131B Final Solutions

1. QUESTION 1

(a) There exists a continuous function f: R — R such that, for every z € R, f is not
differentiable at x.

Solution. TRUE. This was done in Exercise 2 of homework 5. We used Y| 477 cos(32/ 7).

(b) Let f: R — R be an infinitely differentiable function. Then f is equal to its Taylor
series centered at the origin.

Solution. FALSE. This was done in Exercise 7 of homework 5. The example was f(z) =
e~ /7* with £(0) := 0 for z = 0.

(c) Let C([0,1]; R) denote the space of continuous functions from [0, 1] to R, where we
use the sup-norm as the metric on this space. Then C([0,1];R) is compact.

Solution. FALSE. For any j > 3, j € Z, consider the continuous, piecewise linear function
fi:[0,1] = R where f;(0) =0, f;(2779) =0, f;(2777) =1, f;(1) = 0, and f; is linear in
between these points. (So, f;(z) = 0 when z € [0,277], f;(z) = 272 —1 when x € [277,277H1]
etc.) By construction, f;41(277) =1, while f;(277) =0, and f(277) =0 for all 3 < k < j.
That is, for any & with 3 < k < j, we have ||fj41 — fill,, > 1. Therefore, the sequence of
functions (f;)32; has no convergent subsequence. (If it had a convergent subsequence, then
fj. would converge uniformly to some function f as k — oo, but then H Jiver — fie Hoo > 1 for
all 1 < ¢ <k, soforall k> K, we have || f;, — fll.. < 1/3, so that 1 < || fj,,, — ijHoo <
| ficsr = Fllo +1F = Finllo <1/3+1/3 =2/3, a contradiction.)

(d) For all z € R, we have —log(1 —x) = Y °2, 27/

Solution. FALSE. This identity only holds when x € (—1,1). For example, when z = —2,
the left side is defined, but the right side diverges.

(e) Let T'(x) denote the Taylor series of sin(x) at the origin. Then the function f: R — R
defined by f(z) = sin(x) satisfies f(x) = T'(x) for all z € R.

Solution. TRUE. The sin function is defined to be its own Taylor series at the origin.
Also, e.g. by the ratio test, this series has radius of convergence R = +oc.

(f) Let n,m be positive integers. Then every linear transformation f: R — R™ is
continuous.

Solution. TRUE. We showed this in Homework 8, Exercise 5.

(g) Let (z,y) € R? and define f: R* — R? by

o 3 x
f<x7y) (x+y7x+x2+y2)

Then lim, 4 (0,0) f(,y) exists.

Solution. FALSE. Consider (a;,b;) = (1/4,0), j > 1. Then f(a;,b;) = (7,77 + ),
so lim;_, f(aj,b;) does not exist. Since (a;,b;) — (0,0) as j — oo, we conclude that
lim (x,y) — (0,0) f(x,y) does not exist.

2. QUESTION 2

Let n be a positive integer. Let (R"™,dy,) denote the Euclidean space R"™ with the usual
Euclidean metric dg,. Prove that (R", dy,) is a metric space. (Hint: you may freely use the
Cauchy-Schwarz inequality.)



Solution. This follows from Exercise 3 on Homework 1. We recall the argument. We need
to show that d(z,z) < d(x,y) + d(y, z) for all z,y,z € R™ (denoting d = d,,). We prove
the stronger statement |la + b[|,, < [la|,, + ||bl[,,- This is equivalent to showing its square:
(a+0b,a+b) <(a,a)+2|all, ||bll,, + (b,b). That is, it suffices to show that

(a,a) + (b, b) + 2(a,b) < (a,a) + 2||ally, [[b]],, + (b, b).
That is, it suffices to show that
2(a, b) < 2|lall,, [b]l,, -
This is exactly the Cauchy-Schwarz inequality.

