
131A Final Solutions

1. Question 1

Prove that
√

2 is not a rational number.
Solution. We argue by contradiction. Assume that x is rational and x2 = 2. We may

assume that x is positive, since x2 = (−x)2. Let p, q be integers with q 6= 0 such that
x = p/q. Since x is positive, we may assume that p, q are natural numbers. Since x2 = 2, we
have p2 = 2q2. If a ∈ N is odd, then a = 2b+ 1 for some b ∈ N, and a2 = 4b2 + 2b+ 2b+ 1 =
2(2b2 + b+ b) + 1, so a2 is odd. So, by taking the contrapositive: if a2 is even, then a is even.
Since p2 = 2q2, p2 is even, so we conclude that p is even, so there exists a natural number k
such that p = 2k. Since p is positive, k is positive. Since p2 = 2q2, we get p2 = 4k2 = 2q2,
so q2 = 2k2. Since p2 = 2q2, and p, q are positive, we have q < p.

In summary, we started with positive natural numbers p, q such that p2 = 2q2. And we now
have positive natural numbers q, k such that q2 = 2k2, and such that q < p. We can therefore
iterate this procedure. For any natural number n, suppose inductively we have pn, qn positive
natural numbers such that p2n = 2q2n. Then we have found natural numbers pn+1, qn+1 such
that p2n+1 = 2q2n+1, and such that pn+1 < pn. The existence of the natural numbers p1, p2, . . .
violates the principle of infinite descent, so we have obtained a contradiction. We conclude
that no rational x satisfies x2 = 2.

2. Question 2

Let (an)∞n=0 be a sequence of real numbers such that an+1 > an for all n ∈ N. Prove that,
if m,n are natural numbers such that m > n, then am > an.
Solution. We show that an+k > an for all n ∈ N and for all k ∈ N with k ≥ 1 by induction

on k. The base case is k = 1, which says an+1 > an for all n ∈ N. The problem assumes
this property, so the base case is verified. Now, assume that an+k > an for all n ∈ N for
some fixed k ≥ 1. We will prove that an+k+1 > an for all n ∈ N. By assumption, we have
an+k+1 > an+k. Then, by the inductive hypothesis, an+k > an. Combining these inequalities,
we have an+k+1 > an for all n ∈ N. The inductive step is complete. We conclude that
an+k > an for all n ∈ N and for all k ∈ N. Since every natural number m > n is of the form
n+ k for k ≥ 1, k ∈ N, we are done.

3. Question 3

Consider the set A = {(x, y) ∈ R × R : x + y ∈ Q}. Is this set finite, countable, or
uncountable? Prove your assertion.

Solution. This set is uncountable. To see this, recall that the real numbers R are uncount-
able. Define a function f : R → A by f(x) = (x,−x) for all x ∈ R. Note that f(x) is in A
for all x ∈ R, since x + (−x) = 0 ∈ Q. We now claim that f is a bijection onto its image
in A. That is, if we define f(R) = {f(x) : x ∈ R} = {(x,−x) : x ∈ R}, then f : R → f(R)
is a bijection. Indeed, given any element y of f(R) we have y = (x,−x) for some x ∈ R,
so f(x) = y = (x,−x). And this x is unique, since if f(x) = f(x′) for some x, x′ ∈ R, then
(x,−x) = (x′,−x′), so that x = x′. In conclusion, f : R → f(R) is a bijection. We now
show that A is uncountable. It cannot be the case that A is countable, since A contains the
uncountable set f(R). Similarly, A cannot be finite. Therefore, A is uncountable, as desired.
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4. Question 4

For the following sequences (an)∞n=1, compute lim supn→∞ an and lim infn→∞ an. If the
limit limn→∞ an exists, explain why it exists. If the limit limn→∞ an does not exist, explain
why it does not exist.

