
131B Final Solutions

1. Question 1

(a) There exists a continuous function f : R → R such that, for every x ∈ R, f is not
differentiable at x.
Solution. TRUE. This was done in Exercise 2 of homework 5. We used

∑∞
j=1 4−j cos(32jπx).

(b) Let f : R → R be an infinitely differentiable function. Then f is equal to its Taylor
series centered at the origin.

Solution. FALSE. This was done in Exercise 7 of homework 5. The example was f(x) =

e−1/x
2
, with f(0) := 0 for x = 0.

(c) Let C([0, 1];R) denote the space of continuous functions from [0, 1] to R, where we
use the sup-norm as the metric on this space. Then C([0, 1];R) is compact.

Solution. FALSE. For any j > 3, j ∈ Z, consider the continuous, piecewise linear function
fj : [0, 1] → R where fj(0) = 0, fj(2

−j) = 0, fj(2
−j+1) = 1, fj(1) = 0, and fj is linear in

between these points. (So, fj(x) = 0 when x ∈ [0, 2−j], fj(x) = 2jx−1 when x ∈ [2−j, 2−j+1],
etc.) By construction, fj+1(2

−j) = 1, while fj(2
−j) = 0, and fk(2

−j) = 0 for all 3 ≤ k ≤ j.
That is, for any k with 3 ≤ k ≤ j, we have ‖fj+1 − fk‖∞ ≥ 1. Therefore, the sequence of
functions (fj)

∞
j=3 has no convergent subsequence. (If it had a convergent subsequence, then

fjk would converge uniformly to some function f as k →∞, but then
∥∥fjk+1

− fj`
∥∥
∞ ≥ 1 for

all 1 ≤ ` ≤ k, so for all k > K, we have ‖fjk − f‖∞ < 1/3, so that 1 ≤
∥∥fjK+1

− fjK
∥∥
∞ ≤∥∥fjK+1

− f
∥∥
∞ + ‖f − fjK‖∞ < 1/3 + 1/3 = 2/3, a contradiction.)

(d) For all x ∈ R, we have − log(1− x) =
∑∞

j=1 x
j/j.

Solution. FALSE. This identity only holds when x ∈ (−1, 1). For example, when x = −2,
the left side is defined, but the right side diverges.

(e) Let T (x) denote the Taylor series of sin(x) at the origin. Then the function f : R→ R
defined by f(x) = sin(x) satisfies f(x) = T (x) for all x ∈ R.
Solution. TRUE. The sin function is defined to be its own Taylor series at the origin.

Also, e.g. by the ratio test, this series has radius of convergence R = +∞.
(f) Let n,m be positive integers. Then every linear transformation f : Rn → Rm is

continuous.
Solution. TRUE. We showed this in Homework 8, Exercise 5.
(g) Let (x, y) ∈ R2, and define f : R2 → R2 by

f(x, y) :=

(
x+ y3, x+

x

x2 + y2

)
.

Then lim(x,y)→(0,0) f(x, y) exists.
Solution. FALSE. Consider (aj, bj) = (1/j, 0), j > 1. Then f(aj, bj) = (j−1, j−1 + j),

so limj→∞ f(aj, bj) does not exist. Since (aj, bj) → (0, 0) as j → ∞, we conclude that
lim (x, y)→ (0, 0)f(x, y) does not exist.

2. Question 2

Let n be a positive integer. Let (Rn, d`2) denote the Euclidean space Rn with the usual
Euclidean metric d`2 . Prove that (Rn, d`2) is a metric space. (Hint: you may freely use the
Cauchy-Schwarz inequality.)
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Solution. This follows from Exercise 3 on Homework 1. We recall the argument. We need
to show that d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Rn (denoting d = d`2). We prove
the stronger statement ‖a+ b‖`2 ≤ ‖a‖`2 + ‖b‖`2 . This is equivalent to showing its square:
〈a+ b, a+ b〉 ≤ 〈a, a〉+ 2 ‖a‖`2 ‖b‖`2 + 〈b, b〉. That is, it suffices to show that

〈a, a〉+ 〈b, b〉+ 2〈a, b〉 ≤ 〈a, a〉+ 2 ‖a‖`2 ‖b‖`2 + 〈b, b〉.

That is, it suffices to show that

2〈a, b〉 ≤ 2 ‖a‖`2 ‖b‖`2 .

This is exactly the Cauchy-Schwarz inequality.

3. Question 3

Describe the set of all complex numbers z ∈ C such that
∑∞

j=0 z
j/j2 converges.

