
115A Final Practice Solutions
These are solutions to the practice midterm here: http://math.berkeley.edu/sites/

default/files/pages/F03_Final_Exam-K.Ribet_.pdf

1. Question 1

Let A be an n× n matrix. Assume there exists a nonzero row vector y such that yA = y.
Prove there exists a nonzero column vector x such that Ax = x.
Solution. yA− y = 0, i.e. y(A− In) = 0. That is, there exists a linear combination of the

rows of A− In that yields the zero vector. From a Corollary from the notes (Corollary 3.15
from the third set of notes), we conclude that A− In has rank less than n. (Since the rank
of A− In is equal to the dimension of the span of its rows.) From the rank-nullity theorem,
A− In has a nonzero vector in its null space. That is, there exists a nonzero vector x such
that (A− In)x = 0. That is, there exists a nonzero vector x such that Ax = x, as desired.

2. Question 2

Let A,B be n× n matrix over a field F. Assume A2 = A and B2 = B. Prove that A and
B are similar if and only if they have the same rank.

Solution. Suppose A and B are similar. That is, there exists an invertible matrix Q such
that A = QBQ−1. Since invertible matrices preserve the rank (Lemma 3.10 from the third
set of notes), we conclude that rank(A) = rank(B), as desired.

Now, suppose A and B have the same rank. We need to find an invertible matrix Q such
that A = Q−1BQ. From Exercise 8 of homework 5, if v ∈ Fn, then there exist unique vectors
n,w and n′, w′ such that n ∈ N(LA), w ∈ R(LA), n′ ∈ N(LB), w′ ∈ R(LB) and such that
v = n + w and v = n′ + w′. (Note that since w ∈ R(LA), there exists z ∈ Fn such that
Az = w, so using A2 = A, we have A2z = Aw = Az = w, so Aw = w. Similarly, Bw′ = w′.)

Since A and B have the same rank, their null spaces have the same dimension k, and
their ranges have the same dimension n − k, for some 0 ≤ k ≤ n. So, let (a1, . . . , ak) be a
basis for N(LA), let (b1, . . . , bk) be a basis for N(LB), let (ak+1, . . . , an) be a basis for R(LA)
and let (bk+1, . . . , bn) be a basis for R(LB). By the uniqueness property discussed above
(and Exercise 7 on homework 1), we conclude that α = (a1, . . . , an) is a basis of Fn and
β = (b1, . . . , bn) is a basis of Fn. So, let T be a linear transformation such that T (ai) = bi
for all 1 ≤ i ≤ n. (Such a T exists by Theorem 4.4 in the second set of notes.) Note that
[T ]βα is the identity matrix by the definition of T , so T is invertible (by Corollary 6.11 in
the second set of notes). So, if γ is the standard basis of Fn, and if we define Q = [T ]γγ as
the matrix representation of T in the standard basis, then, for any v ∈ Fn, when we write
n+ w = v =

∑n
i=1 αiai with αi ∈ F for all 1 ≤ i ≤ n, we get

Av = A(
n∑
i=1

αiai) = A(
n∑

i=k+1

αiai) =
n∑

i=k+1

αiai

(recall Aai = ai for all k + 1 ≤ i ≤ n, and Bbi = bi for all k + 1 ≤ i ≤ n), so

Q−1BQv = Q−1BQ(
n∑
i=1

αiai) = Q−1B(
n∑
i=1

αibi) = Q−1(
n∑

i=k+1

αibi) =
n∑

i=k+1

αiai.

That is, A = Q−1BQ, as desired.
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3. Question 3

Suppose T : V → V is a linear transformation on a finite-dimensional inner product space.
Let T ∗ be the adjoint of T . Show that every v ∈ V can be written uniquely as v = a + b
where a ∈ N(T ) and b ∈ R(T ∗).

