
131A Midterm 2 Solutions

1. Question 1

True/False
(a) Let (an)∞n=0 be a convergent sequence of real numbers. Then (an)∞n=0 is a Cauchy

sequence.
TRUE. This was a Theorem 3.10 in the second set of notes.
(b) Let (an)∞n=0 be a bounded sequence of real numbers. Then (an)∞n=0 is a convergent

sequence.
FALSE. The sequence ((−1)n)∞n=0 is bounded by 1, but it is not convergent. To see that

this sequence is not convergent, note that it is not Cauchy, since |(−1)n − (−1)n+1| = 2 for
all n ≥ 0. Alternately, note that lim supn→∞(−1)n = 1 while lim infn→∞(−1)n = −1. Since
the limsup of the sequence is not equal to the liminf, the sequence is not convergent. (See
Proposition 6.7(vi) in the second set of notes.)

(c) Let (an)∞n=0 be a positive, decreasing sequence of real numbers. (That is, an ≥ 0 and
an+1 ≤ an for all n ∈ N.) Then

∑∞
n=0(−1)nan converges.

FALSE. (This is almost the alternating series test, but not quite.) Consider the sequence
an = 1 for all n ≥ 0. This sequence is positive and decreasing. However,

∑∞
n=0(−1)nan

does not converge. To see this, let SN =
∑N

n=0(−1)n denote the N th partial sum. Then
|SN − SN+1| = 2 for all N ≥ 0. So, the partial sums do not converge, i.e. the sequence
(SN)∞N=0 does not converge as N →∞. Therefore, the sum

∑∞
n=0(−1)nan does not converge.

(d) Let (an)∞n=0 be a sequence of real numbers such that

∣∣∣∣an+1

an

∣∣∣∣ < 1 for all natural numbers

n. Then
∑∞

n=0 an converges.

FALSE. Let an = (1 + 1/n) for all n ≥ 1. Then for all n ≥ 1, |an+1/an| =
1+ 1

n+1

1+ 1
n

< 1.

However, an → 1 as n→∞. So, by the zero test, the series
∑∞

n=1 an diverges.

2. Question 2

Determine which of the following series converges. Justify your answer

(a)
∞∑
n=1

n

2n
.

Let an = n/2n for any n ≥ 1. We compute: lim supn→∞ |an+1/an| = lim supn→∞
∣∣ n+1
2n+1

2n

n

∣∣ =

lim supn→∞
n+1
n

1
2

= 1
2
< 1. So, from the ratio test, the series converges.

(b)
∞∑
n=1

(−1)n√
n

Let an = 1/
√
n for all n ≥ 1. Note that an ≥ 0 for all n ≥ 1. Also, an+1 ≤ an since

an+1 = 1/
√
n+ 1 ≤ 1/

√
n = an. Also, limn→∞ an = 0. So, from the alternating series test,

the series converges.

3. Question 3

Let f : [0, 1]→ [0, 1] be a continuous function. Show that there exists some x ∈ [0, 1] such
that f(x) = x.
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Solution. Consider g(x) := f(x)− x where g : [0, 1]→ R. Since f(x) ≥ 0 for all x ∈ [0, 1],
we have g(0) = f(0) ≥ 0. Also, since f(x) ≤ 1 for all x ∈ [0, 1], we have g(1) = f(1)−1 ≤ 0.
Note also that since f is continuous, then g is the sum of two continuous functions, so g
is continuous. That is, g : [0, 1] → R is continuous with g(0) ≥ 0 and g(1) ≤ 0. So, by
the Intermediate Value Theorem, there exists some x ∈ [0, 1] such that g(x) = 0. By the
definition of g, we therefore have f(x)− x = 0, i.e. f(x) = x, as desired.

4. Question 4

Let x > 1. Prove that lim
n→∞

xn

n
= +∞.

Solution. Write x = 1 + ε where ε > 0. Let n ≥ 1. From the binomial theorem,

(1 + ε)n = 1 + nε+ ε2n(n− 1)/2 + r,

where r ≥ 0. That is,
(1 + ε)n ≥ 1 + nε+ ε2n(n− 1)/2.

