131A Final Solutions

1. Question 1

Prove that $\sqrt{2}$ is not a rational number.

Solution. We argue by contradiction. Assume that x is rational and $x^2 = 2$. We may assume that x is positive, since $x^2 = (-x)^2$. Let p,q be integers with $q \neq 0$ such that x = p/q. Since x is positive, we may assume that p,q are natural numbers. Since $x^2 = 2$, we have $p^2 = 2q^2$. If $a \in \mathbb{N}$ is odd, then a = 2b+1 for some $b \in \mathbb{N}$, and $a^2 = 4b^2 + 2b + 2b + 1 = 2(2b^2 + b + b) + 1$, so a^2 is odd. So, by taking the contrapositive: if a^2 is even, then a is even. Since $p^2 = 2q^2$, p^2 is even, so we conclude that p is even, so there exists a natural number k such that p = 2k. Since p is positive, k is positive. Since $p^2 = 2q^2$, we get $p^2 = 4k^2 = 2q^2$, so $q^2 = 2k^2$. Since $p^2 = 2q^2$, and p,q are positive, we have q < p.

In summary, we started with positive natural numbers p, q such that $p^2 = 2q^2$. And we now have positive natural numbers q, k such that $q^2 = 2k^2$, and such that q < p. We can therefore iterate this procedure. For any natural number n, suppose inductively we have p_n, q_n positive natural numbers such that $p_n^2 = 2q_n^2$. Then we have found natural numbers p_{n+1}, q_{n+1} such that $p_{n+1}^2 = 2q_{n+1}^2$, and such that $p_{n+1} < p_n$. The existence of the natural numbers p_1, p_2, \ldots violates the principle of infinite descent, so we have obtained a contradiction. We conclude that no rational x satisfies $x^2 = 2$.

2. Question 2

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers such that $a_{n+1} > a_n$ for all $n \in \mathbb{N}$. Prove that, if m, n are natural numbers such that m > n, then $a_m > a_n$.

Solution. We show that $a_{n+k} > a_n$ for all $n \in \mathbb{N}$ and for all $k \in \mathbb{N}$ with $k \ge 1$ by induction on k. The base case is k = 1, which says $a_{n+1} > a_n$ for all $n \in \mathbb{N}$. The problem assumes this property, so the base case is verified. Now, assume that $a_{n+k} > a_n$ for all $n \in \mathbb{N}$ for some fixed $k \ge 1$. We will prove that $a_{n+k+1} > a_n$ for all $n \in \mathbb{N}$. By assumption, we have $a_{n+k+1} > a_{n+k}$. Then, by the inductive hypothesis, $a_{n+k} > a_n$. Combining these inequalities, we have $a_{n+k+1} > a_n$ for all $n \in \mathbb{N}$. The inductive step is complete. We conclude that $a_{n+k} > a_n$ for all $n \in \mathbb{N}$ and for all $k \in \mathbb{N}$. Since every natural number m > n is of the form n + k for $k \ge 1$, $k \in \mathbb{N}$, we are done.

3. Question 3

Consider the set $A = \{(x, y) \in \mathbf{R} \times \mathbf{R} \colon x + y \in \mathbf{Q}\}$. Is this set finite, countable, or uncountable? Prove your assertion.

Solution. This set is uncountable. To see this, recall that the real numbers \mathbf{R} are uncountable. Define a function $f \colon \mathbf{R} \to A$ by f(x) = (x, -x) for all $x \in \mathbf{R}$. Note that f(x) is in A for all $x \in \mathbf{R}$, since $x + (-x) = 0 \in \mathbf{Q}$. We now claim that f is a bijection onto its image in A. That is, if we define $f(\mathbf{R}) = \{f(x) \colon x \in \mathbf{R}\} = \{(x, -x) \colon x \in \mathbf{R}\}$, then $f \colon \mathbf{R} \to f(\mathbf{R})$ is a bijection. Indeed, given any element y of $f(\mathbf{R})$ we have y = (x, -x) for some $x \in \mathbf{R}$, so f(x) = y = (x, -x). And this x is unique, since if f(x) = f(x') for some $x, x' \in \mathbf{R}$, then (x, -x) = (x', -x'), so that x = x'. In conclusion, $f \colon \mathbf{R} \to f(\mathbf{R})$ is a bijection. We now show that A is uncountable. It cannot be the case that A is countable, since A contains the uncountable set $f(\mathbf{R})$. Similarly, A cannot be finite. Therefore, A is uncountable, as desired.