3. QUESTION 3
Describe the set of all complex numbers z € C such that Z;io 27 /4% converges.

Solution. From the ratio test, we see that Gz |2] 2 |z] as j — o0. So

' . ’ IR Ve J o
if |2] < 1, then 372 27/j% converges, by the ratio test. And if |z| > 1, then 377 27 /5
diverges, by the ratio test. The only remaining points to check occur when |z| = 1. In this
case, we have

S < SO 7 = S < o0
=0 =0 =0

That is, the sum is absolutely convergent when |z| = 1. So, the sum converges when |z| = 1.
In conclusion, the sum converges if and only if |z| < 1.

4. QUESTION 4

Let x € R, and let j be a positive integer. Define the function
x
fi(z) = 12
(a) Show that the sequence of functions (f;)52, converges uniformly to a function f.

Solution. Let f(x) =0 for all z € R. Let j >0, j € Z. Let h;j(z) = 1/(1 + jz?) for any
j >0, j € Z. Note that lim, o hj(z) = 0 = lim,,_o hj(z). Also, b(z) = =2jx/(1 + jz?).
That is, on the set (—oo, —j =4 U [j/4, +00), h; achieves its maximum value at z = j~1/4
and at ¥ = —j~ 4. This maximum value is h;(j714) = 1/(1 + j/2).

For any z € [—j~/4 /4], we use the bound |f;(z)| < |z| < j~%4, and for any other
z € R, we use the bound |f;| (z) < 1/(1 + j'/2). That is, for any = € R, we have |f;(z)| <
max(j71/4,1/(1+51/2)). That is, for any j > 0, we have du, (f, f;) < max(j7V4,1/(1+5/2)).
That is, f; converges to f uniformly as j — oo.

(b) Show that, if z # 0, then f'(r) = lim; o fj(z). Show that, if ¥ = 0, then f'(z) #
lim; o f7 ().

jz? —x(2jx —jz? . . . —ix
Note: f],(l’) = 1+gl+jx2()22] ) = (11+]‘-7x2)2- So, if  # 0, then lim;_, f],('%) = lim; (1+_;$2)2 =
—ja?

lim;_, ot = 0, since the numerator has a factor of j, but the denominator has a
factor of j* (since z # 0). Since f = 0, we have f'(x) = 0, so f'(z) = lim;_,o fj(2). If 2 =0,
then fi(x) =1 for all j > 1, while f'(z) = 0, so f'(x) # lim;_, f}(z).
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5. QUESTION 5

Let f: R — R and let g: R — R be continuous functions. Suppose f is nonzero only
in the interval [0,1], and suppose ¢ is constant in the interval [0,2]. That is, f(z) =
for all x € (—00,0) U (1,00) and there exists ¢ € R such that g(z) = ¢ for all z € [0,2].
Show that the convolution f x ¢ is constant on the interval [1,2]. (Here we define f x g(t) =
2 fy)g(t — )dy,foranytER)

Solutzon Note that fx*g(t) = [7 f(y —y)dy = fol f(y)g(t —y)dy, since f is nonzero
only on the interval [0, 1]. Let t e [1 2] and let y € [0,1]. Then (t —y) € [0,2]. So, by
assumption on g, we have g(t — y) = ¢ whenever ¢ € [1,2] and y € [0,1]. That is, for any
t € [1,2], we have fxg(t fo y)cdy. Since fo y)cdy does not depend on ¢, we conclude
that f * g(t) is constant for all ¢ 6 [1,2].

6. QUESTION 6

Let f:[0,1] — R be a continuous Z-periodic function. Assume that, for all positive inte-
gers n, we have fol f(z)z"dx = 0. Conclude that f(z) =0 for all x € [0,1]. (Hint: first show
that fol f(z)P(z)dx = 0 for any polynomial P. Then, use the Weierstrass approximation
theorem to show that fol f(x)f(z)dx = 0.) (Don’t use the Weierstrass approximation for
trigonometric polynomials.)

Solution. Let P be a polynomial. Then there exists a positive integer n and constants
an, ..., ap such that P(z) = a,z" + a, 12" ' + -+ + ayx; + ag. That is, fol x)P(z)dx =

0 @i fo Jz'dz = 0, since the final term is a sum of zeros, by assumption. (Recall that
| f | f f, ( f P) and all of their products are all continuous functions, so they are all
Riemann integrable.) Now, let ¢ > 0. Let P be a polynomial such that |f(z) — P(z)| < ¢
for all z € [0,1]. Then

x)dr — /01 f(z)P(x

P(z))dx

< / @) 1f(@) - P2)| << / ()] d.