Solution. From the ratio test, we see that
|z|j+1|1/(j+1)2|
|z|j |1/j2| = |z| j2

(j+1)2
→ |z| as j → ∞. So,

if |z| < 1, then
∑∞

j=0 z
j/j2 converges, by the ratio test. And if |z| > 1, then

∑∞
j=0 z

j/j2

diverges, by the ratio test. The only remaining points to check occur when |z| = 1. In this
case, we have ∣∣∣∣∣

∞∑
j=0

zj/j2

∣∣∣∣∣ ≤
∞∑
j=0

|z|j /j2 =
∞∑
j=0

1/j2 <∞.

That is, the sum is absolutely convergent when |z| = 1. So, the sum converges when |z| = 1.
In conclusion, the sum converges if and only if |z| ≤ 1.

4. Question 4

Let x ∈ R, and let j be a positive integer. Define the function

fj(x) :=
x

1 + jx2
.

(a) Show that the sequence of functions (fj)
∞
j=1 converges uniformly to a function f .

Solution. Let f(x) = 0 for all x ∈ R. Let j > 0, j ∈ Z. Let hj(x) = 1/(1 + jx2) for any
j > 0, j ∈ Z. Note that limx→∞ hj(x) = 0 = limx→−∞ hj(x). Also, h′j(x) = −2jx/(1 + jx2).

That is, on the set (−∞,−j−1/4] ∪ [j1/4,+∞), hj achieves its maximum value at x = j−1/4

and at x = −j−1/4. This maximum value is hj(j
−1/4) = 1/(1 + j1/2).

For any x ∈ [−j−1/4, j1/4], we use the bound |fj(x)| ≤ |x| ≤ j−1/4, and for any other
x ∈ R, we use the bound |fj| (x) ≤ 1/(1 + j1/2). That is, for any x ∈ R, we have |fj(x)| ≤
max(j−1/4, 1/(1+j1/2)). That is, for any j > 0, we have d∞(f, fj) ≤ max(j−1/4, 1/(1+j1/2)).
That is, fj converges to f uniformly as j →∞.

(b) Show that, if x 6= 0, then f ′(x) = limj→∞ f
′
j(x). Show that, if x = 0, then f ′(x) 6=

limj→∞ f
′
j(x).

Note: f ′j(x) = 1+jx2−x(2jx)
(1+jx2)2

= 1−jx2
(1+jx2)2

. So, if x 6= 0, then limj→∞ f
′
j(x) = limj→∞

−jx2
(1+jx2)2

=

limj→∞
−jx2

1+2jx2+j2x4
= 0, since the numerator has a factor of j, but the denominator has a

factor of j2 (since x 6= 0). Since f = 0, we have f ′(x) = 0, so f ′(x) = limj→∞ f
′
j(x). If x = 0,

then f ′j(x) = 1 for all j > 1, while f ′(x) = 0, so f ′(x) 6= limj→∞ f
′
j(x).
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5. Question 5

Let f : R → R and let g : R → R be continuous functions. Suppose f is nonzero only
in the interval [0, 1], and suppose g is constant in the interval [0, 2]. That is, f(x) = 0
for all x ∈ (−∞, 0) ∪ (1,∞) and there exists c ∈ R such that g(x) = c for all x ∈ [0, 2].
Show that the convolution f ∗ g is constant on the interval [1, 2]. (Here we define f ∗ g(t) =∫∞
−∞ f(y)g(t− y)dy, for any t ∈ R.)

Solution. Note that f ∗ g(t) =
∫∞
−∞ f(y)g(t− y)dy =

∫ 1

0
f(y)g(t− y)dy, since f is nonzero

only on the interval [0, 1]. Let t ∈ [1, 2], and let y ∈ [0, 1]. Then (t − y) ∈ [0, 2]. So, by
assumption on g, we have g(t − y) = c whenever t ∈ [1, 2] and y ∈ [0, 1]. That is, for any

t ∈ [1, 2], we have f ∗g(t) =
∫ 1

0
f(y)cdy. Since

∫ 1

0
f(y)cdy does not depend on t, we conclude

that f ∗ g(t) is constant for all t ∈ [1, 2].

6. Question 6

Let f : [0, 1]→ R be a continuous Z-periodic function. Assume that, for all positive inte-

gers n, we have
∫ 1

0
f(x)xndx = 0. Conclude that f(x) = 0 for all x ∈ [0, 1]. (Hint: first show

that
∫ 1

0
f(x)P (x)dx = 0 for any polynomial P . Then, use the Weierstrass approximation

theorem to show that
∫ 1

0
f(x)f(x)dx = 0.) (Don’t use the Weierstrass approximation for

trigonometric polynomials.)
Solution. Let P be a polynomial. Then there exists a positive integer n and constants

an, . . . , a0 such that P (x) = anx
n + an−1x

n−1 + · · · + a1x1 + a0. That is,
∫ 1

0
f(x)P (x)dx =∑n

i=0 ai
∫ 1

0
f(x)xidx = 0, since the final term is a sum of zeros, by assumption. (Recall that

|f |, f · f , (f − P ) and all of their products are all continuous functions, so they are all
Riemann integrable.) Now, let ε > 0. Let P be a polynomial such that |f(x)− P (x)| < ε
for all x ∈ [0, 1]. Then∣∣∣∣∫ 1

0

f(x)f(x)dx−
∫ 1

0

f(x)P (x)dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(x)(f(x)− P (x))dx

∣∣∣∣
≤
∫ 1

0

|f(x)| |f(x)− P (x)| < ε

∫ 1

0

|f(x)| dx.

