131 A Final Solutions

1. QUESTION 1

Prove that v/2 is not a rational number.

Solution. We argue by contradiction. Assume that z is rational and 2> = 2. We may
assume that x is positive, since 22 = (—z)%. Let p,q be integers with ¢ # 0 such that
x = p/q. Since x is positive, we may assume that p, ¢ are natural numbers. Since 2 = 2, we
have p? = 2¢°. If a € N is odd, then a = 2b+ 1 for some b € N, and a? = 4b> +2b+2b+1 =
2(2b% +b+b) + 1, so a? is odd. So, by taking the contrapositive: if a® is even, then a is even.
Since p* = 2¢2, p? is even, so we conclude that p is even, so there exists a natural number &k
such that p = 2k. Since p is positive, k is positive. Since p? = 2¢%, we get p* = 4k? = 2¢°,
so ¢ = 2k?. Since p? = 2¢?, and p, ¢ are positive, we have ¢ < p.

In summary, we started with positive natural numbers p, ¢ such that p? = 2¢%. And we now
have positive natural numbers ¢, k such that ¢> = 2k?, and such that ¢ < p. We can therefore
iterate this procedure. For any natural number n, suppose inductively we have p,,, g, positive
natural numbers such that p? = 2¢>. Then we have found natural numbers p, 11, ¢,.1 such
that p2,, = 2¢2,,, and such that p, 1 < p,. The existence of the natural numbers py, ps, . ..
violates the principle of infinite descent, so we have obtained a contradiction. We conclude
that no rational z satisfies 22 = 2.

2. QUESTION 2

Let (ay)%, be a sequence of real numbers such that a,4; > a, for all n € N. Prove that,
if m,n are natural numbers such that m > n, then a,, > a,.

Solution. We show that a,r > a, for all n € N and for all kK € N with £ > 1 by induction
on k. The base case is £ = 1, which says a,+1 > a, for all n € N. The problem assumes
this property, so the base case is verified. Now, assume that a,,x > a, for all n € N for
some fixed £k > 1. We will prove that a, x11 > a, for all n € N. By assumption, we have
Gpike1 > Gpag. Then, by the inductive hypothesis, a,.x > a,. Combining these inequalities,
we have a,,r11 > a, for all n € N. The inductive step is complete. We conclude that
anir > ap for all n € N and for all £ € N. Since every natural number m > n is of the form
n+k for k> 1, k € N, we are done.

3. QUESTION 3

Consider the set A = {(z,y) € R x R: z+y € Q}. Is this set finite, countable, or
uncountable? Prove your assertion.

Solution. This set is uncountable. To see this, recall that the real numbers R are uncount-
able. Define a function f: R — A by f(x) = (z, —z) for all z € R. Note that f(x) is in A
for all x € R, since x + (—z) = 0 € Q. We now claim that f is a bijection onto its image
in A. That is, if we define f(R) = {f(z): x € R} = {(x,—x): z € R}, then f: R — f(R)
is a bijection. Indeed, given any element y of f(R) we have y = (x, —z) for some = € R,
so f(z) =y = (z,—x). And this z is unique, since if f(x) = f(2') for some z,2" € R, then
(x,—z) = (a', —2'), so that z = 2/. In conclusion, f: R — f(R) is a bijection. We now
show that A is uncountable. It cannot be the case that A is countable, since A contains the
uncountable set f(R). Similarly, A cannot be finite. Therefore, A is uncountable, as desired.



4. QUESTION 4

For the following sequences (a,);, compute limsup,,_, a, and liminf, .. a,. If the

limit lim,, o a, exists, explain why it exists. If the limit lim,, .., a,, does not exist, explain
why it does not exist.

(i) a, = (—1)" for alln > 1, n € N.

Solution. We have limsup,_,. a, = 1 and liminf, ,,, a, = —1. Since the limsup and
liminf are not the same, the limit lim,,,, a,, does not exist (by Proposition 6.7(vi) in the
second set of notes). To see that these computations are correct, note that a, < 1 for
all n > 1, so 1 is always an upper bound for (a,),. However, if x < 1, then for any
k > 1, k € N, we have ag; = 1 > z, so x cannot be an upper bound for (a,),,, for
any k € N, k£ > 1. We conclude that, for any n > 1, we have sup,,~,, @, = 1. Therefore,
limsup,,_, . @, = lim, o0 SUp,,>, @m = lim, oo 1 = 1. Now, note that a, > —11 for all
n > 1, so —1 is always a lower bound for (a, )% ,. However, if 2 > —1, then for any k > 1,
k € N, we have ag,1; = —1 < x, so x cannot be a lower bound for (a,)p,..,, for any
k € N, k > 1. We conclude that, for any n > 1, we have inf,,>, a,, = —1. Therefore,
limsup,,_,, a, = lim,_,o inf,,>, a, = lim,, oo —1 = —1.

