Analysis 2, Winter 2015, UCLA	Insti	ructor: Steven Heilman
Name:	UCLA ID:	Date:
Signature:(By signing here, I certify that I have		g from cheating.)

Mid-Term 2

This exam contains 8 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct cal-
- document.

	culations and explanations might still receive partial credit.
•	If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

Do not write in the table to the right. Good luck!

Reference sheet

Below are some definitions that may be relevant.

Let (X, d) be a metric space. We say that (X, d) is **complete** if and only if the following property holds. For any Cauchy sequence $(x^{(j)})_{j=k}^{\infty}$ of elements of X, then there exists some $x \in X$ such that $(x^{(j)})_{j=k}^{\infty}$ converges to x with respect to d.

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $(f_j)_{j=1}^{\infty}$ be a sequence of functions from X to Y. Let $f: X \to Y$ be another function. We say that $(f_j)_{j=1}^{\infty}$ converges pointwise to f on X if and only if, for every $x \in X$, we have

$$\lim_{j \to \infty} f_j(x) = f(x).$$

That is, for all $x \in X$, we have

$$\lim_{j \to \infty} d_Y(f_j(x), f(x)) = 0.$$

That is, for every $x \in X$ and for every $\varepsilon > 0$, there exists J > 0 such that, for all j > J, we have $d_Y(f_j(x), f(x)) < \varepsilon$.

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $(f_j)_{j=1}^{\infty}$ be a sequence of functions from X to Y. Let $f: X \to Y$ be another function. We say that $(f_j)_{j=1}^{\infty}$ **converges uniformly** to f on X if and only if, for every $\varepsilon > 0$, there exists J > 0 such that, for all j > J and for all $x \in X$ we have $d_Y(f_j(x), f(x)) < \varepsilon$.

Let $\sum_{j=0}^{\infty} a_j(x-a)^j$ be a formal power series. The **radius of convergence** $R \geq 0$ of this series is defined to be

$$R := \frac{1}{\lim \sup_{j \to \infty} |a_j|^{1/j}}.$$

Let E be a subset of \mathbb{R} . We say that a function $f: E \to \mathbb{R}$ is **once differentiable on** E if and only if f is differentiable on E. More generally, for any integer $k \geq 2$, we say that $f: E \to \mathbb{R}$ is k times differentiable on E, or just k times differentiable, if and only if f is differentiable and f' is k-1 times differentiable. If f is k times differentiable, we define the k^{th} derivative $f^{(k)}: E \to \mathbb{R}$ by the recursive rule $f^{(1)}:=f'$ and $f^{(k)}:=(f^{(k-1)})'$, for all $k \geq 2$. We also define $f^{(0)}:=f$. A function is said to be **infinitely differentiable** if and only if f is k times differentiable for every $k \geq 0$.

A function $f: \mathbf{R} \to \mathbf{C}$ is **Z**-periodic if and only if f(x+k) = f(x) for all $x \in \mathbf{R}$ and for all $k \in \mathbf{Z}$. The space of all complex-valued **Z**-periodic functions is denoted by $C(\mathbf{R}/\mathbf{Z}; \mathbf{C})$.

1. (10 points) Let (X, d_X) be a metric space. For each positive integer j, let $f_j \colon X \to \mathbf{R}$ be a continuous function. (As usual, \mathbf{R} denotes the real line with the standard metric d(a,b) := |a-b|, where $a,b \in \mathbf{R}$.) Suppose $(f_j)_{j=1}^{\infty}$ converges pointwise to a function $f \colon X \to \mathbf{R}$. Let $h \colon \mathbf{R} \to \mathbf{R}$ be a continuous function. Show that the sequence of functions $(h \circ f_j)_{j=1}^{\infty}$ converges pointwise to $h \circ f \colon X \to \mathbf{R}$. (As usual, $h \circ f_j(x) := h(f_j(x))$, and $h \circ f(x) := h(f(x))$ for all $j \geq 1$, for all $x \in X$.)

2. (10 points) Let $C([0,1]; \mathbf{R})$ denote the set of continuous functions with domain [0,1] and range \mathbf{R} . As usual, we consider $C([0,1]; \mathbf{R})$ to be a metric space with the metric $d(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|$, where $f,g \in C([0,1]; \mathbf{R})$. Let V denote the subset of $C([0,1]; \mathbf{R})$ consisting of all functions $f: [0,1] \to \mathbf{R}$ such that f(0) = 4f(1). Is V a complete subset of $C([0,1]; \mathbf{R})$? Prove your assertion.

3. (10 points) Find a power series centered at the origin for the function $\tan^{-1}: \mathbf{R} \to (-\pi/2/\pi/2)$. Indicate the radius of convergence of this power series and justify your reasoning. (You may assume that \tan^{-1} is differentiable, and that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$.)

4. (10 points) Give an example of a function $f : \mathbf{R} \to \mathbf{R}$ such that f is not the zero function, f is infinitely differentiable, such that f(0) = 0 and such that $f^{(k)}(0) = 0$ for all integers $k \geq 1$. Prove that your function f satisfies these properties.

5. (10 points) Define $f: \mathbf{R} \to \mathbf{R}$ by f(x) := |x - 1| for all $x \in \mathbf{R}$. What is the Taylor series of f at x = 0? What is the radius of convergence of this Taylor series? Where does this Taylor series agree with f? Does there exist any Taylor series that agrees with f on all of \mathbf{R} ? Justify your answers.

(Scratch paper)