4. Question 4

For the following sequences $(a_n)_{n=1}^{\infty}$, compute $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$. If the limit $\lim_{n\to\infty} a_n$ exists, explain why it exists. If the limit $\lim_{n\to\infty} a_n$ does not exist, explain why it does not exist.

(i)
$$a_n = (-1)^n$$
 for all $n \ge 1$, $n \in \mathbb{N}$.

Solution. We have $\limsup_{n\to\infty} a_n = 1$ and $\liminf_{n\to\infty} a_n = -1$. Since the limsup and liminf are not the same, the limit $\lim_{n\to\infty} a_n$ does not exist (by Proposition 6.7(vi) in the second set of notes). To see that these computations are correct, note that $a_n \leq 1$ for all $n \geq 1$, so 1 is always an upper bound for $(a_n)_{n=1}^{\infty}$. However, if x < 1, then for any $k \geq 1$, $k \in \mathbb{N}$, we have $a_{2k} = 1 > x$, so x cannot be an upper bound for $(a_n)_{n=2k}^{\infty}$, for any $k \in \mathbb{N}$, $k \geq 1$. We conclude that, for any $n \geq 1$, we have $\sup_{m\geq n} a_m = 1$. Therefore, $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} \sup_{m\geq n} a_m = \lim_{n\to\infty} 1 = 1$. Now, note that $a_n \geq -11$ for all $n \geq 1$, so -1 is always a lower bound for $(a_n)_{n=1}^{\infty}$. However, if x > -1, then for any $k \geq 1$, $k \in \mathbb{N}$, we have $a_{2k+1} = -1 < x$, so x cannot be a lower bound for $(a_n)_{n=2k+1}^{\infty}$, for any $k \in \mathbb{N}$, $k \geq 1$. We conclude that, for any $n \geq 1$, we have $\inf_{m\geq n} a_m = -1$. Therefore, $\lim\sup_{n\to\infty} a_n = \lim_{n\to\infty} \inf_{m\geq n} a_m = \lim_{n\to\infty} -1 = -1$.

$$(ii)a_n = 1/n \text{ for all } n \ge 1, n \in \mathbf{N}.$$

Solution. We know that $\lim_{n\to\infty} 1/n = 0$. So, from Proposition 6.7(vi) in the second set of notes, we have $\lim \inf_{n\to\infty} a_n = \lim \sup_{n\to\infty} a_n = 0$.

(iii)
$$a_n = n$$
 for all $n \ge 1$, $n \in \mathbb{N}$.

Solution. For any $N \in \mathbb{N}$, we have $a_n \geq N$ for all $n \geq N$. Therefore, by the definition of supremum and infimum, for any $n \in \mathbb{N}$ we have $\sup_{m \geq n} a_m = +\infty$ and $\inf_{m \geq n} a_m = +\infty$. Therefore, $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = +\infty$. Also, by the definition of the limit, since $a_n \geq N$ for all $n \geq N$, we know that the limit $\lim_{n \to \infty} a_n$ does not exist.

5. Question 5

Determine which of the following series converges. Justify your answer

(i)
$$\sum_{n=1}^{\infty} (-1)^n$$
.

Solution. This series does not converge. Note that $(-1)^n$ does not converge to zero as $n \to \infty$. So, by the Zero Test, this series does not converge.

(ii)
$$\sum_{n=1}^{\infty} 2^{((-1)^n - n)}$$
.

