Analysis 1, Fall 2014, UCLA	Inst	ructor: Steven Heilman
Name:	UCLA ID:	Date:
Signature:(By signing here, I certify that I have		g from cheating.)

Mid-Term 2

This exam contains 8 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct cal-
- document.

	culations and explanations might still receive partial credit.
•	If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document

Do not write in the table to the right. Good luck!

Reference sheet

Below are some definitions that may be relevant.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers, and let L be a real number. We say that the sequence $(a_n)_{n=0}^{\infty}$ converges to L if and only if, for every real $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that, for all $n \ge N$, we have $|a_n - L| < \varepsilon$.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers. We say that $(a_n)_{n=0}^{\infty}$ is a **Cauchy sequence** if and only if, for any real $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that, for all $n, m \ge N$, we have $|a_n - a_m| < \varepsilon$.

A sequence $(a_n)_{n=0}^{\infty}$ of real numbers is **bounded** if and only if there exists $M \in \mathbf{R}$ such that $|a_n| \leq M$ for all $n \in \mathbf{N}$.

Let $\sum_{n=m}^{\infty} a_n$ be a formal infinite series. For any integer $N \geq m$, define the N^{th} **partial** sum S_N of this series by $S_N := \sum_{n=m}^N a_n$. If the sequence $(S_N)_{N=m}^{\infty}$ converges to some limit $L \in \mathbf{R}$ as $N \to \infty$, then we say that the infinite series $\sum_{n=m}^{\infty} a_n$ is **convergent**, and this infinite series **converges to** L.

The Root Test. Let $\sum_{n=m}^{\infty} a_n$ be a series of real numbers. Define $\alpha := \limsup_{n \to \infty} |a_n|^{1/n}$. (i) If $\alpha < 1$, then the series $\sum_{n=m}^{\infty} a_n$ is absolutely convergent. In particular, the series $\sum_{n=m}^{\infty} a_n$ is convergent. (ii) If $\alpha > 1$, then the series $\sum_{n=m}^{\infty} a_n$ is divergent. (iii) If $\alpha = 1$, no conclusion is asserted.

The Ratio Test. Let $\sum_{n=m}^{\infty} a_n$ be a series of nonzero numbers. (So, a_{n+1}/a_n is defined for any $n \geq m$.) (i) If $\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$, then the series $\sum_{n=m}^{\infty} a_n$ is absolutely convergent. In particular, $\sum_{n=m}^{\infty} a_n$ is convergent. (ii) If $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$, then the series $\sum_{n=m}^{\infty} a_n$ is divergent. In particular, $\sum_{n=m}^{\infty} a_n$ is not absolutely convergent.

Let X be a subset of **R** and let $f: X \to \mathbf{R}$ be a function. Let x_0 be an element of X. We say that f is **continuous** at x_0 if and only if

$$\lim_{x \to x_0; x \in X} f(x) = f(x_0).$$

That is, the limit of f at x_0 in X exists, and this limit is equal to $f(x_0)$. We say that f is **continuous on** X (or we just say that f is **continuous**) if and only if f is continuous at x_0 for every $x_0 \in X$. We say that f is **uniformly continuous** if and only if, for every $\varepsilon > 0$ there exists $\delta > 0$ such that, if $x \in X$ satisfies $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \varepsilon$. We say that f is **Lipschitz continuous** with constant L if and only if there exists $L \ge 0$ such that, for every $x, y \in X$, we have $|f(x) - f(y)| \le L|x - y|$.

Intermediate Value Theorem. Let a < b be real numbers. Let $f: [a, b] \to \mathbf{R}$ be function that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so that either $f(a) \le y \le f(b)$ or $f(a) \ge y \ge f(b)$. Then there exists a $c \in [a, b]$ such that f(c) = y.

- 1. Label the following statements as TRUE or FALSE. If the statement is true, explain your reasoning. If the statement is false, provide a counterexample.
 - (a) (2 points) Let $(a_n)_{n=0}^{\infty}$ be a convergent sequence of real numbers. Then $(a_n)_{n=0}^{\infty}$ is a Cauchy sequence.

TRUE FALSE (circle one)

(b) (2 points) Let $(a_n)_{n=0}^{\infty}$ be a bounded sequence of real numbers. Then $(a_n)_{n=0}^{\infty}$ is a convergent sequence.

TRUE FALSE (circle one)

(c) (3 points) Let $(a_n)_{n=0}^{\infty}$ be a positive, decreasing sequence of real numbers. (That is, $a_n \geq 0$ and $a_{n+1} \leq a_n$ for all $n \in \mathbf{N}$.) Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

TRUE FALSE (circle one)

(d) (3 points) Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers such that $\left|\frac{a_{n+1}}{a_n}\right| < 1$ for all natural numbers n. Then $\sum_{n=0}^{\infty} a_n$ converges.

TRUE FALSE (circle one)

2. Determine which of the following series converges. Justify your answer

(a) (5 points)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
.

(b) (5 points) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

3. (10 points) Let $f:[0,1] \to [0,1]$ be a continuous function. Show that there exists some $x \in [0,1]$ such that f(x) = x. (Hint: apply the Intermediate Value Theorem to g(x) := f(x) - x.)

4. (10 points) Let x > 1. Prove that $\lim_{n \to \infty} \frac{x^n}{n} = +\infty$. (Hint: try writing $x = 1 + \varepsilon$ where $\varepsilon > 0$, then use the binomial theorem.)

5. (10 points) Let $x \in \mathbf{R}$. Consider the function $f(x) := \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$. Prove that f is continuous on $(-\infty, +\infty)$. (Hint: it may be easier to prove that f is uniformly continuous on \mathbf{R} . You could start by trying to prove that the function $1/(x^2 + n^2)$ is Lipschitz continuous, for every $n \geq 1$.)

(Scratch paper)