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Final Exam

This exam contains 17 pages (including this cover page) and 11 problems. Check to see if
any pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam.
The following rules apply:

• You have 180 minutes to complete the exam.

• If you use a “fundamental theorem” you
must indicate this and explain why the the-
orem may be applied.

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper appears at the end of the
document.

Do not write in the table to the right. Good luck!

Problem Points Score

1 20

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

11 10

Total: 120



Reference sheet

Below are some definitions that may be relevant.

A metric space (X, d) is a set X together with a function d : X×X → [0,∞) which satisfies
the following properties. (i) For all x ∈ X, we have d(x, x) = 0. (ii) For all x, y ∈ X with
x 6= y, we have d(x, y) > 0. (Positivity) (iii) For all x, y ∈ X, we have d(x, y) = d(y, x).
(Symmetry) (iv) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y)+d(y, z). (Triangle inequality)

Let X be a vector space over R. A normed linear space (X, ‖·‖) is a vector space X over
R together with a norm function ‖·‖ : X → [0,∞) which satisfies the following properties.
(i) ‖0‖ = 0. (ii) For all x ∈ X with x 6= 0, we have ‖x‖ > 0. (Positivity) (iii) For all
x ∈ X and for all α ∈ R, we ‖αx‖ = |α| ‖x‖. (Homogeneity) (iv) For all x, y ∈ X, we have
‖x+ y‖ ≤ ‖x‖+ ‖y‖. (Triangle inequality)

Let X be a vector space over R. A real inner product space (X, 〈·, ·〉) is a vector space
X over R together with an inner product function 〈·, ·〉 : X × X → R which satisfies the
following properties. (i) 〈0, 0〉 = 0. (ii) For all x ∈ X with x 6= 0, we have 〈x, x〉 > 0. (iii) For
all x, y ∈ X, we have 〈x, y〉 = 〈y, x〉. (Symmetry) (iv) For all x ∈ X and for all α ∈ R, we
〈αx, y〉 = α〈x, y〉. (Homogeneity) (v) For all x, y, z ∈ X, we have 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.
(Linearity)

Let (X, d) be a metric space. We say that (X, d) is complete if and only if the following
property holds. For any Cauchy sequence (x(j))∞j=k of elements of X, then there exists some

x ∈ X such that (x(j))∞j=k converges to x with respect to d.

A metric space (X, d) is said to be compact if and only if every sequence in (X, d) has at
least one convergent subsequence. We say that Y ⊆ X is compact if and only if the metric
space (Y, d|Y×Y ) is compact.

Let (X, d) be a metric space. We say that X is disconnected if and only if there exist
disjoint open sets V,W in X such that V ∪W = X. (Equivalently, X is disconnected if and
only if X contains a proper non-empty subset which is both open and closed.) We say that
X is connected if and only if X is not disconnected. We say that Y ⊆ X is connected if
and only if the metric space (Y, d|Y×Y ) is connected. We say that Y is disconnected if and
only if the metric space (Y, d|Y×Y ) is disconnected.

Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of functions from X to

Y . Let f : X → Y be another function. We say that (fj)
∞
j=1 converges pointwise to f on

X if and only if, for every x ∈ X, we have

lim
j→∞

fj(x) = f(x).

That is, for all x ∈ X, we have

lim
j→∞

dY (fj(x), f(x)) = 0.
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That is, for every x ∈ X and for every ε > 0, there exists J > 0 such that, for all j > J , we
have dY (fj(x), f(x)) = 0.

Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of functions from X to

Y . Let f : X → Y be another function. We say that (fj)
∞
j=1 converges uniformly to f

on X if and only if, for every ε > 0, there exists J > 0 such that, for all j > J and for all
x ∈ X we have dY (fj(x), f(x)) = 0.

Let a ∈ R and let r > 0. Let E be a subset of R such that (a−r, a+r) ⊆ E. Let f : E → R.
We say that the function f is real analytic on (a − r, a + r) if and only if there exists a
power series

∑∞
j=0 aj(x − a)j centered at a with radius of convergence R such that R ≥ r

and such that this power series converges to f on (a− r, a+ r).

A function f : R→ C is Z-periodic if and only if f(x+ k) = f(x) for all x ∈ R and for all
k ∈ Z. The space of all complex-valued Z-periodic functions is denoted by C(R/Z; C).

For any function f ∈ C(R/Z; C) and any integer n ∈ Z, we define the nth Fourier coeffi-

cient of f , denoted f̂(n), by

f̂(n) := 〈f, en〉 =

∫ 1

0

f(x)e−2πinxdx.

Let f, g ∈ C(R/Z; C). We define the convolution f ∗ g ∈ C(R/Z; C) of f and g by the
formula

f ∗ g(x) :=

∫ 1

0

f(y)g(x− y)dy, ∀x ∈ R.

Let n,m be positive integers. We say that L : Rn → Rm is a linear transformation if and
only if (i) for all x, y ∈ Rn, we have L(x+ y) = L(x) + L(y), and (ii) for all x ∈ Rn and for
all α ∈ R, we have L(αx) = αL(x).

Let E be a subset of Rn, let f : E → Rm be a function, let x0 ∈ E, and let L : Rn → Rm be
a linear transformation. We say that f is differentiable at x0 with derivative L if and
only if we have

lim
x→x0;x∈E

‖f(x)− (f(x0) + L(x− x0))‖
‖x− x0‖

= 0.