As we just showed, fol f(x)P(x)dx = 0. That is, we have shown that |f01 f(x)f(x)dx| <

5f01 |f(z)|dz. Since € > 0 is arbitrary, we conclude that fol |f(z)]"dz = 0. Since f is
continuous, we conclude that f is zero as well. (If f were nonzero, there would exist some
x and 0 > 0 such that |f(x)| > 0. By continuity, there would then exist some 1 > 0 such

that |f(y)| > /2 for all y € (x —n,z +n). So, fo |F()]? dt > fx+"|f P dt > né > 0, a
contradiction.)

7. QUESTION 7
Let (z,y,2) € R3. Define f: R®> — R? by
f(z,y, 2) = (2, zyz, 22 + zy°).
Prove that f is differentiable. Then, compute the differential of f.
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Solution. Each component of f is continuously differentiable. So, by Theorem 4.7 in the
final set of notes, f is differentiable. Moreover, by Theorem 4.7, the differential is given by
the formula

9
F(x,y, 2)(v1, v9,03) = Zvja—g(x, y,2) = v1(22,yz,y?) + v2(0, 22, 22y) + v3(0, yz, 22).
=1 ’

Here (v1,v2,v3) € R3.

8. QUESTION &

Let f: R — (0,00) be a positive, real analytic function such that f'(z) = f(x) for all
x € R. Show that there exists a real number C' € R such that f(z) = Ce” for all x € R.
(Hint: there are at least three ways to prove this. One proof uses the logarithm function,
another proof uses the function e™*, and a third proof uses power series. You only need to
provide one proof.)

Solution 1. Since f is positive, the function h(x) = log f(z) is well-defined. Since f is
analytic, it is differentiable, so by the chain rule we have h/(z) = f'(z)/f(x) = f(z)/f(x) =1
(using our assumption f'(z) = f(z) for all z € R). So, by the Fundamental Theorem of
Calculus, there exists ¢ € R with h(z) = x + ¢ for all x € R. That is, log f(x) = x + ¢ for all
x € R. Exponentiating both sides, we have f(x) = "¢ = (e)e” for all x € R. So, define
C =e“

Solution 2. Define h(z) = e *f(x). Note that e and f(x) are both analytic, so h is
analytic as well, by Theorem 8.22 in the third set of notes. In particular, h is differentiable.
And by the product rule, h'(z) = e *f'(x) — e " f(z) = e *(f'(x) — f(z)) =0 for all z € R
(using our assumption f'(z) = f(x) for all z € R). So, by the Fundamental Theorem of
Calculus, there exists C' € R with h(z) = C for all x € R. That is, e *f(z) = C, so that
f(z) = Ce” for all z € R.

Solution 3. Since f is real analytic on R, we can write f as its Taylor series f(x) =
Z;io a;xz? (Corollary 8.15 in the second set of notes). Since f is once again real analytic, we
can differentiate it term by term to get f'(z) = > 7, ajja?~! (Theorem 8.5 in the second
set of notes). Since f'(z) = f(z), we conclude by the Uniqueness of power series that
aj = (j + 1)aj41 for all j > 0 (Corollary 8.19 in the second set of notes). For example,
a; = 2ay, az = 3as, and so on. We prove by induction that a; = ao/j!. Since 0! = 1, the base
case holds. We therefore induct on j. Assume a; = ao/j!. We then prove a;41 = ao/(j +1)!.
Since a;+1 = a;/(j + 1), the inductive hypothesis says that a;41 = ao/((j!)(j + 1)) =
ao/(j + 1)!. The induction is therefore complete. We have shown that a; = ay/j!. That is,
f(x) = a0 3252027 /5! = age”. So, set C = aq.