As we just showed,
∫ 1

0
f(x)P (x)dx = 0. That is, we have shown that |

∫ 1

0
f(x)f(x)dx| <

ε
∫ 1

0
|f(x)| dx. Since ε > 0 is arbitrary, we conclude that

∫ 1

0
|f(x)|2 dx = 0. Since f is

continuous, we conclude that f is zero as well. (If f were nonzero, there would exist some
x and δ > 0 such that |f(x)| > δ. By continuity, there would then exist some η > 0 such

that |f(y)| > δ/2 for all y ∈ (x − η, x + η). So,
∫ 1

0
|f(t)|2 dt ≥

∫ x+η
x−η |f(t)|2 dt > ηδ > 0, a

contradiction.)

7. Question 7

Let (x, y, z) ∈ R3. Define f : R3 → R3 by

f(x, y, z) := (x2, xyz, z2 + xy2).

Prove that f is differentiable. Then, compute the differential of f .
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Solution. Each component of f is continuously differentiable. So, by Theorem 4.7 in the
final set of notes, f is differentiable. Moreover, by Theorem 4.7, the differential is given by
the formula

f ′(x, y, z)(v1, v2, v3) =
3∑
j=1

vj
∂f

∂xj
(x, y, z) = v1(2x, yz, y

2) + v2(0, xz, 2xy) + v3(0, yz, 2z).

Here (v1, v2, v3) ∈ R3.

8. Question 8

Let f : R → (0,∞) be a positive, real analytic function such that f ′(x) = f(x) for all
x ∈ R. Show that there exists a real number C ∈ R such that f(x) = Cex for all x ∈ R.
(Hint: there are at least three ways to prove this. One proof uses the logarithm function,
another proof uses the function e−x, and a third proof uses power series. You only need to
provide one proof.)

Solution 1. Since f is positive, the function h(x) = log f(x) is well-defined. Since f is
analytic, it is differentiable, so by the chain rule we have h′(x) = f ′(x)/f(x) = f(x)/f(x) = 1
(using our assumption f ′(x) = f(x) for all x ∈ R). So, by the Fundamental Theorem of
Calculus, there exists c ∈ R with h(x) = x+ c for all x ∈ R. That is, log f(x) = x+ c for all
x ∈ R. Exponentiating both sides, we have f(x) = ex+c = (ec)ex for all x ∈ R. So, define
C = ec.

Solution 2. Define h(x) = e−xf(x). Note that e−x and f(x) are both analytic, so h is
analytic as well, by Theorem 8.22 in the third set of notes. In particular, h is differentiable.
And by the product rule, h′(x) = e−xf ′(x)− e−xf(x) = e−x(f ′(x)− f(x)) = 0 for all x ∈ R
(using our assumption f ′(x) = f(x) for all x ∈ R). So, by the Fundamental Theorem of
Calculus, there exists C ∈ R with h(x) = C for all x ∈ R. That is, e−xf(x) = C, so that
f(x) = Cex for all x ∈ R.
Solution 3. Since f is real analytic on R, we can write f as its Taylor series f(x) =∑∞
j=0 ajx

j (Corollary 8.15 in the second set of notes). Since f is once again real analytic, we

can differentiate it term by term to get f ′(x) =
∑∞

j=0 ajjx
j−1 (Theorem 8.5 in the second

set of notes). Since f ′(x) = f(x), we conclude by the Uniqueness of power series that
aj = (j + 1)aj+1 for all j ≥ 0 (Corollary 8.19 in the second set of notes). For example,
a1 = 2a2, a3 = 3a3, and so on. We prove by induction that aj = a0/j!. Since 0! = 1, the base
case holds. We therefore induct on j. Assume aj = a0/j!. We then prove aj+1 = a0/(j+ 1)!.
Since aj+1 = aj/(j + 1), the inductive hypothesis says that aj+1 = a0/((j!)(j + 1)) =
a0/(j + 1)!. The induction is therefore complete. We have shown that aj = a0/j!. That is,
f(x) = a0

∑∞
j=0 x

j/j! = a0e
x. So, set C = a0.

