w, where n is perpendicular to v, and w is in the span of v, we conclude that
ITz|* = | T(n) + T(w)|* = (T(n) +T(w), T(n) + T(w)) = |Tnl|*+ | Tw|* = |n|* +|lw|* =
|In + wl||* = ||z||*. Here we used the assumption on T, and the Pythagorean Theorem. That
is, T is an orthogonal transformation, since ||Tz||* = ||z for all 2 € V.

Solution 2. Let v = vy be the nonzero vector such that [|[Tv| = ||v]|. Without loss of
generality, ||v|| = 1. This vector can be completed to a finite basis of V' by Corollary 6.14(f)
in the first set of notes. Then, using Gram-Schmidt orthogonalization on this basis (starting
with v; which already has norm 1), we may assume that there exists § = (v1,...,v,) an
orthonormal basis of V' such that v = v;.

Now, define a linear transformation R: V' — V such that R(v;) = v; for all 3 < i < n,
R(v1) = (v1 +v2)/v?2, and R(vy) = (vy — v1)/v/2. Note that the matrix representation [R]g
is a matrix with ones on the diagonal entries (7,) for all 3 < i < n, the upper left corner of

the matrix is \% (} _11) , and the remaining entries of [R]g are zero. Since the 2 X 2 matrix

\/Li 1 _11) is orthogonal, it follows that the matrix [R]g is orthogonal. From Proposition

8.6 in the fifth set of notes, R is therefore orthogonal. That is, (Rvy, Rvy) = (v1,v9) = 0.
However, by the definition of T', we have

0= 2<RU1, RUQ) == 2<TR’01, TRUQ) == <T<U1 + Ug), T(UQ — U1)>
= <T'U1, TU2> — <TUl,T'U2> —+ <TUQ,T'U2> — <TU1,T’U1> = <T’U2, TU2> — <T/()1,TU1>.

That is,
<T’U2, TU2> = <TU1, TU1>.

By assumption of vy, we have (T'vy, Tv;) = ||v1]|> = 1. Therefore, (Tvy, Tvy) = 1.

Similarly, given any 2 < j < n, we can define a linear transformation R: V' — V such that
R(v;) = v; for all 2 < i < n withi # j, R(v1) = (v1 +v;)/v2, and R(v;) = (v; —v1)/v/2. We
similarly conclude that (T'v;, T'v;) = 1. That is, for all 1 < j < n, we have (T'v;, Tv;) = 1.

Now, given any z,y € V, we express z,y in the orthonormal basis § as z = > | o;v; and
y = > v where o;,y; € F for all 1 < i < n. Note that, by our assumption on T', we
have (T'v;, Tv;) = 0 for all i # j, since (v;,v;) = 0 when ¢ # j. Therefore,

(T'x, Ty) = Z a; T, Z%T% i a;yi(Tv;, Tv;) = i i = (z,y)
i=1

i=1

That is, T" is an orthogonal transformation. (Since (T'z,Ty) = (z,y) for all z,y € V, we
know that (T*Tz,y) = (x,y) for all x,y € V, so T*Tx = x for all x € V, by the Riesz
Representation Theorem (Theorem 5.6 in the fifth set of notes). So, T*T = Iy,. Also, since
|Tx|| = ||=| for all z € V', we know that T": V' — V is one-to-one, so T': V' — V is invertible.
Since T*T = I, we know that T has unique inverse T*, so that TT* = I, as well.)

7. QUESTION 7

(This question is outside our course material.)
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8. QUESTION &

Let F be a finite field with ¢ > 2 elements. Let V' be an n-dimensional vector space. In
terms of n and ¢, compute the number of 1-dimensional subspaces of V' and the number
of linear transformations V' — V that have rank 1. (This question is pretty lengthy for an
exam, I think.)

Solution. Without loss of generality, we assume that V' = F". Let W be any one-
dimensional subspace of V. Then, there exists a nonzero vector v € V such that W is the
span of v. Since v is nonzero, v has some nonzero entry o € F where o # 0. Consider the
map T: F — F defined by T(8) = af for all § € F. Since F is a field, the function T is
one-to-one and onto. Since F has ¢ elements, F has ¢ — 1 distinct nonzero elements. That is,
there exist exactly ¢ — 1 distinct nonzero elements in the set {a/3: 8 € F}. Therefore, there
exist at least ¢ — 1 distinct nonzero elements in the span of v, namely {av: o € F,« # 0}.
We claim that the span of v has exactly ¢ — 1 distinct nonzero elements. We can find ¢ — 1
distinct nonzero elements, as specified above, from the set {av: o € F,a # 0}. However,
any other element in the span of v must be of this form, by the definition of span. Therefore,
there exist exactly ¢ — 1 nonzero elements in the span of v.

Now, let v,w € V. We claim that either span(v) = span(w) or span(v) N span(w) = {0}.
To prove this, suppose span(v) N span(w) has some nonzero element. We will then prove
that span(v) = span(w). Let z € span(v) N span(w) with z # 0. Then z € span(v) and
z € span(w). Then there exist nonzero scalars «, 5 € F such that z = av and z = fw. That
is, v = a~'Bw. So, by the definition of span we have span(v) = span(w), as desired.

Okay, so we can use this result to count the number of 1-dimensional subspaces of V.
Consider the set of all 1-dimensional subspaces of V. This set is equal to the set of all spans
of v, where v ranges over all v € V. By the previous result, every nonzero vector in V
belongs to exactly one set of the form span(v’), for some v € V. Also, there exist exactly
g — 1 nonzero elements in span(v’) for any fixed v € V. Since V' = F™ and F has exactly
q elements, we know that V' has exactly ¢" — 1 nonzero elements. In summary, there are
exactly (¢" —1)/(¢ — 1), 1-dimensional subspaces in V.

Finally, note that any rank 1 linear transformation on V' can be obtained by first projecting
onto a 1-dimensional subspace, and then multiplying by any nonzero vector. Specifically,
let T:V — V have rank 1. Note that N(7') has dimension n — 1 by the rank-nullity
theorem, so N(T')* has dimension 1, by Corollary 4.18 in the fifth set of notes. By Corollary
4.19 in the fifth set of notes, every v € V can be written uniquely as v = n 4+ y where
n € N(T) and y € N(T)*. Specifically, if P: V — V denotes projection onto N(7T')*, then
v = (v—Pv)+ Pv. (In the proof of Corollary 4.19, we defined n = v—Pv and y = Pv.) Let w
be a nonzero vector in N(T')*. Then we can express P: V — V as an orthogonal projection
onto w. That is, P(v) = w(v,w)/{w,w). And any v can be written as v = (v — Pv) + Puv,
so that v — Pv € N(T), so

Tv=T((v— Pv)+ Pv) =TPv =T(w){v,w)/(w,w).

That is, we wrote 1" as a projection onto the span of w, multiplied by another vector T'(w).
Conversely, given any projection P: V' — V onto a one-dimensional subspace of V', and given
any z € V with z # 0, the function 7: V' — V defined by T'(v) = z(v,w)/{w, w) is a rank 1
linear transformation (where w is any nonzero vector in R(P)). In summary, the number of
rank 1 projections from V to V' is bounded by the number of one-dimensional subspaces of V',



multiplied by the number of nonzero elements of V. In fact, every distinct one-dimensional
subspace and every distinct nonzero z € V yield a rank 1 linear transformation. So, the
number of rank 1 linear transformations on V' is equal to: the number of one-dimensional
subspaces of V', multiplied by the number of nonzero elements of V. That is, the number of
rank 1 linear transformations on V is equal to (¢" — 1)*/(¢ — 1).
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