(ii)a, = 1/nfor allm > 1, n € N.

Solution. We know that lim,,_,. 1/n = 0. So, from Proposition 6.7(vi) in the second set
of notes, we have liminf,_, a, = limsup,,_,., a, = 0.

(iii)a, =n for alln > 1, n € N.

Solution. For any N € N, we have a,, > N for all n > N. Therefore, by the definition of
supremum and infimum, for any n € N we have sup,,~,, a,, = +00 and inf,,>, a,, = +00.
Therefore, limsup,,_, . a, = liminf, ,, a, = +o0. Also, by the definition of the limit, since
a, > N for all n > N, we know that the limit lim,,_,, a,, does not exist.

5. QUESTION 5

Determine which of the following series converges. Justify your answer
oo

(1) (=1

n=1
Solution. This series does not converge. Note that (—1)" does not converge to zero as
n — 00. So, by the Zero Test, this series does not converge.

(i) Y 20",
n=1

Solutgon. This series converges. Note that (—1)" —n <1 —n for all n > 1. So, we have
}2((*1)"*")| = 2(=D"=n) < 21=n  Also, we know from geometric series that Y oo 2!™" =
23°%° 27" =2 < 00. So, by the comparison test, Y oo | 2((=D"~") converges.

(iii) i ((_1)#”_3)“

n=1
Solution. This series does not converge. Let n be an even natural number. Then

2/((—1)" — 3) = 2/(—2) = —1, s0 (ML_B)” — (—1)". Therefore, if a, = 2/((—1)" — 3).

Then it does not hold that lim,,_.., a, = 0. So, by the Zero Test, the series Zzozl a, does
not converge.



6. QUESTION 6

(i) Find a continuous function f: R — R such that f is differentiable on R ~\ {0}, and
such that f is not differentiable at 0.

Solution. Consider f(z) = |z| where x € R. We showed in Example 4.9 in the third set of
notes that f is continuous on R and f is differentiable on R\ {0}, but f is not differentiable
at 0.

(ii) Find a function f: [0,4+00) — R which is continuous and bounded, where f attains
its maximum somewhere, but f does not attain its minimum anywhere.

Solution. Consider f(z) = 1/(xz + 1), where z > 0. Since f is a rational function where
the denominator does not vanish on [0,400), we know that f is continuous on [0, +o0).
(See Remark 3.8 in the third set of notes.) Moreover, f is differentiable on [0, +00) by
the quotient rule. Specifically, f/(z) = —1/(x + 1) < 0 for all z > 0. So, f is strictly
decreasing on [0, +00). (See Proposition 4.32 in the third set of notes.) Therefore, f must
attain its maximum at x = 0. However, f does not attain its minimum anywhere. Given
any x € [0, +00), it cannot be the case that f(z) < f(y) for all y € [0, +00), since if y > x,
then f(x) > f(y) (since f is strictly monotone decreasing).

(iii) Find a function f: [—1,1] — R such that f(—1) # f(1), such that f is differentiable
on (—1,1), and such that f'(x) =0 for all z € (—1,1).

Solution. Define f: [—1,1] — R by f(z) = 0 for all z € [-1,1), and f(1) = 1. Then
f(0) =0# 1= f(1). Since f|1,1) is the constant function 0, then f is differentiable on
(—1,1) with f'(z) =0 for all z € (—1,1).

7. QUESTION 7

Let ¢ be a positive rational number. Let n be a positive integer. For a real number =z,
define f(x) := 1/x%. The quantity fll/n f is increasing in n, so it either has some finite limit

as n — oo, or it diverges. For what values of ¢ does fll/n f converge to a finite value as
n — oo?

Solution. The integral converges to a finite value as n — oo if and only if 0 < ¢ < 1.

If ¢ # 1, define g: (0,1] — R by g(x) = (1 — ¢)"*2'7%. Then ¢'(z) = 277 = f(x) for
all x € (0,1]. So, by the first fundamental theorem of calculus, we have fll/n f=1 11/71 q =
g(1) —g(1/n) = (1 — ¢)~ 41 — n971). Letting n — oo, we see that if 0 < ¢ < 1, then
lim,, o0 fll/nf = (1—¢q)™! < co. And if ¢ > 1, we have lim,, 4, fll/nf =(¢g—1)"t(nt-1) =
+00.

