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Final Exam

This exam contains 16 pages (including this cover page) and 10 problems. Check to see if
any pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

• You have 180 minutes to complete the exam.

• If you use a “fundamental theorem” you
must indicate this and explain why the the-
orem may be applied.

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper appears at the end of the
document.

Do not write in the table to the right. Good luck!
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2 10

3 10

4 15

5 15

6 15

7 15

8 15

9 15

10 10

Total: 130



Reference sheet

Below are some definitions that may be relevant. The topics are ordered chronologically.
Recall that N denotes the set of natural numbers, Q denotes the set of rational numbers,
and R denotes the set of real numbers.

Let X, Y be sets. A bijection is a function f : X → Y such that, for all y ∈ Y , there exists
exactly one x ∈ X such that f(x) = y. We say that X is finite if and only if there exists
n ∈ N such that there exists a bijection f : X → {1 ≤ i ≤ n : i ∈ N}. We say that X is
countable if and only if there exists a bijection f : X → N. We say that X is uncountable
if and only if X is not finite and X is not countable.

Let (an)∞n=0 be a sequence of real numbers, and let L be a real number. We say that the
sequence (an)∞n=0 converges to L if and only if, for every real ε > 0, there exists a natural
number N = N(ε) such that, for all n ≥ N , we have |an − L| < ε.

Let (an)∞n=0 be a sequence of real numbers that is converging to a real number L. We then
say that the sequence (an)∞n=0 is convergent, and we write L = limn→∞ an. If (an)∞n=0 is
not convergent, we say that the sequence (an)∞n=0 is divergent, and we say the limit of L is
undefined.

Let (an)∞n=0 be a sequence of real numbers. We say that (an)∞n=0 is a Cauchy sequence if
and only if, for any real ε > 0, there exists a natural number N = N(ε) such that, for all
n,m ≥ N , we have |an − am| < ε.

A sequence (an)∞n=0 of real numbers is bounded if and only if there exists M ∈ R such that
|an| ≤M for all n ∈ N.

Let E be a subset of R with some upper bound. The least upper bound of E is called the
supremum of E, and is denoted by sup(E) or sup E. If E has no upper bound, we write
sup(E) = +∞. If E is empty, we write sup(E) = −∞. Let E be a subset of R with some
lower bound. The greatest lower bound of E is called the infimum of E, and is denoted by
inf(E) or inf E. If E has no lower bound, we write inf(E) = −∞. If E is empty, we write
inf(E) = +∞.

Let (an)∞n=m be a sequence of real numbers. Define sup(an)∞n=m to be the supremum of the set
{an : n ≥ m, n ∈ N}. Define inf(an)∞n=m to be the infimum of the set {an : n ≥ m, n ∈ N}.

Let (an)∞n=m be a sequence of real numbers and let x be a real number. We say that x is a
limit point of the sequence (an)∞n=m if and only if: for every real ε > 0, for every natural
number N ≥ m, there exists n ≥ N such that |an − x| < ε. We define

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am = inf
n≥m

sup
t≥n

at.

lim inf
n→∞

an = lim
n→∞

inf
m≥n

am = sup
n≥m

inf
t≥n

at.
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Let
∑∞

n=m an be a formal infinite series. For any integer N ≥ m, define the N th partial

sum SN of this series by SN :=
∑N

n=m an. If the sequence (SN)∞N=m converges to some limit
L ∈ R as N → ∞, then we say that the infinite series

∑∞
n=m an is convergent, and this

infinite series converges to L. We say that the series
∑∞

n=m an is absolutely convergent
if and only if the series

∑∞
n=m |an| is convergent. If a series is not absolutely convergent,

then it is absolutely divergent.

Zero Test. Let
∑∞

n=m an be a formal series of real numbers. If
∑∞

n=m an converges, then
limn→∞ an = 0. Note that the contrapositive says: if an does not converge to zero as n→∞,
then

∑∞
n=m an does not converge.

Alternating Series Test. Let (an)∞n=m be a decreasing sequence of nonnegative real num-
bers. That is, an+1 ≤ an and an ≥ 0 for all n ≥ m. Then the series

∑∞
n=m(−1)nan converges

if and only if an → 0 as n→∞.