Therefore,
xn

n
≥ 1 + nε+ ε2n(n− 1)/2

n
=

1

n
+ ε+ ε2(n− 1)/2.

Taking the liminf of both sides,

lim inf
n→∞

xn

n
≥ lim inf

n→∞

(
1

n
+ ε+ ε2(n− 1)/2

)
= +∞.

(Note that we cannot take the limit of both sides, since we do not yet know the limit exists.)
Since lim infn→∞ xn/n = +∞, we conclude that limn→∞ xn/n = +∞.

5. Question 5

Let x ∈ R. Consider the function f(x) :=
∞∑
n=1

1

x2 + n2
. Prove that f is continuous on

(−∞,+∞).
Solution. First, note that the sum converges absolutely for any x ∈ R by the comparison

test, since 1/(x2+n2) ≤ 1/n2 for all x ∈ R and for all n ≥ 1, and we know that
∑∞

n=1 1/n2 <
∞. In particular, for any x ∈ R, and for any N ∈ N we have by the comparison test that

∞∑
n=N

1

x2 + n2
≤

∞∑
n=N

1

n2
. (∗)

Let ε > 0. We will in fact show that f is uniformly continuous on R, so that in particular
f is continuous. We will find δ = δ(ε) > 0 such that, whenever x, y ∈ R satisfy |x− y| < δ,
we have |f(x)− f(y)| < ε.

For each n ≥ 1, note that the function fn(x) := 1/(x2 + n2) is Lipschitz continuous on R.
To see this, let x, y ∈ R and observe

|fn(x)− fn(y)| =
∣∣∣∣ 1

x2 + n2
− 1

y2 + n2

∣∣∣∣ =

∣∣∣∣ y2 − x2

(x2 + n2)(y2 + n2)

∣∣∣∣
= |x− y| |x+ y|

(x2 + n2)(y2 + n2)
≤ |x− y| |x+ y|

x2 + y2 + 1
≤ |x− y| 2 max(|x| , |y|)

x2 + y2 + 1
.
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If max(|x| , |y|) ≤ 1, then x2 + y2 + 1 ≥ 1, so 2max(|x|,|y|)
x2+y2+1

≤ 2. If max(|x| , |y|) ≥ 1, then

max(|x| , |y|) ≤ max(|x|2 , |y|2), so 2max(|x|,|y|)
x2+y2+1

≤ 2max(|x|,|y|)
max(|x|2,|y|2)+1

≤ 2. In any case, we have

|fn(x)− fn(y)| ≤ 2 |x− y| , ∀x, y ∈ R, ∀n ∈ N (∗∗)
That is, fn is Lipschitz continuous with constant 2 for every n ≥ 1.

Now, let x, y ∈ R. Then, for any N ∈ N, by (∗∗) we have∣∣∣∣∣
N∑

n=1

fn(x)−
N∑

n=1

fn(y)

∣∣∣∣∣ ≤
N∑

n=1

|fn(x)− fn(y)| ≤ 2N |x− y| (∗ ∗ ∗).

So, first choose N so that
∑∞

n=N
1
n2 < ε/4 (which is possible since this series converges).

Then, choose δ := ε/(4N), and let |x− y| < δ. Combining (∗) and (∗ ∗ ∗), we get

|f(x)− f(y)| =

∣∣∣∣∣
N∑

n=1

(fn(x)− fn(y)) +
∞∑

n=N+1

(fn(x)− fn(y))

∣∣∣∣∣
≤

∣∣∣∣∣
N∑

n=1

(fn(x)− fn(y))

∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=N+1

fn(y)

∣∣∣∣∣
≤ 2N |x− y|+ ε/4 + ε/4 ≤ 2Nδ + ε/2 ≤ ε/2 + ε/2 = ε.

In conclusion, f is uniformly continuous, so f is continuous.
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