Solution. This series converges. Note that $(-1)^n - n \le 1 - n$ for all $n \ge 1$. So, we have $\left|2^{((-1)^n-n)}\right| = 2^{((-1)^n-n)} \le 2^{1-n}$. Also, we know from geometric series that $\sum_{n=1}^{\infty} 2^{1-n} = 2 \ge \sum_{n=1}^{\infty} 2^{-n} = 2 < \infty$. So, by the comparison test, $\sum_{n=1}^{\infty} 2^{((-1)^n-n)}$ converges.

$$(iii) \sum_{n=1}^{\infty} \left(\frac{2}{(-1)^n - 3}\right)^n.$$

Solution. This series does not converge. Let n be an even natural number. Then $2/((-1)^n - 3) = 2/(-2) = -1$, so $\left(\frac{2}{(-1)^n - 3}\right)^n = (-1)^n$. Therefore, if $a_n = 2/((-1)^n - 3)$. Then it does not hold that $\lim_{n\to\infty} a_n = 0$. So, by the Zero Test, the series $\sum_{n=1}^{\infty} a_n$ does not converge.

6. Question 6

(i) Find a continuous function $f : \mathbf{R} \to \mathbf{R}$ such that f is differentiable on $\mathbf{R} \setminus \{0\}$, and such that f is not differentiable at 0.

Solution. Consider f(x) = |x| where $x \in \mathbf{R}$. We showed in Example 4.9 in the third set of notes that f is continuous on \mathbf{R} and f is differentiable on $\mathbf{R} \setminus \{0\}$, but f is not differentiable at 0.

(ii) Find a function $f: [0, +\infty) \to \mathbf{R}$ which is continuous and bounded, where f attains its maximum somewhere, but f does not attain its minimum anywhere.

Solution. Consider f(x) = 1/(x+1), where $x \ge 0$. Since f is a rational function where the denominator does not vanish on $[0, +\infty)$, we know that f is continuous on $[0, +\infty)$. (See Remark 3.8 in the third set of notes.) Moreover, f is differentiable on $[0, +\infty)$ by the quotient rule. Specifically, $f'(x) = -1/(x+1)^2 < 0$ for all $x \ge 0$. So, f is strictly decreasing on $[0, +\infty)$. (See Proposition 4.32 in the third set of notes.) Therefore, f must attain its maximum at x = 0. However, f does not attain its minimum anywhere. Given any $x \in [0, +\infty)$, it cannot be the case that $f(x) \le f(y)$ for all $y \in [0, +\infty)$, since if y > x, then f(x) > f(y) (since f is strictly monotone decreasing).

(iii) Find a function $f: [-1,1] \to \mathbf{R}$ such that $f(-1) \neq f(1)$, such that f is differentiable on (-1,1), and such that f'(x) = 0 for all $x \in (-1,1)$.

Solution. Define $f: [-1,1] \to \mathbf{R}$ by f(x) = 0 for all $x \in [-1,1)$, and f(1) = 1. Then $f(0) = 0 \neq 1 = f(1)$. Since $f|_{(-1,1)}$ is the constant function 0, then f is differentiable on (-1,1) with f'(x) = 0 for all $x \in (-1,1)$.

7. Question 7

Let q be a positive rational number. Let n be a positive integer. For a real number x, define $f(x) := 1/x^q$. The quantity $\int_{1/n}^1 f$ is increasing in n, so it either has some finite limit as $n \to \infty$, or it diverges. For what values of q does $\int_{1/n}^1 f$ converge to a finite value as $n \to \infty$?

Solution. The integral converges to a finite value as $n \to \infty$ if and only if 0 < q < 1.

If $q \neq 1$, define $g: (0,1] \to \mathbf{R}$ by $g(x) = (1-q)^{-1}x^{1-q}$. Then $g'(x) = x^{-q} = f(x)$ for all $x \in (0,1]$. So, by the first fundamental theorem of calculus, we have $\int_{1/n}^{1} f = \int_{1/n}^{1} g' = g(1) - g(1/n) = (1-q)^{-1}(1-n^{q-1})$. Letting $n \to \infty$, we see that if 0 < q < 1, then $\lim_{n \to \infty} \int_{1/n}^{1} f = (1-q)^{-1} < \infty$. And if q > 1, we have $\lim_{n \to \infty} \int_{1/n}^{1} f = (q-1)^{-1}(n^{q-1}-1) = +\infty$.

