
131B Midterm 1 Solutions

1. Question 1

Let (X, d) be a metric space. Let (xj)
∞
j=1 and let (yj)

∞
j=1 be two sequences in (X, d), and

let x, y ∈ X. Assume that (xj)
∞
j=1 converges to x, and assume that (yj)

∞
j=1 converges to y.

Prove that limj→∞ d(xj, yj) = d(x, y). (Hint: use the triangle inequality many times.)
Solution. From the triangle inequality, d(xj, yj) ≤ d(xj, x) + d(x, y) + d(y, yj). Also from

the triangle inequality, d(x, y) ≤ d(x, xj) + d(xj, yj) + d(yj, y). Putting everything together,

d(x, y) ≤ d(x, xj) + d(xj, yj) + d(yj, y) ≤ 2d(x, xj) + 2d(y, yj) + d(x, y).

Letting j → ∞, we have d(x, xj) → 0 and d(y, yj) → 0, by assumption. Therefore, letting
j →∞ in the above inequalities, and applying the Squeeze Theorem, we have

d(x, y) ≤ lim
j→∞

d(xj, yj) ≤ d(x, y).

That is, d(x, y) = limj→∞ d(xj, yj).

2. Question 2

Let (X, d) be a metric space, and let (R2, d`2) denote the Euclidean plane with the usual
Euclidean metric. Let f : X → R2 be a function. We then write f in its components
as f = (f1, f2), so that, for all x ∈ X, we have f(x) = (f1(x), f2(x)). In particular,
f1 : X → R and f2 : X → R. (As usual, R denotes the real line with the standard metric
d(a, b) := |a− b|, where a, b ∈ R.)

Prove that f : X → R2 is continuous if and only if both f1 : X → R and f2 : X → R are
continuous.

Solution. There are a few ways to do this problem. Here is one way. Let (xj)
∞
j=1 be a

sequence in X that converges to x ∈ X with respect to the metric dX . From Theorem 6.3 in
the first set of notes, f is continuous if and only if for all such convergent sequences we have
f(xj) → f(x) as j → ∞. Equivalently, ‖(f1(xj), f2(xj))− (f1(x), f2(x))‖`2 → 0 as j → ∞.
Recall from Homework 1, Exercise 6 that the metrics d`2 and d`∞ are equivalent. That
is, we equivalently have ‖(f1(xj), f2(xj))− (f1(x), f2(x))‖`∞ → 0 as j → ∞. Equivalently,
maxi=1,2 |fi(xj)− fi(x)| → 0 as j → ∞. That is, f1(xj) → f1(x) and f2(xj) → f2(x) as
j →∞. From Theorem 6.3 in the first set of notes, since (xj)

∞
j=1 is an arbitrary convergent

sequence in R2, the previous sentence is equivalent to both f1 and f2 being continuous.

3. Question 3

Let n be a positive integer. Let (Rn, d`2) denote the Euclidean space Rn with the usual
Euclidean metric d`2 . Prove that the following set is compact in Rn:

{(x1, . . . , xn) ∈ Rn :
n∑

i=1

|xi| = 1}.

Solution. Define f(x1, . . . , xn) :=
∑n

i=1 |xi|. The function f : Rn → R is evidently con-
tinuous, being a finite sum of continuous functions. (As usual, R denotes the real line with
the standard metric d where d(a, b) = |a− b|.) From Proposition 3.15(iv) in the first set
of notes, the singleton set {1} is a closed subset of R. From Theorem 6.5 in the first set
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of notes, f−1({1}) is therefore closed. The set f−1({1}) is evidently also bounded, since if∑n
i=1 |xi| = 1, then maxj=1,...,n |xj| ≤ 1 as well, so

(
n∑

i=1

x2i )
1/2 ≤ ( max

j=1,...,n
|xj| ·

n∑
i=1

|xi|)1/2 ≤ 1.

That is, if (x1, . . . , xn) ∈ f−1({1}), then (x1, . . . , xn) ∈ BRn,d`2
(0, 1). So, f−1({1}) is

bounded. In conclusion, the set f−1({1}) is both closed and bounded. By Theorem 5.9
in the first set of notes, f−1({1}) is therefore compact.

4. Question 4

Let X be a set with more than one element. Define a function d : X × X → R so that,
for all x, y ∈ X, we have d(x, x) := 0, and d(x, y) := 1 if x 6= y. You may assume that d is a
metric on X. Prove that (X, d) is disconnected.

Solution. Let x ∈ X be any point in X. Define E := {x} to be the singleton set {x},
and define F := X r {x} to be the complement of E, i.e. the set of all points in X except
for x. By assumption on the set X, we know that the set F is nonempty. We claim that
both E and F are open. If this is true, then we are done, since then by definition, (X, d) is
disconnected. So, we will conclude by showing that both E and F are open. We in fact prove
something stronger. Any single point in X is open. Given this fact, Proposition 3.15(vii)
from the first set of notes shows that both E and F are open, since e.g. F is the union of
single points, so it is the union of open sets, so F is open. We will therefore conclude by
showing that any point x ∈ X is itself an open set. By the definition of the metric d, note
that B(x, 1/2) is exactly the singleton set {x}. That is, B(x, 1/2) = {x}. From Proposition
3.15(iii) in the first set of notes, B(x, 1/2) is an open set. Therefore, the single point {x} is
an open set, and we are done.

5. Question 5

Let (X, dX) be a metric space. Let R denote the real line with the standard metric. That
is, if a, b ∈ R, we consider the metric d on R where d(a, b) = |a− b|. For each positive integer
j, let fj : X → R be a continuous function. Assume that the sequence (fj)

∞
j=1 converges

uniformly to a function f : X → R. Show that f is also continuous.
Solution. Let x, y ∈ X. Let ε > 0. We need to find δ = δ(ε) > 0 such that, if dX(x, y) < δ,

then |f(x)− f(y)| < ε. Since (fj)
∞
j=1 converges uniformly to f , we know that there exists

J = J(ε) such that for all j ≥ J , and for all x ∈ X, we have |fj(x)− f(x)| < ε/4. So,
choose j = J . Since fj is continuous, there exists δ > 0 such that, if dX(x, y) < δ, then
|fj(x)− fj(y)| < ε/2. So, from the triangle inequality, we have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)| ≤ ε/4 + ε/2 + ε/4 = ε.

That is, we found the required δ > 0. We conclude that f is continuous, as desired.
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