131B Midterm 1 Solutions

1. Question 1

Let (X, d) be a metric space. Let $(x_j)_{j=1}^{\infty}$ and let $(y_j)_{j=1}^{\infty}$ be two sequences in (X, d), and let $x, y \in X$. Assume that $(x_j)_{j=1}^{\infty}$ converges to x, and assume that $(y_j)_{j=1}^{\infty}$ converges to y. Prove that $\lim_{j\to\infty} d(x_j, y_j) = d(x, y)$. (Hint: use the triangle inequality many times.)

Solution. From the triangle inequality, $d(x_j, y_j) \le d(x_j, x) + d(x, y) + d(y, y_j)$. Also from the triangle inequality, $d(x, y) \le d(x, x_j) + d(x_j, y_j) + d(y_j, y)$. Putting everything together,

$$d(x,y) \le d(x,x_j) + d(x_j,y_j) + d(y_j,y) \le 2d(x,x_j) + 2d(y,y_j) + d(x,y).$$

Letting $j \to \infty$, we have $d(x, x_j) \to 0$ and $d(y, y_j) \to 0$, by assumption. Therefore, letting $j \to \infty$ in the above inequalities, and applying the Squeeze Theorem, we have

$$d(x,y) \le \lim_{j \to \infty} d(x_j, y_j) \le d(x,y).$$

That is, $d(x, y) = \lim_{i \to \infty} d(x_i, y_i)$.

2. Question 2

Let (X, d) be a metric space, and let $(\mathbf{R}^2, d_{\ell_2})$ denote the Euclidean plane with the usual Euclidean metric. Let $f: X \to \mathbf{R}^2$ be a function. We then write f in its components as $f = (f_1, f_2)$, so that, for all $x \in X$, we have $f(x) = (f_1(x), f_2(x))$. In particular, $f_1: X \to \mathbf{R}$ and $f_2: X \to \mathbf{R}$. (As usual, \mathbf{R} denotes the real line with the standard metric d(a, b) := |a - b|, where $a, b \in \mathbf{R}$.)

Prove that $f: X \to \mathbf{R}^2$ is continuous if and only if both $f_1: X \to \mathbf{R}$ and $f_2: X \to \mathbf{R}$ are continuous.

Solution. There are a few ways to do this problem. Here is one way. Let $(x_j)_{j=1}^{\infty}$ be a sequence in X that converges to $x \in X$ with respect to the metric d_X . From Theorem 6.3 in the first set of notes, f is continuous if and only if for all such convergent sequences we have $f(x_j) \to f(x)$ as $j \to \infty$. Equivalently, $\|(f_1(x_j), f_2(x_j)) - (f_1(x), f_2(x))\|_{\ell_2} \to 0$ as $j \to \infty$. Recall from Homework 1, Exercise 6 that the metrics d_{ℓ_2} and d_{ℓ_∞} are equivalent. That is, we equivalently have $\|(f_1(x_j), f_2(x_j)) - (f_1(x), f_2(x))\|_{\ell_\infty} \to 0$ as $j \to \infty$. Equivalently, $\max_{i=1,2} |f_i(x_j) - f_i(x)| \to 0$ as $j \to \infty$. That is, $f_1(x_j) \to f_1(x)$ and $f_2(x_j) \to f_2(x)$ as $j \to \infty$. From Theorem 6.3 in the first set of notes, since $(x_j)_{j=1}^{\infty}$ is an arbitrary convergent sequence in \mathbb{R}^2 , the previous sentence is equivalent to both f_1 and f_2 being continuous.