The only remaining cases is ¢ = 1. In this case, we could use some properties of logarithms,
but there is also something simpler to do. Define a function h: (0,1] — R so that, for any
n € N, we have h(z) := 2" whenever z lies in the interval (277!, 27"]. For example,
h(x) = 1 when = € (1/2,1], and h(z) = 2 whenever = € (1/4,1/2], and h(z) = 4 whenever
x € (1/8,1/4], and so on. In the case ¢ = 1, we have f(z) = 1/z, so that f'(z) = —1/2?
and f is strictly decreasing on (0,1]. So, for any n € N, if z € (27"71,27"], we have
f(x) > f(27") =2". That is, if x € (27", 27"], we have f(x) > h(z). From the monotonic
property of integrals, we therefore have
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Therefore, letting n — oo, we have

1 1
lim f= lim f > lim (n/2) = +oc.

n—oo 1/n n—00 Jo_n n—oo

8. QUESTION 8

Let a < b be real numbers. Let f: [a,b] — R be a Riemann integrable function such that
f(z) = 0 whenever x is a rational number. Prove that ff f=0.

Solution. Let a = o < x1 < --- < x, = b be a partition of [a,b]. For any i € {1,...,n},
note that there always exists a rational number in the interval [z;_q,x;], by the density of
rationals in R. Therefore, for any ¢ € {1,...,n}, we have

inf  f(x) <0.
IEE[CEi_l,CEi]
sup  f(x) =0

T€[wi_1,24)

We therefore estimate

L(f,P)=) ( inf f(x))(z;—zi_1) <ZO i —xi_1) < 0.

- T€[ri_1,%;]
i=1

n

U(f,P)=> ( sup f(x))(w:i— i >Zo —zi.1) 2 0.

=1 TE€[wi—1,24]

So, using the definition of lower and upper Riemann mtegrals, we have

/abfso.
/abfzo.

Since f is Riemann integrable, by definition we must have fab f= f_abf = f: f. That is,
0< fabf < 0. In conslusion, f;f = 0.

9. QUESTION 9

Let x,t be a real numbers. Let
1
t -
9, 1) = 1+ xztt

Suppose we integrate g with respect to x, and we define

1 L
et g —d
/Og /0 1+ att v

Prove that f is continuous at ¢t = 0.

Solution 1. Note that f(0) = fol 1 = 1. So, we need to show that, as ¢ — 0, we have
f(t) — 1. Let ¢ > 0. We need to find 6 > 0 such that |f(t) — 1| < € whenever [t| < 0. Let
|t| < 9. For fixed t, consider the function G(z) = g(x,t) where x € [0, 1]. Since |t| < 1/2, we
have |t|* < 1/16, so |zt*| < |x| /16 < 1/16 < 1 whenever z € [0,1]. So, the quantity 1 + xt*
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does not vanish for = € [0, 1], so G is continuous, differentiable, and Riemann integrable for
all z € [0, 1]. Note that G'(z) = —t*/(1 + xt*)?, so G is strictly decreasing on [0, 1]. That is,
for all € [0, 1], we have

G(1) < G(x) < G0), Vrel[-1,1]

That is,
<GS, Veel-Ll,
Since |[t| < § < 1/2, and the function 1/(1 + ¢*) is similarly monotone in ¢, we have
1 1

[rot 1
In conclusion, if |¢| < ¢ and if z € [0, 1], we have

L G <1

1+ 6%

Since lims_,o 1/(146*) = 1, there exists v > 0 such that, if |§] < v, we have 1 —e < 1/(1+44%).
In summary, if |t| < v, then for all x € [—1, 1], we have

1—-e<Gx) <1,

Integrating this inequality, over [—1, 1], we have

1
1—5§/ Glz) < 1.
0

That is, if |t| <, then |f(t) — 1] < e. So, f is continuous at ¢ = 0, as desired.
Solution 2. (Assuming use of change of variables.) Changing variables y = tiz, we get
= [y
o 1+y

Note that H(t) := fot(l/(l + y))dy is a continuous function of ¢ by the second part of
the fundamental theorem of calculus. So, H(t*) is a continuous function of ¢, since it is a
composition of continuous functions. Then f(t) = t=*H(t*) is a product of functions which
are continuous at ¢t = 1, so f is continuous at ¢t = 1.

10. QUESTION 10

A subset X of the real numbers is said to have measure zero if and only if the follow-
ing condition is satisfied: Given any ¢ > 0, there exists a countable set of open intervals
(ag,bo), (a1,b1), ... with a; < b; for all i € N, such that X C [J;2,(a;,b;), and such that
> oicolbi —a;) <e.

Show that the rational numbers Q have measure zero.

Solution. Recall that the rational numbers Q are countable. so, let f: N — Q be a
bijection. Let ¢ > 0. For any 7 € N, consider the open interval (f(i) — 27", f(i) + £277).
That is, define a; = f(i) —e27" and b; = f(i) +27". Then b; > a; and b; — a; = 22", Since
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the rational number f(7) is contained in the interval (f(i) — 27, f(i) +&27%) for each i € N,
and since Q is equal to the set {f(i): i € N} (since f is a bijection), we conclude that

QcC U(Gi, bi)-
i=0

Lastly, note that

i(bi —a;) = i 2e27" = 2¢ i 27 = 4e.
=0 =0 =0

Since € > 0 was arbitrary, we are done.
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