Solution 1. Define W := N(T )⊥. We claim that R(T ∗) = N(T )⊥. To see this, let
x ∈ R(T ∗). Then, there exists z ∈ V such that T ∗z = x. Note that, for any y ∈ N(T ),
we have 〈x, y〉 = 〈T ∗z, y〉 = 〈z, Ty〉 = 0. That is, x ∈ N(T )⊥. Therefore, R(T ∗) ⊆ N(T )⊥.
From the dimension theorem for orthogonal complements (Corollary 4.18 in the fifth set of
notes), dim(N(T )) + dim(N(T )⊥) = dim(V ). From the rank-nullity theorem, dim(N(T )) +
dim(R(T )) = dim(V ). Combining these two equalities, dim(N(T )⊥) = dim(R(T )). Using,
e.g. the matrix representation of T , Theorem 5.12 in the fifth set of notes, and Exercise 5.16 in
the fifth set of notes, we know that dim(R(T )) = dim(R(T ∗)). In conclusion, dim(N(T )⊥) =
dim(R(T ∗)). Since R(T ∗) ⊆ N(T )⊥, and both are subspaces of equal dimension, we conclude
that in fact R(T ∗) = N(T )⊥ (by Theorem 7.1 in the first set of notes).

In conclusion, R(T ∗) = N(T )⊥. So, by Corollary 4.9 in the fifth set of notes, every vector
v ∈ V can be written uniquely as v = a+ b where a ∈ N(T ) and b ∈ N(T )⊥ = R(T ∗).
Solution 2. Define W := N(T )⊥. We claim that R(T ∗) = N(T )⊥. As a preliminary

claim, we show that N(T ∗) = R(T )⊥. To see this, note that x ∈ N(T ∗) if and only if
T ∗x = 0, if and only if 〈T ∗x, y〉 = 0 for all y ∈ V (by the Riesz Representation Theorem,
Theorem 5.6 in the fifth set of notes), if and only if 〈x, Ty〉 = 0 for all y ∈ V , if and only
if x ∈ R(T )⊥. So, N(T ∗) = R(T )⊥. Now, taking the orthogonal complement of both sides,
we get N(T ∗)⊥ = R(T ). Then, using T ∗ in place of T and noting that T ∗∗ = T , we get
N(T )⊥ = R(T ∗), as desired.

In conclusion, R(T ∗) = N(T )⊥. So, by Corollary 4.9 in the fifth set of notes, every vector
v ∈ V can be written uniquely as v = a+ b where a ∈ N(T ) and b ∈ N(T )⊥ = R(T ∗).

4. Question 4

Let A be a symmetric real matrix such that Tr(A2) = 0. Show that A = 0.
Solution. Suppose A has entries aij where 1 ≤ i, j ≤ n. Let 1 ≤ i ≤ n, then entry

(i, i) of the matrix A2 is
∑n

j=1 aijaji, by the definition of matrix multiplication. Since A is

symmetric, we have aijaji = a2ij. In conclusion,

0 = Tr(A) =
n∑
i=1

n∑
j=1

aijaji =
n∑
i=1

n∑
j=1

a2ij.

A sum of squared real numbers can only be zero if all of the real numbers are zero. That is,
we must have aij = 0 for all 1 ≤ i, j ≤ n.

5. Question 5

Let T : V → W be a linear transformation between finite-dimensional vector spaces. Let
X be a subspace of W . Let T−1(X) be the set of vectors in V that map to X. Show that
T−1(X) is a subspace of V and that dimT−1(X) ≥ dimV − dimW + dimX. (I found this
question to be pretty hard myself.)

Solution 1. Assume for now that T−1(X) is a subspace of V . (We verify this in Solution
2.) Now, note that T : T−1(X) → X is a linear transformation. So, by the rank-nullity
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theorem, we have dim(T−1(X)) = dim(X ∩ R(T )) + nullity(T ). Here R(T ) denotes the
range of T : V → W , and nullity(T ) is the nullity of T : V → W . (Note that, since X is
a subspace, 0 ∈ X, so T−1X contains the null space of T : V → W , so the null space of
T : T−1(X)→ X is equal to the null space of T : V → W .) From Exercise 12 on Homework
2, dim(X ∩R(T )) = dim(X) + dim(R(T ))−dim(X +R(T )). Since X +R(T ) ⊆ W , we have
dim(X +R(T )) ≤ dim(W ), so −dim(X +R(T )) ≥ −dim(W ). Putting everything together,

dim(T−1(X)) = dim(X) + nullity(T ) + dim(R(T ))− dim(X +R(T ))

≥ dim(X) + nullity(T ) + dim(R(T ))− dim(W ).