(i) an = (−1)n for all n ≥ 1, n ∈ N.
Solution. We have lim supn→∞ an = 1 and lim infn→∞ an = −1. Since the limsup and

liminf are not the same, the limit limn→∞ an does not exist (by Proposition 6.7(vi) in the
second set of notes). To see that these computations are correct, note that an ≤ 1 for
all n ≥ 1, so 1 is always an upper bound for (an)∞n=1. However, if x < 1, then for any
k ≥ 1, k ∈ N, we have a2k = 1 > x, so x cannot be an upper bound for (an)∞n=2k, for
any k ∈ N, k ≥ 1. We conclude that, for any n ≥ 1, we have supm≥n am = 1. Therefore,
lim supn→∞ an = limn→∞ supm≥n am = limn→∞ 1 = 1. Now, note that an ≥ −11 for all
n ≥ 1, so −1 is always a lower bound for (an)∞n=1. However, if x > −1, then for any k ≥ 1,
k ∈ N, we have a2k+1 = −1 < x, so x cannot be a lower bound for (an)∞n=2k+1, for any
k ∈ N, k ≥ 1. We conclude that, for any n ≥ 1, we have infm≥n am = −1. Therefore,
lim supn→∞ an = limn→∞ infm≥n am = limn→∞−1 = −1.

(ii)an = 1/n for all n ≥ 1, n ∈ N.
Solution. We know that limn→∞ 1/n = 0. So, from Proposition 6.7(vi) in the second set

of notes, we have lim infn→∞ an = lim supn→∞ an = 0.
(iii)an = n for all n ≥ 1, n ∈ N.
Solution. For any N ∈ N, we have an ≥ N for all n ≥ N . Therefore, by the definition of

supremum and infimum, for any n ∈ N we have supm≥n am = +∞ and infm≥n am = +∞.
Therefore, lim supn→∞ an = lim infn→∞ an = +∞. Also, by the definition of the limit, since
an ≥ N for all n ≥ N , we know that the limit limn→∞ an does not exist.

5. Question 5

Determine which of the following series converges. Justify your answer

(i)
∞∑
n=1

(−1)n.

Solution. This series does not converge. Note that (−1)n does not converge to zero as
n→∞. So, by the Zero Test, this series does not converge.

(ii)
∞∑
n=1

2((−1)n−n).

Solution. This series converges. Note that (−1)n − n ≤ 1 − n for all n ≥ 1. So, we have∣∣2((−1)n−n)
∣∣ = 2((−1)n−n) ≤ 21−n. Also, we know from geometric series that

∑∞
n=1 21−n =

2
∑∞

n=1 2−n = 2 <∞. So, by the comparison test,
∑∞

n=1 2((−1)n−n) converges.

(iii)
∞∑
n=1

(
2

(−1)n − 3

)n
.

Solution. This series does not converge. Let n be an even natural number. Then

2/((−1)n − 3) = 2/(−2) = −1, so
(

2
(−1)n−3

)n
= (−1)n. Therefore, if an = 2/((−1)n − 3).

Then it does not hold that limn→∞ an = 0. So, by the Zero Test, the series
∑∞

n=1 an does
not converge.
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6. Question 6

(i) Find a continuous function f : R → R such that f is differentiable on R r {0}, and
such that f is not differentiable at 0.

Solution. Consider f(x) = |x| where x ∈ R. We showed in Example 4.9 in the third set of
notes that f is continuous on R and f is differentiable on Rr{0}, but f is not differentiable
at 0.

(ii) Find a function f : [0,+∞) → R which is continuous and bounded, where f attains
its maximum somewhere, but f does not attain its minimum anywhere.

Solution. Consider f(x) = 1/(x + 1), where x ≥ 0. Since f is a rational function where
the denominator does not vanish on [0,+∞), we know that f is continuous on [0,+∞).
(See Remark 3.8 in the third set of notes.) Moreover, f is differentiable on [0,+∞) by
the quotient rule. Specifically, f ′(x) = −1/(x + 1)2 < 0 for all x ≥ 0. So, f is strictly
decreasing on [0,+∞). (See Proposition 4.32 in the third set of notes.) Therefore, f must
attain its maximum at x = 0. However, f does not attain its minimum anywhere. Given
any x ∈ [0,+∞), it cannot be the case that f(x) ≤ f(y) for all y ∈ [0,+∞), since if y > x,
then f(x) > f(y) (since f is strictly monotone decreasing).

