131A Midterm 2 Solutions

1. Question 1

True/False

(a) Let $(a_n)_{n=0}^{\infty}$ be a convergent sequence of real numbers. Then $(a_n)_{n=0}^{\infty}$ is a Cauchy sequence.

TRUE. This was a Theorem 3.10 in the second set of notes.

(b) Let $(a_n)_{n=0}^{\infty}$ be a bounded sequence of real numbers. Then $(a_n)_{n=0}^{\infty}$ is a convergent sequence.

FALSE. The sequence $((-1)^n)_{n=0}^{\infty}$ is bounded by 1, but it is not convergent. To see that this sequence is not convergent, note that it is not Cauchy, since $|(-1)^n - (-1)^{n+1}| = 2$ for all $n \geq 0$. Alternately, note that $\limsup_{n \to \infty} (-1)^n = 1$ while $\liminf_{n \to \infty} (-1)^n = -1$. Since the limsup of the sequence is not equal to the liminf, the sequence is not convergent. (See Proposition 6.7(vi) in the second set of notes.)

(c) Let $(a_n)_{n=0}^{\infty}$ be a positive, decreasing sequence of real numbers. (That is, $a_n \geq 0$ and $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$.) Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

FALSE. (This is almost the alternating series test, but not quite.) Consider the sequence $a_n=1$ for all $n\geq 0$. This sequence is positive and decreasing. However, $\sum_{n=0}^{\infty} (-1)^n a_n$ does not converge. To see this, let $S_N=\sum_{n=0}^N (-1)^n$ denote the N^{th} partial sum. Then $|S_N-S_{N+1}|=2$ for all $N\geq 0$. So, the partial sums do not converge, i.e. the sequence $(S_N)_{N=0}^{\infty}$ does not converge as $N\to\infty$. Therefore, the sum $\sum_{n=0}^{\infty} (-1)^n a_n$ does not converge.

(d) Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers such that $\left|\frac{a_{n+1}}{a_n}\right| < 1$ for all natural numbers n. Then $\sum_{n=0}^{\infty} a_n$ converges.

FALSE. Let $a_n = (1 + 1/n)$ for all $n \ge 1$. Then for all $n \ge 1$, $|a_{n+1}/a_n| = \frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}} < 1$. However, $a_n \to 1$ as $n \to \infty$. So, by the zero test, the series $\sum_{n=1}^{\infty} a_n$ diverges.

2. Question 2

Determine which of the following series converges. Justify your answer

(a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
.

Let $a_n = n/2^n$ for any $n \ge 1$. We compute: $\limsup_{n \to \infty} |a_{n+1}/a_n| = \limsup_{n \to \infty} \left|\frac{n+1}{2^{n+1}}\frac{2^n}{n}\right| = \limsup_{n \to \infty} \frac{n+1}{n}\frac{1}{2} = \frac{1}{2} < 1$. So, from the ratio test, the series converges.

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Let $a_n = 1/\sqrt{n}$ for all $n \ge 1$. Note that $a_n \ge 0$ for all $n \ge 1$. Also, $a_{n+1} \le a_n$ since $a_{n+1} = 1/\sqrt{n+1} \le 1/\sqrt{n} = a_n$. Also, $\lim_{n\to\infty} a_n = 0$. So, from the alternating series test, the series converges.

3. Question 3

Let $f: [0,1] \to [0,1]$ be a continuous function. Show that there exists some $x \in [0,1]$ such that f(x) = x.

1

Solution. Consider g(x) := f(x) - x where $g: [0,1] \to \mathbf{R}$. Since $f(x) \ge 0$ for all $x \in [0,1]$, we have $g(0) = f(0) \ge 0$. Also, since $f(x) \le 1$ for all $x \in [0, 1]$, we have $g(1) = f(1) - 1 \le 0$. Note also that since f is continuous, then q is the sum of two continuous functions, so qis continuous. That is, $g:[0,1]\to \mathbf{R}$ is continuous with $g(0)\geq 0$ and $g(1)\leq 0$. So, by the Intermediate Value Theorem, there exists some $x \in [0,1]$ such that g(x) = 0. By the definition of g, we therefore have f(x) - x = 0, i.e. f(x) = x, as desired.