Finally, using the rank-nullity theorem again, nullity(T ) + dim(R(T )) = dim(V ). That is,

dim(T−1(X)) ≥ dim(X) + dim(V )− dim(W )

Solution 2. We first verify that T−1(X) is a subspace of V . Let a, b ∈ T−1(X), and let
α ∈ F. Then there exist x, y ∈ X such that T (a) = x and T (b) = y. Since T is linear, we
have T (a+ b) = x+ y. Since X is a subspace of W , we have x+ y ∈ X. So, by definition of
T−1(X), we know that a+b ∈ T−1(X). That is, T−1(X) is closed under addition. Now, since
T is linear, we have T (αa) = αT (a) = αx. Since X is a subspace of W , we have αx ∈ X.
So, by definition of T−1(X), we have αa ∈ T−1(X). That is, T−1(X) is closed under scalar
multiplication. In summary, T−1(X) is a subspace of V .

For the dimension calculation, we find it easier to prove this assertion for matrices. Using
coordinate representations and isomorphisms as necessary, it suffices to prove: if A is an
n ×m matrix, and if X is the subspace of Fn consisting of all vectors that are zero in the
first k entries, then LA : Fm → Fn satisfies dim(L−1A (X)) ≥ m − n + dim(X). (Since all
vector spaces of fixed dimension are isomorphic, for the purposes of this problem, we can
use our favorite subspace X, as just described.)

Let s be equal to the dimension of the span of the first k rows of A. Note that s ≤ k by
the definition of s. Also, by the definition of X, we know that L−1A (X) is the set of vectors
v in Fm such that the first k entries of Av are zero. That is, (if we use the standard inner
product), L−1A (X) is the set of vectors in Fm which are perpendicular to the first k rows
of A. That is, L−1A (X) is the orthogonal complement of the span of the first k rows of A.
By the definition of s, and the dimension theorem for complemented subspaces (Corollary
4.18 in the fifth set of notes), we therefore have dim(L−1A (X)) = m− s. We are required to
show that dimL−1A (X) ≥ dimFm − dimFn + dimX. That is, we are required to show that
m−s ≥ m−n+(n−k). Equivalently, we are required to show that −s ≥ −k. Equivalently,
we are required to show that s ≤ k. But we already showed that s ≤ k, so we are done.

6. Question 6

Suppose V is a real finite-dimensional inner product space and T : V → V is a linear
transformation such that 〈T (x), T (y)〉 = 0 whenever x, y ∈ V satisfy 〈x, y〉 = 0. Assume
there is a nonzero v ∈ V such that ‖T (v)‖ = ‖v‖. Show that T is orthogonal. (I thought
this problem was fairly difficult.)

Solution 1. Let x ∈ V with x 6= 0 such that 〈x, v〉 = 0. Define λ := ‖v‖ / ‖x‖ and let y :=
λx. Then ‖y‖ = ‖v‖ and 〈y, v〉 = 0. So, 〈v+ y, v− y〉 = ‖v‖2−‖y‖2 = 0. So, by assumption
on T , we have 0 = 〈T (v+ y), T (v− y)〉 = ‖Tv‖2−‖Ty‖2, so ‖y‖2 = ‖v‖2 = ‖Tv‖2 = ‖Ty‖2.
Using the definition of y, we therefore have ‖Tx‖2 = |λ|2 ‖Ty‖2 = |λ|2 ‖y‖2 = ‖x‖2. That
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is, ‖Tx‖2 = ‖x‖2 for all x ∈ V with 〈x, v〉 = 0. Since any x ∈ V can be written uniquely
as x = n + w, where n is perpendicular to v, and w is in the span of v, we conclude that
‖Tx‖2 = ‖T (n) + T (w)‖2 = 〈T (n)+T (w), T (n)+T (w)〉 = ‖Tn‖2 +‖Tw‖2 = ‖n‖2 +‖w‖2 =
‖n+ w‖2 = ‖x‖2. Here we used the assumption on T , and the Pythagorean Theorem. That
is, T is an orthogonal transformation, since ‖Tx‖2 = ‖x‖2 for all x ∈ V .
Solution 2. Let v = v1 be the nonzero vector such that ‖Tv‖ = ‖v‖. Without loss of