The only remaining cases is q=1. In this case, we could use some properties of logarithms, but there is also something simpler to do. Define a function $h: (0,1] \to \mathbf{R}$ so that, for any $n \in \mathbf{N}$, we have $h(x) := 2^n$ whenever x lies in the interval $(2^{-n-1}, 2^{-n}]$. For example, h(x) = 1 when $x \in (1/2, 1]$, and h(x) = 2 whenever $x \in (1/4, 1/2]$, and h(x) = 4 whenever $x \in (1/8, 1/4]$, and so on. In the case q = 1, we have f(x) = 1/x, so that $f'(x) = -1/x^2$, and f is strictly decreasing on (0, 1]. So, for any $n \in \mathbf{N}$, if $x \in (2^{-n-1}, 2^{-n}]$, we have $f(x) \geq f(2^{-n}) = 2^n$. That is, if $x \in (2^{-n-1}, 2^{-n}]$, we have $f(x) \geq h(x)$. From the monotonic property of integrals, we therefore have

$$\int_{2^{-n-1}}^{1} f \ge \int_{2^{-n-1}}^{1} h = \sum_{k=1}^{n} (2^{-k} - 2^{-k-1}) 2^k = \sum_{k=1}^{n} 2^{-k-1} 2^k = \sum_{k=1}^{n} (1/2) = n/2.$$

Therefore, letting $n \to \infty$, we have

$$\lim_{n \to \infty} \int_{1/n}^{1} f = \lim_{n \to \infty} \int_{2^{-n}}^{1} f \ge \lim_{n \to \infty} (n/2) = +\infty.$$

8. Question 8

Let a < b be real numbers. Let $f: [a, b] \to \mathbf{R}$ be a Riemann integrable function such that f(x) = 0 whenever x is a rational number. Prove that $\int_a^b f = 0$. Solution. Let $a = x_0 < x_1 < \dots < x_n = b$ be a partition of [a, b]. For any $i \in \{1, \dots, n\}$,

note that there always exists a rational number in the interval $[x_{i-1}, x_i]$, by the density of rationals in **R**. Therefore, for any $i \in \{1, ..., n\}$, we have

$$\inf_{x \in [x_{i-1}, x_i]} f(x) \le 0.$$

$$\sup_{x \in [x_{i-1}, x_i]} f(x) \ge 0.$$

We therefore estimate

$$L(f, P) = \sum_{i=1}^{n} (\inf_{x \in [x_{i-1}, x_i]} f(x))(x_i - x_{i-1}) \le \sum_{i=1}^{n} 0 \cdot (x_i - x_{i-1}) \le 0.$$

$$U(f,P) = \sum_{i=1}^{n} (\sup_{x \in [x_{i-1},x_i]} f(x))(x_i - x_{i-1}) \ge \sum_{i=1}^{n} 0 \cdot (x_i - x_{i-1}) \ge 0.$$

So, using the definition of lower and upper Riemann integrals, we have

$$\frac{\int_{a}^{b} f \le 0.}{\int_{a}^{b} f \ge 0.}$$

Since f is Riemann integrable, by definition we must have $\underline{\int_a^b} f = \overline{\int_a^b} f = \int_a^b f$. That is, $0 \le \int_a^b f \le 0$. In conslusion, $\int_a^b f = 0$.

9. Question 9

Let x, t be a real numbers. Let

$$g(x,t) := \frac{1}{1 + xt^4}.$$

Suppose we integrate g with respect to x, and we define

$$f(t) := \int_0^1 g = \int_0^1 \frac{1}{1 + xt^4} dx.$$

Prove that f is continuous at t = 0. Solution 1. Note that $f(0) = \int_0^1 1 = 1$. So, we need to show that, as $t \to 0$, we have $f(t) \to 1$. Let $\varepsilon > 0$. We need to find $\delta > 0$ such that $|f(t) - 1| < \varepsilon$ whenever $|t| < \delta$. Let $|t| < \delta$. For fixed t, consider the function G(x) = g(x,t) where $x \in [0,1]$. Since |t| < 1/2, we have $|t|^4 < 1/16$, so $|xt^4| < |x|/16 < 1/16 < 1$ whenever $x \in [0,1]$. So, the quantity $1 + xt^4$