9. Question 9

Let f : [0, 1]→ R3 be a continuous function such that f(0) = (0, 0, 0) and f(1) = (1, 1, 1).
Let S denote the subset of R3 defined by

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

That is, S is the unit sphere in R3. Prove that there exists t ∈ [0, 1] and there exists s ∈ S
such that f(t) = s. (Hint: how did we prove the intermediate value theorem?)
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Solution. We argue by contradiction. Suppose no such t exists. Let B denote the open ball
where {(x, y, z) ∈ R3 : x2+y2+z2 < 1}, and letD denote the set {(x, y, z) ∈ R3 : x2+y2+z2 >
1}. Note that B and D are both open in R3. Since no such t exists, we conclude that
B ∩ f([0, 1]) and D ∩ f([0, 1]) are both relatively open with respect to f([0, 1]). That is,
f([0, 1]) is disconnected. (Here we also used that B∩f([0, 1]) and D∩f([0, 1]) are nonempty,
which follows since f(0) = (0, 0, 0) ∈ B and f(1) = (1, 1, 1) ∈ D.) However, since f([0, 1])
is disconnected, we have found a contradiction. We know f([0, 1]) is connected since f is
continuous and [0, 1] is connected (Theorem 8.6 from the first set of notes). In conclusion,
such a t must exist.

10. Question 10

Let f : [0, 1]→ C and let g : [0, 1]→ C be continuously differentiable, Z-periodic functions.

For any n ∈ Z, define an =
∫ 1

0
f(x)e−2πinxdx and define bn =

∫ 1

0
g(x)e−2πinxdx. Prove that∫ 1

0

f(x)g(x)dx = lim
N→∞

N∑
n=−N

anbn.

(Hint: in the case f = g, this is exactly Plancherel’s Theorem. So, maybe try to mimic the
proof of Plancherel’s Theorem. That is, first try to prove the statement when f and g are
trigonometric polynomials.)

Solution. For any n ∈ Z and x ∈ R, let en(x) = e2πinx. Let f and g be trigonometric

polynomials. That is, assume there exists N ∈ N such that f =
∑N

n=−N anen and g =∑N
m=−N bmem. Then

〈f, g〉 =

〈
N∑

n=−N

anen,
N∑

m=−N

bmem

〉
=

N∑
n,m=−N

anbm〈en, em〉 =
N∑

n=−N

anbm.

Here we used that 〈en, em〉 = 0, unless n = m, in which case 〈en, em〉 = 1 (Homework 7,
Exercise 6). That is, we have proven the required statement for trigonometric polynomials.

Now, let f, g be any continuous Z-periodic functions. Let ε > 0. Let fN =
∑N

n=−N anen
and let gN =

∑N
n=−N bnen. By Fourier inversion (Theorem 7.1 in the third set of notes),

there exists N > 0 such that ‖f − fN‖2 < ε and such that ‖g − gN‖2 < ε. Then∣∣∣∣∣〈f, g〉 −
N∑

n=−N

anbn

∣∣∣∣∣ = |〈f, g〉 − 〈fN , gN〉| , by what we proved already

= |〈f − fN , g〉+ 〈fN , g − gN〉| ≤ |〈f − fN , g〉|+ |〈fN , g − gN〉|
≤ ‖f − fN‖2 ‖g‖2 + ‖fN‖2 ‖g − gN‖2 , by the Cauchy-Schwarz inequality.

Now, ‖fN‖2 ≤ ‖f‖2 for all N > 0 by Plancherel’s Theorem (Theorem 7.4 in the third set of
notes). In conclusion, we have shown that: for all ε > 0, there exists N > 0 such that∣∣∣∣∣〈f, g〉 −

N∑
n=−N

anbn

∣∣∣∣∣ ≤ ε ‖g‖2 + ε ‖f‖2 .

That is, limN→∞
∑N

n=−N anbn = 〈f, g〉, as desired.
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11. Question 11

Let f : [0, 1]→ R be a continuously differentiable, Z-periodic function. Assume also that∫ 1

0
f = 0. Prove that ∫ 1

0

(f ′(x))2dx ≥
∫ 1

0

(f(x))2dx.

Solution. Suppose f has Fourier expansion
∑

n∈Z ane
2πinx and f ′ has Fourier expansion∑

n∈Z bne
2πinx. Note that

∫ 1

0
f ′(x)e−2πinx = 2πin

∫ 1

0
f(x)e−2πinx, by integrating by parts.

That is, bn = 2πinan. Using Plancherel’s Theorem (Theorem 7.4 in the third set of notes),
we are required to show that ∑

n∈Z

|bn|2 ≥
∑
n∈Z

|an|2 .

We in fact show the stronger inequality |bn| ≥ |an|, for all n ∈ Z. Since bn = 2πinan, we
automatically have |bn| = |2πn| |an| ≥ |an|, as long as n 6= 0. In the case that n = 0, we have

a0 =
∫ 1

0
f(x)dx = 0 by assumption, so therefore |b0| ≥ 0 = |a0|. In conclusion, |bn| ≥ |an|

for all n ∈ Z, as desired.
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