generality, ‖v‖ = 1. This vector can be completed to a finite basis of V by Corollary 6.14(f)
in the first set of notes. Then, using Gram-Schmidt orthogonalization on this basis (starting
with v1 which already has norm 1), we may assume that there exists β = (v1, . . . , vn) an
orthonormal basis of V such that v = v1.

Now, define a linear transformation R : V → V such that R(vi) = vi for all 3 ≤ i ≤ n,

R(v1) = (v1 + v2)/
√

2, and R(v2) = (v2 − v1)/
√

2. Note that the matrix representation [R]ββ
is a matrix with ones on the diagonal entries (i, i) for all 3 ≤ i ≤ n, the upper left corner of

the matrix is 1√
2

(
1 −1
1 1

)
, and the remaining entries of [R]ββ are zero. Since the 2×2 matrix

1√
2

(
1 −1
1 1

)
is orthogonal, it follows that the matrix [R]ββ is orthogonal. From Proposition

8.6 in the fifth set of notes, R is therefore orthogonal. That is, 〈Rv1, Rv2〉 = 〈v1, v2〉 = 0.
However, by the definition of T , we have

0 = 2〈Rv1, Rv2〉 = 2〈TRv1, TRv2〉 = 〈T (v1 + v2), T (v2 − v1)〉
= 〈Tv1, T v2〉 − 〈Tv1, T v2〉+ 〈Tv2, T v2〉 − 〈Tv1, T v1〉 = 〈Tv2, T v2〉 − 〈Tv1, T v1〉.

That is,

〈Tv2, T v2〉 = 〈Tv1, T v1〉.

By assumption of v1, we have 〈Tv1, T v1〉 = ‖v1‖2 = 1. Therefore, 〈Tv2, T v2〉 = 1.
Similarly, given any 2 ≤ j ≤ n, we can define a linear transformation R : V → V such that

R(vi) = vi for all 2 ≤ i ≤ n with i 6= j, R(v1) = (v1 +vj)/
√

2, and R(vj) = (vj−v1)/
√

2. We
similarly conclude that 〈Tvj, T vj〉 = 1. That is, for all 1 ≤ j ≤ n, we have 〈Tvj, T vj〉 = 1.

Now, given any x, y ∈ V , we express x, y in the orthonormal basis β as x =
∑n

i=1 αivi and
y =

∑n
i=1 γivi where αi, γi ∈ F for all 1 ≤ i ≤ n. Note that, by our assumption on T , we

have 〈Tvi, T vj〉 = 0 for all i 6= j, since 〈vi, vj〉 = 0 when i 6= j. Therefore,

〈Tx, Ty〉 = 〈
n∑
i=1

αiTvi,
n∑
i=1

γiTvi〉 =
n∑
i=1

αiγi〈Tvi, T vi〉 =
n∑
i=1

αiγi = 〈x, y〉.

That is, T is an orthogonal transformation. (Since 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ V , we
know that 〈T ∗Tx, y〉 = 〈x, y〉 for all x, y ∈ V , so T ∗Tx = x for all x ∈ V , by the Riesz
Representation Theorem (Theorem 5.6 in the fifth set of notes). So, T ∗T = IV . Also, since
‖Tx‖ = ‖x‖ for all x ∈ V , we know that T : V → V is one-to-one, so T : V → V is invertible.
Since T ∗T = IV , we know that T has unique inverse T ∗, so that TT ∗ = IV as well.)

7. Question 7

(This question is outside our course material.)
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8. Question 8

Let F be a finite field with q ≥ 2 elements. Let V be an n-dimensional vector space. In
terms of n and q, compute the number of 1-dimensional subspaces of V and the number
of linear transformations V → V that have rank 1. (This question is pretty lengthy for an
exam, I think.)