3. Question 3

Let n be a positive integer. Let $(\mathbf{R}^n, d_{\ell_2})$ denote the Euclidean space \mathbf{R}^n with the usual Euclidean metric d_{ℓ_2} . Prove that the following set is compact in \mathbf{R}^n :

$$\{(x_1,\ldots,x_n)\in\mathbf{R}^n\colon \sum_{i=1}^n |x_i|=1\}.$$

Solution. Define $f(x_1, ..., x_n) := \sum_{i=1}^n |x_i|$. The function $f: \mathbf{R}^n \to \mathbf{R}$ is evidently continuous, being a finite sum of continuous functions. (As usual, \mathbf{R} denotes the real line with the standard metric d where d(a, b) = |a - b|.) From Proposition 3.15(iv) in the first set of notes, the singleton set $\{1\}$ is a closed subset of \mathbf{R} . From Theorem 6.5 in the first set

of notes, $f^{-1}(\{1\})$ is therefore closed. The set $f^{-1}(\{1\})$ is evidently also bounded, since if $\sum_{i=1}^{n} |x_i| = 1$, then $\max_{j=1,\dots,n} |x_j| \le 1$ as well, so

$$\left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \le \left(\max_{j=1,\dots,n} |x_j| \cdot \sum_{i=1}^{n} |x_i|\right)^{1/2} \le 1.$$

That is, if $(x_1, \ldots, x_n) \in f^{-1}(\{1\})$, then $(x_1, \ldots, x_n) \in B_{\mathbf{R}^n, d_{\ell_2}}(0, 1)$. So, $f^{-1}(\{1\})$ is bounded. In conclusion, the set $f^{-1}(\{1\})$ is both closed and bounded. By Theorem 5.9 in the first set of notes, $f^{-1}(\{1\})$ is therefore compact.

4. Question 4

Let X be a set with more than one element. Define a function $d: X \times X \to \mathbf{R}$ so that, for all $x, y \in X$, we have d(x, x) := 0, and d(x, y) := 1 if $x \neq y$. You may assume that d is a metric on X. Prove that (X, d) is disconnected.

Solution. Let $x \in X$ be any point in X. Define $E := \{x\}$ to be the singleton set $\{x\}$, and define $F := X \setminus \{x\}$ to be the complement of E, i.e. the set of all points in X except for x. By assumption on the set X, we know that the set F is nonempty. We claim that both E and F are open. If this is true, then we are done, since then by definition, (X,d) is disconnected. So, we will conclude by showing that both E and F are open. We in fact prove something stronger. Any single point in X is open. Given this fact, Proposition 3.15(vii) from the first set of notes shows that both E and F are open, since e.g. F is the union of single points, so it is the union of open sets, so F is open. We will therefore conclude by showing that any point $x \in X$ is itself an open set. By the definition of the metric d, note that B(x, 1/2) is exactly the singleton set $\{x\}$. That is, $B(x, 1/2) = \{x\}$. From Proposition 3.15(iii) in the first set of notes, B(x, 1/2) is an open set. Therefore, the single point $\{x\}$ is an open set, and we are done.

5. Question 5

Let (X, d_X) be a metric space. Let \mathbf{R} denote the real line with the standard metric. That is, if $a, b \in R$, we consider the metric d on R where d(a, b) = |a - b|. For each positive integer j, let $f_j \colon X \to \mathbf{R}$ be a continuous function. Assume that the sequence $(f_j)_{j=1}^{\infty}$ converges uniformly to a function $f \colon X \to \mathbf{R}$. Show that f is also continuous.

Solution. Let $x, y \in X$. Let $\varepsilon > 0$. We need to find $\delta = \delta(\varepsilon) > 0$ such that, if $d_X(x, y) < \delta$, then $|f(x) - f(y)| < \varepsilon$. Since $(f_j)_{j=1}^{\infty}$ converges uniformly to f, we know that there exists $J = J(\varepsilon)$ such that for all $j \geq J$, and for all $x \in X$, we have $|f_j(x) - f(x)| < \varepsilon/4$. So, choose j = J. Since f_j is continuous, there exists $\delta > 0$ such that, if $d_X(x, y) < \delta$, then $|f_j(x) - f_j(y)| < \varepsilon/2$. So, from the triangle inequality, we have

$$|f(x) - f(y)| \le |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_j(y) - f(y)| \le \varepsilon/4 + \varepsilon/2 + \varepsilon/4 = \varepsilon.$$

That is, we found the required $\delta > 0$. We conclude that f is continuous, as desired.