Comparison Test. Let
∑∞

n=m an,
∑∞

n=m bn be formal series of real numbers. Assume that
|an| ≤ bn for all n ≥ m. If

∑∞
n=m bn is convergent, then

∑∞
n=m an is absolutely convergent.

Moreover, |
∑∞

n=m an| ≤
∑∞

n=m |an| ≤
∑∞

n=m bn.

The Root Test. Let
∑∞

n=m an be a series of real numbers. Define α := lim supn→∞ |an|
1/n.

(i) If α < 1, then the series
∑∞

n=m an is absolutely convergent. In particular, the series∑∞
n=m an is convergent. (ii) If α > 1, then the series

∑∞
n=m an is divergent. (iii) If α = 1, no

conclusion is asserted.

The Ratio Test. Let
∑∞

n=m an be a series of nonzero numbers. (So, an+1/an is defined for

any n ≥ m.) (i) If lim supn→∞
|an+1|
|an| < 1, then the series

∑∞
n=m an is absolutely convergent.

In particular,
∑∞

n=m an is convergent. (ii) If lim infn→∞
|an+1|
|an| > 1, then the series

∑∞
n=m an

is divergent. In particular,
∑∞

n=m an is not absolutely convergent.

Let X be a subset of R and let f : X → R be a function. Let x0 be an element of X. We
say that f is continuous at x0 if and only if limx→x0;x∈X f(x) = f(x0). That is, the limit of
f at x0 in X exists, and this limit is equal to f(x0). We say that f is continuous on X (or
we just say that f is continuous) if and only if f is continuous at x0 for every x0 ∈ X. We
say that f is uniformly continuous if and only if, for every ε > 0 there exists δ > 0 such
that, if x ∈ X satisfies |x− x0| < δ, then |f(x)− f(x0)| < ε. We say that f is Lipschitz
continuous with constant L if and only if there exists L ≥ 0 such that, for every x, y ∈ X,
we have |f(x)− f(y)| ≤ L |x− y|.

Let f : X → R be a function, and let x0 ∈ X. We say that f attains its maximum at x0
if and only if f(x0) ≥ f(x) for all x ∈ X. We say that f attains its minimum at x0 if and
only if f(x0) ≤ f(x) for all x ∈ X.

The Maximum Principle. Let a < b be real numbers and let f : [a, b]→ R be a function
that is continuous on [a, b]. Then f attains its maximum and minimum on [a, b].

Intermediate Value Theorem. Let a < b be real numbers. Let f : [a, b]→ R be function
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that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so that either
f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists a c ∈ [a, b] such that f(c) = y.

Let X be a subset of R and let x be a real number. We say that x is a limit point of X if
and only if, for every real ε > 0, there exists a y ∈ X with y 6= x such that |y − x| < ε.

Let X be a subset of R, and let x0 be an element of X which is also a limit point of X.
Let f : X → R be a function. If the limit limx→x0;x∈Xr{x0}

f(x)−f(x0)
x−x0

converges to a real
number L, then we say that f is differentiable at x0 on X with derivative L, and we
write f ′(x0) := L. If this limit does not exist, or if x0 is not a limit point of X, we leave
f ′(x0) undefined, and we say that f is not differentiable at x0 on X.

Mean Value Theorem. Let a < b be real numbers, and let f : [a, b]→ R be a continuous
function which is differentiable on (a, b). Then there exists x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

Let a < b be real numbers, let f : [a, b]→ R be a bounded function, and let P = {x0, . . . , xn}
be a partition of [a, b]. That is, a = x0 < x1 < · · · < xn = b.We define the upper Riemann
sum U(f, P ) by U(f, P ) :=

∑n
i=1(supx∈[xi−1,xi]

f(x))(xi − xi−1). We also define the lower
Riemann sum L(f, P ) by L(f, P ) :=

∑n
i=1(infx∈[xi−1,xi] f(x))(xi − xi−1).

Let a < b be real numbers, let f : [a, b] → R be a bounded function. We define the upper

Riemann integral
∫ b

a
f of f on [a, b] by∫ b

a

f := inf{U(f, P ) : P is a partition of [a, b]}.