Here ‖x‖ denotes the `2 norm of x:

‖(x1, . . . , xn)‖ := (x21 + · · ·+ x2n)1/2.
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1. Label the following statements as TRUE or FALSE. Briefly justify your answer. If the
statement is false, provide a counterexample.

(a) (3 points) There exists a continuous function f : R→ R such that, for every x ∈ R,
f is not differentiable at x.

TRUE FALSE (circle one)

(b) (3 points) Let f : R → R be an infinitely differentiable function. Then f is equal
to its Taylor series centered at the origin.

TRUE FALSE (circle one)

(c) (3 points) Let C([0, 1]; R) denote the space of continuous functions from [0, 1] to
R, where we use the sup-norm metric d(f, g) := supx∈[0,1] |f(x)− g(x)|, f, g ∈
C([0, 1]; R) to make C([0, 1]; R) into a metric space. Then C([0, 1]; R) is compact.

TRUE FALSE (circle one)

(d) (2 points) For all x ∈ R, we have − log(1− x) =
∑∞

j=1 x
j/j.

TRUE FALSE (circle one)
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(e) (3 points) Let T (x) denote the Taylor series of sin(x) at the origin. Then the
function f : R→ R defined by f(x) = sin(x) satisfies f(x) = T (x) for all x ∈ R.

TRUE FALSE (circle one)

(f) (3 points) Let n,m be positive integers. Then every linear transformation f : Rn →
Rm is continuous. (As usual, since we have not specified a metric, we mean that
we are using the `2 metric on both Rn and on Rm.)

TRUE FALSE (circle one)

(g) (3 points) Let (x, y) ∈ R2, and define f : R2 → R2 by

f(x, y) :=

(
x+ y3, x+

x

x2 + y2

)
.

Then lim(x,y)→(0,0) f(x, y) exists.

TRUE FALSE (circle one)
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2. (10 points) Let n be a positive integer. Let (Rn, d`2) denote the Euclidean space Rn

with the usual Euclidean metric d`2 . Prove that (Rn, d`2) is a metric space. (Hint: you
may freely use the Cauchy-Schwarz inequality.)
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3. (10 points) Describe the set of all complex numbers z ∈ C such that
∑∞

j=0 z
j/j2 con-

verges.
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4. Let x ∈ R, and let j be a positive integer. Define the function

fj(x) :=
x

1 + jx2
.

(a) (5 points) Show that the sequence of functions (fj)
∞
j=1 converges uniformly to some

function f .

(b) (5 points) We use the function f from the first part of the question. Show that, if
x 6= 0, then f ′(x) = limj→∞ f

′
j(x). Show that, if x = 0, then f ′(x) 6= limj→∞ f

′
j(x).
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5. (10 points) Let f : R → R and let g : R → R be continuous functions. Suppose f is
nonzero only in the interval [0, 1], and suppose g is constant in the interval [0, 2]. That
is, f(x) = 0 for all x ∈ (−∞, 0) ∪ (1,∞) and there exists c ∈ R such that g(x) = c for
all x ∈ [0, 2]. Show that the convolution f ∗ g is constant on the interval [1, 2]. (Here we
define f ∗ g(t) =

∫∞
−∞ f(y)g(t− y)dy, for any t ∈ R.)
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6. (10 points) Let f : [0, 1] → R be a continuous Z-periodic function. Assume that, for

all positive integers n, we have
∫ 1

0
f(x)xndx = 0. Conclude that f(x) = 0 for all

x ∈ [0, 1]. (Hint: first show that
∫ 1

0
f(x)P (x)dx = 0 for any polynomial P . Then, use

the Weierstrass approximation theorem to show that
∫ 1

0
f(x)f(x)dx = 0.) (Don’t use

the Weierstrass approximation for trigonometric polynomials.)
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7. (10 points) Let (x, y, z) ∈ R3. Define f : R3 → R3 by

f(x, y, z) := (x2, xyz, z2 + xy2).

Prove that f is differentiable. Then, compute the differential of f .
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8. (10 points) Let f : R → (0,∞) be a positive, real analytic function such that f ′(x) =
f(x) for all x ∈ R. Show that there exists a real number C ∈ R such that f(x) = Cex

for all x ∈ R. (Hint: there are at least three ways to prove this. One proof uses the
logarithm function, another proof uses the function e−x, and a third proof uses power
series. You only need to provide one proof.)
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9. (10 points) Let f : [0, 1] → R3 be a continuous function such that f(0) = (0, 0, 0) and
f(1) = (1, 1, 1). Let S denote the subset of R3 defined by

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

That is, S is the unit sphere in R3. Prove that there exists t ∈ [0, 1] and there exists
s ∈ S such that f(t) = s. (Hint: how did we prove the intermediate value theorem?)
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10. (10 points) Let f : [0, 1] → C and let g : [0, 1] → C be continuously differentiable, Z-

periodic functions. For any n ∈ Z, define an =
∫ 1

0
f(x)e−2πinxdx and define bn =∫ 1

0
g(x)e−2πinxdx. Prove that

∫ 1

0

f(x)g(x)dx = lim
N→∞

N∑
n=−N

anbn.

(Hint: in the case f = g, this is exactly Plancherel’s Theorem. So, maybe try to mimic
the proof of Plancherel’s Theorem. That is, first try to prove the statement when f and
g are trigonometric polynomials.)
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11. (10 points) Let f : [0, 1]→ R be a continuously differentiable, Z-periodic function. As-

sume also that
∫ 1

0
f = 0. Prove that∫ 1

0

(f ′(x))2dx ≥
∫ 1

0

(f(x))2dx.
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(Scratch paper)
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(More scratch paper)
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