9. QUESTION 9

Let f: [0,1] — R3 be a continuous function such that f(0) = (0,0,0) and f(1) = (1,1,1).
Let S denote the subset of R? defined by

S={(z,y,2) eR*: 22 + > + 22 =1}.
That is, S is the unit sphere in R3. Prove that there exists ¢ € [0, 1] and there exists s € S

such that f(t) = s. (Hint: how did we prove the intermediate value theorem?)
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Solution. We argue by contradiction. Suppose no such ¢ exists. Let B denote the open ball
where {(z,y, z) € R3: 2?4+y*+22 < 1}, and let D denote the set {(z,y, 2) € R?: 22+y>+2% >
1}. Note that B and D are both open in R3. Since no such ¢ exists, we conclude that
BN f([0,1]) and D N f([0,1]) are both relatively open with respect to f([0,1]). That is,
f(]0,1]) is disconnected. (Here we also used that BN ([0, 1]) and DN f(][0, 1]) are nonempty,
which follows since f(0) = (0,0,0) € B and f(1) = (1,1,1) € D.) However, since f(]0,1])
is disconnected, we have found a contradiction. We know f([0,1]) is connected since f is
continuous and [0, 1] is connected (Theorem 8.6 from the first set of notes). In conclusion,
such a ¢ must exist.

10. QUESTION 10

Let f: [0,1] — Candlet g: [0,1] — C be continuously differentiable, Z-periodic functions.
For any n € Z, define a,, = fol f(x)e ™"z and define b, = fol g(z)e™?™=dx. Prove that

N

/0 f(x)mdx: lim Z by,

n=—N

(Hint: in the case f = g, this is exactly Plancherel’s Theorem. So, maybe try to mimic the
proof of Plancherel’s Theorem. That is, first try to prove the statement when f and g are
trigonometric polynomials.)

Solution. For any n € Z and = € R, let e,(z) = *™*. Let f and g be trigonometric

polynomials. That is, assume there exists N € N such that f = Zng N anén and g =
ZN _n bmém. Then

" N N N N
<f7 .g> = < Z A €n, Z bm€m> = Z ana<ena em> == Z ana'
n=—N m=—N n,m=—N n=—N

Here we used that (e,,e,) = 0, unless n = m, in which case (e,,e,) = 1 (Homework 7,

Exercise 6). That is, we have proven the required statement for trigonometric polynomials.
Now, let f, g be any continuous Z-periodic functions. Let ¢ > 0. Let fy = Zfzv:_]v Q€

and let gy = Zivz_ ~ bnén. By Fourier inversion (Theorem 7.1 in the third set of notes),

there exists N > 0 such that ||f — fx|l2 < € and such that ||g — gn|l2 < . Then

N

<fag> - Z ana

n=—N

=1{(f,9) — {fn,gn)| , by what we proved already

=[{f—fn,9) +{fng—9n)| < = fv, )| + (v, 9 — 9w
<\ f = fnlly llglly + I fnllo g — gnll, , by the Cauchy-Schwarz inequality.

Now, || fally < [|f]|, for all N > 0 by Plancherel’s Theorem (Theorem 7.4 in the third set of
notes). In conclusion, we have shown that: for all € > 0, there exists N > 0 such that

<fag> - Z ana

n=—N

N
‘ <ellglly +ell -

That is, limy_,o0 Zg:_N anbn, = {f,g), as desired.
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11. QUESTION 11

Let f: [0,1] — R be a continuously differentiable, Z-periodic function. Assume also that
1
Jo f = 0. Prove that

/ (F@)de > [ Gwya

Solution. Suppose f has Fourier expansion ) _, a,e?™* and f’ has Fourier expansion

> ez bn€®™ ™. Note that fol f(x)e 2™ = 27in fol f(x)e™?™™* by integrating by parts.
That is, b, = 2mina,. Using Plancherel’s Theorem (Theorem 7.4 in the third set of notes),

we are required to show that
Dbl =3 Jaal”.

neZ nez
We in fact show the stronger inequality |b,| > |a,|, for all n € Z. Since b, = 2wina,, we
automatically have |b,| = |27n||a,| > |a,|, as long as n # 0. In the case that n = 0, we have

ag = fol f(z)dz = 0 by assumption, so therefore |by| > 0 = |ag|. In conclusion, |b,| > |a,|
for all n € Z, as desired.
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