Solution. Without loss of generality, we assume that V = Fn. Let W be any one-
dimensional subspace of V . Then, there exists a nonzero vector v ∈ V such that W is the
span of v. Since v is nonzero, v has some nonzero entry α ∈ F where α 6= 0. Consider the
map T : F → F defined by T (β) = αβ for all β ∈ F. Since F is a field, the function T is
one-to-one and onto. Since F has q elements, F has q−1 distinct nonzero elements. That is,
there exist exactly q − 1 distinct nonzero elements in the set {αβ : β ∈ F}. Therefore, there
exist at least q − 1 distinct nonzero elements in the span of v, namely {αv : α ∈ F, α 6= 0}.
We claim that the span of v has exactly q − 1 distinct nonzero elements. We can find q − 1
distinct nonzero elements, as specified above, from the set {αv : α ∈ F, α 6= 0}. However,
any other element in the span of v must be of this form, by the definition of span. Therefore,
there exist exactly q − 1 nonzero elements in the span of v.

Now, let v, w ∈ V . We claim that either span(v) = span(w) or span(v) ∩ span(w) = {0}.
To prove this, suppose span(v) ∩ span(w) has some nonzero element. We will then prove
that span(v) = span(w). Let z ∈ span(v) ∩ span(w) with z 6= 0. Then z ∈ span(v) and
z ∈ span(w). Then there exist nonzero scalars α, β ∈ F such that z = αv and z = βw. That
is, v = α−1βw. So, by the definition of span we have span(v) = span(w), as desired.

Okay, so we can use this result to count the number of 1-dimensional subspaces of V .
Consider the set of all 1-dimensional subspaces of V . This set is equal to the set of all spans
of v, where v ranges over all v ∈ V . By the previous result, every nonzero vector in V
belongs to exactly one set of the form span(v′), for some v′ ∈ V . Also, there exist exactly
q − 1 nonzero elements in span(v′) for any fixed v′ ∈ V . Since V = Fn and F has exactly
q elements, we know that V has exactly qn − 1 nonzero elements. In summary, there are
exactly (qn − 1)/(q − 1), 1-dimensional subspaces in V .

Finally, note that any rank 1 linear transformation on V can be obtained by first projecting
onto a 1-dimensional subspace, and then multiplying by any nonzero vector. Specifically,
let T : V → V have rank 1. Note that N(T ) has dimension n − 1 by the rank-nullity
theorem, so N(T )⊥ has dimension 1, by Corollary 4.18 in the fifth set of notes. By Corollary
4.19 in the fifth set of notes, every v ∈ V can be written uniquely as v = n + y where
n ∈ N(T ) and y ∈ N(T )⊥. Specifically, if P : V → V denotes projection onto N(T )⊥, then
v = (v−Pv)+Pv. (In the proof of Corollary 4.19, we defined n = v−Pv and y = Pv.) Let w
be a nonzero vector in N(T )⊥. Then we can express P : V → V as an orthogonal projection
onto w. That is, P (v) = w〈v, w〉/〈w,w〉. And any v can be written as v = (v − Pv) + Pv,
so that v − Pv ∈ N(T ), so

Tv = T ((v − Pv) + Pv) = TPv = T (w)〈v, w〉/〈w,w〉.

That is, we wrote T as a projection onto the span of w, multiplied by another vector T (w).
Conversely, given any projection P : V → V onto a one-dimensional subspace of V , and given
any z ∈ V with z 6= 0, the function T : V → V defined by T (v) = z〈v, w〉/〈w,w〉 is a rank 1
linear transformation (where w is any nonzero vector in R(P )). In summary, the number of
rank 1 projections from V to V is bounded by the number of one-dimensional subspaces of V ,
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multiplied by the number of nonzero elements of V . In fact, every distinct one-dimensional
subspace and every distinct nonzero z ∈ V yield a rank 1 linear transformation. So, the
number of rank 1 linear transformations on V is equal to: the number of one-dimensional
subspaces of V , multiplied by the number of nonzero elements of V . That is, the number of
rank 1 linear transformations on V is equal to (qn − 1)2/(q − 1).
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