does not vanish for $x \in [0, 1]$, so G is continuous, differentiable, and Riemann integrable for all $x \in [0, 1]$. Note that $G'(x) = -t^4/(1+xt^4)^2$, so G is strictly decreasing on [0, 1]. That is, for all $x \in [0, 1]$, we have

$$G(1) \le G(x) \le G(0), \quad \forall x \in [-1, 1]$$

That is,

$$\frac{1}{1+t^4} \le G(x) \le 1, \quad \forall x \in [-1,1].$$

Since $|t| < \delta < 1/2$, and the function $1/(1+t^4)$ is similarly monotone in t, we have

$$\frac{1}{1+\delta^4} \le \frac{1}{1+t^4}.$$

In conclusion, if $|t| < \delta$ and if $x \in [0, 1]$, we have

$$\frac{1}{1+\delta^4} \le G(x) \le 1.$$

Since $\lim_{\delta \to 0} 1/(1+\delta^4) = 1$, there exists $\gamma > 0$ such that, if $|\delta| < \gamma$, we have $1-\varepsilon < 1/(1+\delta^4)$. In summary, if $|t| < \gamma$, then for all $x \in [-1, 1]$, we have

$$1 - \varepsilon \le G(x) \le 1$$
.

Integrating this inequality, over [-1, 1], we have

$$1 - \varepsilon \le \int_0^1 G(x) \le 1.$$

That is, if $|t| < \gamma$, then $|f(t) - 1| < \varepsilon$. So, f is continuous at t = 0, as desired. Solution 2. (Assuming use of change of variables.) Changing variables $y = t^4 x$, we get

$$f(t) = t^{-4} \int_0^{t^4} \frac{1}{1+y} dy$$

Note that $H(t) := \int_0^t (1/(1+y)) dy$ is a continuous function of t by the second part of the fundamental theorem of calculus. So, $H(t^4)$ is a continuous function of t, since it is a composition of continuous functions. Then $f(t) = t^{-4}H(t^4)$ is a product of functions which are continuous at t = 1, so f is continuous at t = 1.

10. Question 10

A subset X of the real numbers is said to have measure zero if and only if the following condition is satisfied: Given any $\varepsilon > 0$, there exists a countable set of open intervals $(a_0, b_0), (a_1, b_1), \ldots$ with $a_i < b_i$ for all $i \in \mathbb{N}$, such that $X \subseteq \bigcup_{i=0}^{\infty} (a_i, b_i)$, and such that $\sum_{i=0}^{\infty} (b_i - a_i) < \varepsilon$.

Show that the rational numbers **Q** have measure zero.

Solution. Recall that the rational numbers \mathbf{Q} are countable. so, let $f: \mathbf{N} \to \mathbf{Q}$ be a bijection. Let $\varepsilon > 0$. For any $i \in \mathbf{N}$, consider the open interval $(f(i) - \varepsilon 2^{-i}, f(i) + \varepsilon 2^{-i})$. That is, define $a_i = f(i) - \varepsilon 2^{-i}$ and $b_i = f(i) + \varepsilon 2^{-i}$. Then $b_i > a_i$ and $b_i - a_i = 2\varepsilon 2^{-i}$. Since

the rational number f(i) is contained in the interval $(f(i) - \varepsilon 2^{-i}, f(i) + \varepsilon 2^{-i})$ for each $i \in \mathbb{N}$, and since \mathbb{Q} is equal to the set $\{f(i) \colon i \in \mathbb{N}\}$ (since f is a bijection), we conclude that

$$\mathbf{Q} \subseteq \bigcup_{i=0}^{\infty} (a_i, b_i).$$

Lastly, note that

$$\sum_{i=0}^{\infty} (b_i - a_i) = \sum_{i=0}^{\infty} 2\varepsilon 2^{-i} = 2\varepsilon \sum_{i=0}^{\infty} 2^{-i} = 4\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we are done.