We also define the lower Riemann integral
∫ b

a
f of f on [a, b] by∫ b

a

f := sup{L(f, P ) : P is a partition of [a, b]}.

Let a < b be real numbers, let f : [a, b] → R be a bounded function. If
∫ b

a
f =

∫ b

a
f we say

that f is Riemann integrable on [a, b], and we define
∫ b

a
f :=

∫ b

a
f =

∫ b

a
f.

Fundamental Theorem of Calculus, Part 1. Let a < b be real numbers. Let f : [a, b]→
R be a continuous function on [a, b]. Assume that f is also differentiable on [a, b], and f ′ is

Riemann integrable on [a, b]. Then
∫ b

a
f ′ = f(b)− f(a)..

Fundamental Theorem of Calculus, Part 2. Let a < b be real numbers. Let f : [a, b]→
R be a Riemann integrable function. Define a function F : [a, b]→ R by F (x) :=

∫ x

a
f . Then

F is continuous. Moreover, if x0 ∈ [a, b] and if f is continuous at x0, then F is differentiable
at x0 and F ′(x0) = f(x0).
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1. (10 points) Prove that
√

2 is not a rational number.
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2. (10 points) Let (an)∞n=0 be a sequence of real numbers such that an+1 > an for all n ∈ N.
Prove that, if m,n are natural numbers such that m > n, then am > an.
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3. (10 points) Consider the set A = {(x, y) ∈ R × R : x + y ∈ Q}. Is this set finite,
countable, or uncountable? Prove your assertion.
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4. For the following sequences (an)∞n=1, compute lim supn→∞ an and lim infn→∞ an. If the
limit limn→∞ an exists, explain why it exists. If the limit limn→∞ an does not exist,
explain why it does not exist.

(a) (5 points) an = (−1)n for all n ≥ 1, n ∈ N.

(b) (5 points) an = 1/n for all n ≥ 1, n ∈ N.

(c) (5 points) an = n for all n ≥ 1, n ∈ N.

Page 8



5. Determine which of the following series converges. Justify your answer

(a) (5 points)
∞∑
n=1

(−1)n.

(b) (5 points)
∞∑
n=1

2((−1)n−n).

(c) (5 points)
∞∑
n=1

(
2

(−1)n − 3

)n

.
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6. (a) (5 points) Find a continuous function f : R → R such that f is differentiable on
R r {0}, and such that f is not differentiable at 0.

(b) (5 points) Find a function f : [0,∞)→ R which is continuous and bounded, where
f attains its maximum somewhere, but f does not attain its minimum anywhere.

(c) (5 points) Find a function f : [−1, 1] → R such that f(−1) 6= f(1), such that f is
differentiable on (−1, 1), and such that f ′(x) = 0 for all x ∈ (−1, 1).
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7. (15 points) Let q be a positive rational number. Let n be a positive integer. For a real

number x, define f(x) := 1/xq. The quantity
∫ 1

1/n
f is increasing in n, so it either has

some finite limit as n→∞, or it diverges. For what values of q does
∫ 1

1/n
f converge to

a finite value as n→∞?
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8. (15 points) Let a < b be real numbers. Let f : [a, b] → R be a Riemann integrable

function such that f(x) = 0 whenever x is a rational number. Prove that
∫ b

a
f = 0.
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9. (15 points) Let x, t be a real numbers. Let

g(x, t) :=
1

1 + xt4
.

Suppose we integrate g with respect to x, and we define

f(t) :=

∫ 1

0

g =

∫ 1

0

1

1 + xt4
dx.

Prove that f is continuous at t = 0.
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10. (10 points) A subset X of the real numbers is said to have measure zero if and only if
the following condition is satisfied: Given any ε > 0, there exists a countable set of open
intervals (a0, b0), (a1, b1), . . . with ai < bi for all i ∈ N, such that X ⊆

⋃∞
i=0(ai, bi), and

such that
∑∞

i=0(bi − ai) < ε.

Show that the rational numbers Q have measure zero. (Hint: as a warmup, try to show
that any finite set of rational numbers has measure zero.)
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(Scratch paper)
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(More scratch paper)
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