(iii) Find a function f : [−1, 1]→ R such that f(−1) 6= f(1), such that f is differentiable
on (−1, 1), and such that f ′(x) = 0 for all x ∈ (−1, 1).
Solution. Define f : [−1, 1] → R by f(x) = 0 for all x ∈ [−1, 1), and f(1) = 1. Then

f(0) = 0 6= 1 = f(1). Since f |(−1,1) is the constant function 0, then f is differentiable on
(−1, 1) with f ′(x) = 0 for all x ∈ (−1, 1).

7. Question 7

Let q be a positive rational number. Let n be a positive integer. For a real number x,
define f(x) := 1/xq. The quantity

∫ 1

1/n
f is increasing in n, so it either has some finite limit

as n → ∞, or it diverges. For what values of q does
∫ 1

1/n
f converge to a finite value as

n→∞?
Solution. The integral converges to a finite value as n→∞ if and only if 0 < q < 1.
If q 6= 1, define g : (0, 1] → R by g(x) = (1 − q)−1x1−q. Then g′(x) = x−q = f(x) for

all x ∈ (0, 1]. So, by the first fundamental theorem of calculus, we have
∫ 1

1/n
f =

∫ 1

1/n
g′ =

g(1) − g(1/n) = (1 − q)−1(1 − nq−1). Letting n → ∞, we see that if 0 < q < 1, then

limn→∞
∫ 1

1/n
f = (1−q)−1 <∞. And if q > 1, we have limn→∞

∫ 1

1/n
f = (q−1)−1(nq−1−1) =

+∞.
The only remaining cases is q = 1. In this case, we could use some properties of logarithms,

but there is also something simpler to do. Define a function h : (0, 1] → R so that, for any
n ∈ N, we have h(x) := 2n whenever x lies in the interval (2−n−1, 2−n]. For example,
h(x) = 1 when x ∈ (1/2, 1], and h(x) = 2 whenever x ∈ (1/4, 1/2], and h(x) = 4 whenever
x ∈ (1/8, 1/4], and so on. In the case q = 1, we have f(x) = 1/x, so that f ′(x) = −1/x2,
and f is strictly decreasing on (0, 1]. So, for any n ∈ N, if x ∈ (2−n−1, 2−n], we have
f(x) ≥ f(2−n) = 2n. That is, if x ∈ (2−n−1, 2−n], we have f(x) ≥ h(x). From the monotonic
property of integrals, we therefore have∫ 1

2−n−1

f ≥
∫ 1

2−n−1

h =
n∑
k=1

(2−k − 2−k−1)2k =
n∑
k=1

2−k−12k =
n∑
k=1

(1/2) = n/2.
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Therefore, letting n→∞, we have

lim
n→∞

∫ 1

1/n

f = lim
n→∞

∫ 1

2−n

f ≥ lim
n→∞

(n/2) = +∞.

8. Question 8

Let a < b be real numbers. Let f : [a, b]→ R be a Riemann integrable function such that

f(x) = 0 whenever x is a rational number. Prove that
∫ b
a
f = 0.

Solution. Let a = x0 < x1 < · · · < xn = b be a partition of [a, b]. For any i ∈ {1, . . . , n},
note that there always exists a rational number in the interval [xi−1, xi], by the density of
rationals in R. Therefore, for any i ∈ {1, . . . , n}, we have

inf
x∈[xi−1,xi]

f(x) ≤ 0.

sup
x∈[xi−1,xi]

f(x) ≥ 0.

We therefore estimate

L(f, P ) =
n∑
i=1

( inf
x∈[xi−1,xi]

f(x))(xi − xi−1) ≤
n∑
i=1

0 · (xi − xi−1) ≤ 0.

U(f, P ) =
n∑
i=1

( sup
x∈[xi−1,xi]

f(x))(xi − xi−1) ≥
n∑
i=1

0 · (xi − xi−1) ≥ 0.

So, using the definition of lower and upper Riemann integrals, we have∫ b

a

f ≤ 0.

∫ b

a

f ≥ 0.