4. Question 4

Let x > 1. Prove that $\lim_{n \to \infty} \frac{x^n}{n} = +\infty$. Solution. Write $x = 1 + \varepsilon$ where $\varepsilon > 0$. Let $n \ge 1$. From the binomial theorem,

$$(1+\varepsilon)^n = 1 + n\varepsilon + \varepsilon^2 n(n-1)/2 + r,$$

where $r \geq 0$. That is,

$$(1+\varepsilon)^n \ge 1 + n\varepsilon + \varepsilon^2 n(n-1)/2.$$

Therefore,

$$\frac{x^n}{n} \ge \frac{1 + n\varepsilon + \varepsilon^2 n(n-1)/2}{n} = \frac{1}{n} + \varepsilon + \varepsilon^2 (n-1)/2.$$

Taking the liminf of both sides,

$$\liminf_{n\to\infty} \frac{x^n}{n} \ge \liminf_{n\to\infty} \left(\frac{1}{n} + \varepsilon + \varepsilon^2(n-1)/2\right) = +\infty.$$

(Note that we cannot take the limit of both sides, since we do not yet know the limit exists.) Since $\liminf_{n\to\infty} x^n/n = +\infty$, we conclude that $\lim_{n\to\infty} x^n/n = +\infty$.

5. Question 5

Let $x \in \mathbf{R}$. Consider the function $f(x) := \sum_{i=1}^{\infty} \frac{1}{x^2 + n^2}$. Prove that f is continuous on $(-\infty, +\infty)$.

Solution. First, note that the sum converges absolutely for any $x \in \mathbf{R}$ by the comparison test, since $1/(x^2+n^2) \le 1/n^2$ for all $x \in \mathbf{R}$ and for all $n \ge 1$, and we know that $\sum_{n=1}^{\infty} 1/n^2 < 1$ ∞ . In particular, for any $x \in \mathbf{R}$, and for any $N \in \mathbf{N}$ we have by the comparison test that

$$\sum_{n=N}^{\infty} \frac{1}{x^2 + n^2} \le \sum_{n=N}^{\infty} \frac{1}{n^2}.$$
 (*)

Let $\varepsilon > 0$. We will in fact show that f is uniformly continuous on **R**, so that in particular f is continuous. We will find $\delta = \delta(\varepsilon) > 0$ such that, whenever $x, y \in \mathbf{R}$ satisfy $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

For each $n \ge 1$, note that the function $f_n(x) := 1/(x^2 + n^2)$ is Lipschitz continuous on **R**. To see this, let $x, y \in \mathbf{R}$ and observe

$$|f_n(x) - f_n(y)| = \left| \frac{1}{x^2 + n^2} - \frac{1}{y^2 + n^2} \right| = \left| \frac{y^2 - x^2}{(x^2 + n^2)(y^2 + n^2)} \right|$$

$$= |x - y| \frac{|x + y|}{(x^2 + n^2)(y^2 + n^2)} \le |x - y| \frac{|x + y|}{x^2 + y^2 + 1} \le |x - y| \frac{2 \max(|x|, |y|)}{x^2 + y^2 + 1}.$$

If $\max(|x|,|y|) \le 1$, then $x^2 + y^2 + 1 \ge 1$, so $\frac{2\max(|x|,|y|)}{x^2 + y^2 + 1} \le 2$. If $\max(|x|,|y|) \ge 1$, then $\max(|x|,|y|) \le \max(|x|^2,|y|^2)$, so $\frac{2\max(|x|,|y|)}{x^2 + y^2 + 1} \le \frac{2\max(|x|,|y|)}{\max(|x|^2,|y|^2) + 1} \le 2$. In any case, we have

$$|f_n(x) - f_n(y)| \le 2|x - y|, \forall x, y \in \mathbf{R}, \quad \forall n \in \mathbf{N}$$
 (**)

That is, f_n is Lipschitz continuous with constant 2 for every $n \ge 1$. Now, let $x, y \in \mathbf{R}$. Then, for any $N \in \mathbf{N}$, by (**) we have

$$\left| \sum_{n=1}^{N} f_n(x) - \sum_{n=1}^{N} f_n(y) \right| \le \sum_{n=1}^{N} |f_n(x) - f_n(y)| \le 2N |x - y| \qquad (* * *).$$

So, first choose N so that $\sum_{n=N}^{\infty} \frac{1}{n^2} < \varepsilon/4$ (which is possible since this series converges). Then, choose $\delta := \varepsilon/(4N)$, and let $|x-y| < \delta$. Combining (*) and (* * *), we get

$$|f(x) - f(y)| = \left| \sum_{n=1}^{N} (f_n(x) - f_n(y)) + \sum_{n=N+1}^{\infty} (f_n(x) - f_n(y)) \right|$$

$$\leq \left| \sum_{n=1}^{N} (f_n(x) - f_n(y)) \right| + \left| \sum_{n=N+1}^{\infty} f_n(x) \right| + \left| \sum_{n=N+1}^{\infty} f_n(y) \right|$$

$$\leq 2N |x - y| + \varepsilon/4 + \varepsilon/4 \leq 2N\delta + \varepsilon/2 \leq \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

In conclusion, f is uniformly continuous, so f is continuous.