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Mid-Term 2

This exam contains 8 pages (including this cover page) and 5 problems. Check to see if any
pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

• You have 50 minutes to complete the exam,
starting at the beginning of class.

• If you use a “fundamental theorem” you
must indicate this and explain why the the-
orem may be applied.

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper appears at the end of the
document.

Do not write in the table to the right. Good luck!

Problem Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Reference sheet

Below are some definitions that may be relevant.

Let (an)∞n=0 be a sequence of real numbers, and let L be a real number. We say that the
sequence (an)∞n=0 converges to L if and only if, for every real ε > 0, there exists a natural
number N = N(ε) such that, for all n ≥ N , we have |an − L| < ε.

Let (an)∞n=0 be a sequence of real numbers. We say that (an)∞n=0 is a Cauchy sequence if
and only if, for any real ε > 0, there exists a natural number N = N(ε) such that, for all
n,m ≥ N , we have |an − am| < ε.

A sequence (an)∞n=0 of real numbers is bounded if and only if there exists M ∈ R such that
|an| ≤M for all n ∈ N.

Let
∑∞

n=m an be a formal infinite series. For any integer N ≥ m, define the N th partial

sum SN of this series by SN :=
∑N

n=m an. If the sequence (SN)∞N=m converges to some limit
L ∈ R as N → ∞, then we say that the infinite series

∑∞
n=m an is convergent, and this

infinite series converges to L.

The Root Test. Let
∑∞

n=m an be a series of real numbers. Define α := lim supn→∞ |an|
1/n.

(i) If α < 1, then the series
∑∞

n=m an is absolutely convergent. In particular, the series∑∞
n=m an is convergent. (ii) If α > 1, then the series

∑∞
n=m an is divergent. (iii) If α = 1, no

conclusion is asserted.

The Ratio Test. Let
∑∞

n=m an be a series of nonzero numbers. (So, an+1/an is defined for

any n ≥ m.) (i) If lim supn→∞
|an+1|
|an| < 1, then the series

∑∞
n=m an is absolutely convergent.

In particular,
∑∞

n=m an is convergent. (ii) If lim infn→∞
|an+1|
|an| > 1, then the series

∑∞
n=m an

is divergent. In particular,
∑∞

n=m an is not absolutely convergent.

Let X be a subset of R and let f : X → R be a function. Let x0 be an element of X. We
say that f is continuous at x0 if and only if

lim
x→x0;x∈X

f(x) = f(x0).

That is, the limit of f at x0 in X exists, and this limit is equal to f(x0). We say that f is
continuous on X (or we just say that f is continuous) if and only if f is continuous at x0
for every x0 ∈ X. We say that f is uniformly continuous if and only if, for every ε > 0
there exists δ > 0 such that, if x ∈ X satisfies |x− x0| < δ, then |f(x)− f(x0)| < ε. We say
that f is Lipschitz continuous with constant L if and only if there exists L ≥ 0 such that,
for every x, y ∈ X, we have |f(x)− f(y)| ≤ L |x− y|.

Intermediate Value Theorem. Let a < b be real numbers. Let f : [a, b]→ R be function
that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so that either
f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists a c ∈ [a, b] such that f(c) = y.
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1. Label the following statements as TRUE or FALSE. If the statement is true, explain
your reasoning. If the statement is false, provide a counterexample.

(a) (2 points) Let (an)∞n=0 be a convergent sequence of real numbers. Then (an)∞n=0 is
a Cauchy sequence.

TRUE FALSE (circle one)

(b) (2 points) Let (an)∞n=0 be a bounded sequence of real numbers. Then (an)∞n=0 is a
convergent sequence.

TRUE FALSE (circle one)

(c) (3 points) Let (an)∞n=0 be a positive, decreasing sequence of real numbers. (That
is, an ≥ 0 and an+1 ≤ an for all n ∈ N.) Then

∑∞
n=0(−1)nan converges.

TRUE FALSE (circle one)

(d) (3 points) Let (an)∞n=0 be a sequence of real numbers such that

∣∣∣∣an+1

an

∣∣∣∣ < 1 for all

natural numbers n. Then
∑∞

n=0 an converges.

TRUE FALSE (circle one)
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2. Determine which of the following series converges. Justify your answer

(a) (5 points)
∞∑
n=1

n

2n
.

(b) (5 points)
∞∑
n=1

(−1)n√
n
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3. (10 points) Let f : [0, 1]→ [0, 1] be a continuous function. Show that there exists some
x ∈ [0, 1] such that f(x) = x. (Hint: apply the Intermediate Value Theorem to g(x) :=
f(x)− x.)
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4. (10 points) Let x > 1. Prove that lim
n→∞

xn

n
= +∞. (Hint: try writing x = 1 + ε where

ε > 0, then use the binomial theorem.)
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5. (10 points) Let x ∈ R. Consider the function f(x) :=
∞∑
n=1

1

x2 + n2
. Prove that f

is continuous on (−∞,+∞). (Hint: it may be easier to prove that f is uniformly
continuous on R. You could start by trying to prove that the function 1/(x2 + n2) is
Lipschitz continuous, for every n ≥ 1.)
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(Scratch paper)
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