Since f is Riemann integrable, by definition we must have
∫ b
a
f =

∫ b
a
f =

∫ b
a
f . That is,

0 ≤
∫ b
a
f ≤ 0. In conslusion,

∫ b
a
f = 0.

9. Question 9

Let x, t be a real numbers. Let

g(x, t) :=
1

1 + xt4
.

Suppose we integrate g with respect to x, and we define

f(t) :=

∫ 1

0

g =

∫ 1

0

1

1 + xt4
dx.

Prove that f is continuous at t = 0.
Solution 1. Note that f(0) =

∫ 1

0
1 = 1. So, we need to show that, as t → 0, we have

f(t) → 1. Let ε > 0. We need to find δ > 0 such that |f(t)− 1| < ε whenever |t| < δ. Let
|t| < δ. For fixed t, consider the function G(x) = g(x, t) where x ∈ [0, 1]. Since |t| < 1/2, we
have |t|4 < 1/16, so |xt4| < |x| /16 < 1/16 < 1 whenever x ∈ [0, 1]. So, the quantity 1 + xt4
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does not vanish for x ∈ [0, 1], so G is continuous, differentiable, and Riemann integrable for
all x ∈ [0, 1]. Note that G′(x) = −t4/(1 + xt4)2, so G is strictly decreasing on [0, 1]. That is,
for all x ∈ [0, 1], we have

G(1) ≤ G(x) ≤ G(0), ∀x ∈ [−1, 1]

That is,
1

1 + t4
≤ G(x) ≤ 1, ∀x ∈ [−1, 1].

Since |t| < δ < 1/2, and the function 1/(1 + t4) is similarly monotone in t, we have

1

1 + δ4
≤ 1

1 + t4
.

In conclusion, if |t| < δ and if x ∈ [0, 1], we have

1

1 + δ4
≤ G(x) ≤ 1.

Since limδ→0 1/(1+δ4) = 1, there exists γ > 0 such that, if |δ| < γ, we have 1−ε < 1/(1+δ4).
In summary, if |t| < γ, then for all x ∈ [−1, 1], we have

1− ε ≤ G(x) ≤ 1.

Integrating this inequality, over [−1, 1], we have

1− ε ≤
∫ 1

0

G(x) ≤ 1.

That is, if |t| < γ, then |f(t)− 1| < ε. So, f is continuous at t = 0, as desired.
Solution 2. (Assuming use of change of variables.) Changing variables y = t4x, we get

f(t) = t−4
∫ t4

0

1

1 + y
dy

Note that H(t) :=
∫ t
0
(1/(1 + y))dy is a continuous function of t by the second part of

the fundamental theorem of calculus. So, H(t4) is a continuous function of t, since it is a
composition of continuous functions. Then f(t) = t−4H(t4) is a product of functions which
are continuous at t = 1, so f is continuous at t = 1.

10. Question 10

A subset X of the real numbers is said to have measure zero if and only if the follow-
ing condition is satisfied: Given any ε > 0, there exists a countable set of open intervals
(a0, b0), (a1, b1), . . . with ai < bi for all i ∈ N, such that X ⊆

⋃∞
i=0(ai, bi), and such that∑∞

i=0(bi − ai) < ε.
Show that the rational numbers Q have measure zero.
Solution. Recall that the rational numbers Q are countable. so, let f : N → Q be a

bijection. Let ε > 0. For any i ∈ N, consider the open interval (f(i) − ε2−i, f(i) + ε2−i).
That is, define ai = f(i)− ε2−i and bi = f(i) + ε2−i. Then bi > ai and bi− ai = 2ε2−i. Since
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the rational number f(i) is contained in the interval (f(i)− ε2−i, f(i) + ε2−i) for each i ∈ N,
and since Q is equal to the set {f(i) : i ∈ N} (since f is a bijection), we conclude that

Q ⊆
∞⋃
i=0

(ai, bi).

Lastly, note that
∞∑
i=0

(bi − ai) =
∞∑
i=0

2ε2−i = 2ε
∞∑
i=0

2−i = 4ε.

Since ε > 0 was arbitrary, we are done.
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