131B Midterm 1 Solutions

1. QUESTION 1

Let (X, d) be a metric space. Let ()52, and let (y;)32; be two sequences in (X, d), and
let 7,y € X. Assume that ()52, converges to z, and assume that (y;)}2; converges to y.
Prove that lim;_,. d(x;,y;) = d(x,y). (Hint: use the triangle inequality many times.)

Solution. From the triangle inequality, d(z;,y;) < d(z;,z) + d(z,y) + d(y, y;). Also from
the triangle inequality, d(z,y) < d(x,x;) + d(z;,y;) + d(y;,y). Putting everything together,

d(z,y) < d(z,z;) + d(zj,y;) + d(y;, y) < 2d(z,z;) + 2d(y,y;) + d(z,y).

Letting 7 — oo, we have d(z,z;) — 0 and d(y,y;) — 0, by assumption. Therefore, letting
j — oo in the above inequalities, and applying the Squeeze Theorem, we have

j—o0
That is, d(z,y) = lim;_,o d(x}, y;).

2. (QUESTION 2

Let (X, d) be a metric space, and let (R? dy,) denote the Euclidean plane with the usual
Euclidean metric. Let f: X — R? be a function. We then write f in its components
as f = (f1, f2), so that, for all z € X, we have f(x) = (fi(x), fo(x)). In particular,
fi: X > R and fo: X — R. (As usual, R denotes the real line with the standard metric
d(a,b) := |a — b|, where a,b € R.)

Prove that f: X — R? is continuous if and only if both f;: X — R and fo: X — R are
continuous.

Solution. There are a few ways to do this problem. Here is one way. Let (z;)52; be a
sequence in X that converges to x € X with respect to the metric dx. From Theorem 6.3 in
the first set of notes, f is continuous if and only if for all such convergent sequences we have
Fla;) — fla) as j — oo. Equivalently, [|(fi(x;), fo(z;)) — (fi(x), fa(@))ll,, — 0 as j — oc.
Recall from Homework 1, Exercise 6 that the metrics dy, and d,_ are equivalent. That
is, we equivalently have ||(fi(x;), f2(7;)) — (fi(2), f2(2))|l,. — 0 as j — co. Equivalently,
max;=12 ’fz(.l’]) — fl(l’)| — 0 as ] — oo. That iS, fl('rj) — fl(.l’) and fg(.ﬁ(}j) — fg(l’) as
j — oo. From Theorem 6.3 in the first set of notes, since (z;)32, is an arbitrary convergent
sequence in R2, the previous sentence is equivalent to both f; and f, being continuous.

3. QUESTION 3

Let n be a positive integer. Let (R™,dy,) denote the Euclidean space R" with the usual
Euclidean metric dg,. Prove that the following set is compact in R™:

n
[ m) € RS o] = 1),
i=1
Solution. Define f(z1,...,2,) := >, |z;]. The function f: R" — R is evidently con-
tinuous, being a finite sum of continuous functions. (As usual, R denotes the real line with

the standard metric d where d(a,b) = |a —b|.) From Proposition 3.15(iv) in the first set
of notes, the singleton set {1} is a closed subset of R. From Theorem 6.5 in the first set
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of notes, f~1({1}) is therefore closed. The set f~!({1}) is evidently also bounded, since if

,,,,,

2\1/2 1. \1/2
@xi) < (max || ;rm <1
That is, if (z1,...,2,) € f'({1}), then (z1,...,2,) € Brng, (0,1). So, f~'({1}) is
bounded. In conclusion, the set f~*({1}) is both closed and bounded. By Theorem 5.9
in the first set of notes, f~*({1}) is therefore compact.

4. QUESTION 4

Let X be a set with more than one element. Define a function d: X x X — R so that,
for all z,y € X, we have d(z,x) := 0, and d(z,y) := 1 if x # y. You may assume that d is a
metric on X. Prove that (X, d) is disconnected.

Solution. Let © € X be any point in X. Define E := {z} to be the singleton set {z},
and define F' := X \ {x} to be the complement of E, i.e. the set of all points in X except
for x. By assumption on the set X, we know that the set F' is nonempty. We claim that
both E and F are open. If this is true, then we are done, since then by definition, (X, d) is
disconnected. So, we will conclude by showing that both £ and F" are open. We in fact prove
something stronger. Any single point in X is open. Given this fact, Proposition 3.15(vii)
from the first set of notes shows that both E and F' are open, since e.g. F'is the union of
single points, so it is the union of open sets, so F' is open. We will therefore conclude by
showing that any point z € X is itself an open set. By the definition of the metric d, note
that B(x,1/2) is exactly the singleton set {x}. That is, B(x,1/2) = {x}. From Proposition
3.15(iii) in the first set of notes, B(x,1/2) is an open set. Therefore, the single point {z} is
an open set, and we are done.

5. QUESTION 5

Let (X, dx) be a metric space. Let R denote the real line with the standard metric. That
is, if a,b € R, we consider the metric d on R where d(a,b) = |a — b|. For each positive integer
J, let fj: X — R be a continuous function. Assume that the sequence (f;)32, converges
uniformly to a function f: X — R. Show that f is also continuous.

Solution. Let x,y € X. Let ¢ > 0. We need to find § = d() > 0 such that, if dx(x,y) < 0,
then |f(z) — f(y)| < e. Since (f;)32, converges uniformly to f, we know that there exists
J = J(e) such that for all j > J, and for all x € X, we have |f;(x) — f(z)| < ¢/4. So,
choose j = J. Since f; is continuous, there exists 6 > 0 such that, if dx(x,y) < 6, then
|fi(x) — fi(y)| <e/2. So, from the triangle inequality, we have

[f(2) = FW)l < [f(2) = ;@) + 1£i(@) = [+ 1) = fy)l <e/d+e/2+e/d=e.

That is, we found the required § > 0. We conclude that f is continuous, as desired.
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