MATH 547, STATISTICAL LEARNING THEORY
SELECTED HOMEWORK SOLUTIONS

STEVEN HEILMAN

CONTENTS

1. Homework 1 1
2. Homework 2 2

1. HOMEWORK 1

Exercise 1.8. Let a > 0. Let X, ..., X®) ¢ R” be independent identically distributed
samples from a Gaussian random vector with mean (a,0,...,0) and identity covariance
matrix). Let X*+D X #+2) Xk ¢ R" be independent identically distributed samples
from a Gaussian random vector with mean (—a,0,...,0), where a > 0 is known. As in our
analysis of the perceptron algorithm, define

B := max “X(i)||
2k

O := min{ |w| : V1 <i<2kyi{w, XP) > 1}.

(If the minimum w does not exist, instead define © = 00.)
Define y; = -+ = 1, := 1, and Ypgp1 =+ = Yop = —1.
Give some reasonable estimates for EB and E(1/0) as a function of a.

Solution. Let t > a. Then from the union bound
2%k

P(B > 1) < 3 P(IX0] > 1) = 26P(|X 1] > ) < 2ke (-2,
i=1
Therefore, EB < 100ka.
Using independence,

P(V1 <i<2ky(w, XD) > 1) = [Py (w, XV) > 1)]* = [P((w, XD) > 1)]*
= [P({(1,0,...,0), XW) > 1/ w|)]** = [/OO e~ 2 /v om .

1/lwll
In particular, if 1/ ||w|| < a (i.e. |Jw|| > 1/a), then

P(V1 <i <2k y(w, XD) > 1) > 272,
So,
P(min{ w] s V1 < i < 2%k yilw, XO) > 1} < 1/a> > 972,
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And
E(1/0) > a27%.

2. HOMEWORK 2

Exercise 2.2. Let i be a Borel measure on R" such that the measure of any open set in
R™ is positive. Let m: R” x R" — R be continuous with [p, [e. [m(z,y)|* du(z)du(y) < oo.
Show that the following two positive semidefinite conditions on m are equivalent:

e Vp>1, forall M ... 2 eR" forall By,...,3, € R we have
p . .
> Bigm(z0,20) 2 0.
i,j=1

oV f e Ly(u), we have

/ L F@F@)m(a. y)du()duty) > 0.

From either condition, we should see that the converse of Mercer’s Theorem holds. We
should also be able to deduce various properties of positive semidefinite (PSD) kernels. For
example, a nonnegative linear combination of PSD kernels is PSD.

Solution. We denote || f|ly := (fpn |f(x)|*du(x))/2. Let f,g € La(u). From the Cauchy-
Schwarz inequality,

/n @I m@ y)du(e // m(z,y)du(x )du(y)‘
-| [ [ st pauta / n Rnf (e, y)d(x)dp ()
+/n S @gty)me,y)dpl // m(@, y)dp(x)du(y)

< [ [ 1#@1156) = o) im(z. )| o)ty

[ 1@ = 9@ gl e )] i)ty
< /}Rn(\f(ﬂcﬂ2 [m(, y)|” du(2)) 1 f(y) = g()| duly)

+ [ @ ) dul)) ' |F(e) = o(o)] dute)
<20f s sl ([ [ o) duta)aut)) (¥



Similarly, from the Cauchy-Schwarz inequality, if m: R” x R" — R, we have

// m(z, y)dp(x / / (. y)dp(x)dp(y)
-1/ / n e (x,y)]du(l’)du(y)‘

<lall3 ([ / m(a,y) — e )P dp(du() ()

Assume the first condition holds. Let f € La(u). Let € > 0. Let g be a simple function of
the form g = 327 | a;14, such that || f — g||, < &, where ay,...,; € Rand 4;,..., A, CR"
are disjoint (measurable) sets with compact closure.

Now, our aim is to show that second property holds for g. Since the support C := UF_| A;
of g has compact closure, and since m is continuous, m is uniformly continuous on C' x C.
So, for any & > 0, there exists § > 0 such that for any (x(l) y( ), (2, y@) € R x R", if
H Dy — (23 (2))H < 4, then Hm(x(1)7y(1)) m(z®, 4 H < e

For any subset A C R", define diam(A) := sup, e ||z —y[|. Since A;,..., A, have
compact closure, we can rewrite g in the form

V4
9= Z%l&,

where 71, ...,7 € R and diam(B;) < §/2. For every 1 <i,j </, let (@, y0)) be any point
in B; x Bj. By choice of €, 0, we have
Im(z,y) —m(@®,y9)| <, V(z,y) € B; x B,.

Define mi(z,y) := Zf,j:l m(ﬂi(i), y(j)>1Bi<x>1

v
[ i) e P ot = Y-

/ ity = e ) dut)duty)

ij=1"Bi J Bj
¢
<23 BIu(B,)
ij=1

The combination of (x) and (*) implies (i.e. first choosing ¢ so that || f — g/, < ¢, and
then choosing B, ..., By such that [, [ |m(z,y) — m(x, y)|* du(z)du(y) < ¢) that

/n [ @ wmG @) >0 it / / i, y)du(z)duy) > 0.

By assumption,
>0, [, ma sty

[ [ s@stmte. pautaianty)
S b Bl bon(Blm(a, ) 2 0.

It follows that [o. [on f(@)f(y)m(z,y)du(x)du(y) > 0 as well.
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The converse follows by reversing the above reasoning. Suppose the second condition
holds. Let ¢ > 0. Consider the function

- Bi
Je = Z Wlmzm,e) ().

i=1

(By assumption a division by zero does not occur.) Then

Bz e fB(Zm) m(z, y)dp(z)du(y)
(B(z, e))(B(z17), €))

[ [ s@nmt i = Y 5,22

i,j=1
Since m is continuous,
1‘ & £ d (3 Z
Y [ | @) fe(ymle,y)dp(e Hzlﬂﬁj D).
Since the second condition holds, we conclude that »* i =1 BiBm m(z®, 29)) > 0. U

Exercise 2.3. For each kernel function m: R™ x R”™ — R below, find an inner product space
C and a map ¢: R® — C such that

m(z,y) = (¢(z),6(y))c,  Va,yeR"™

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer’s
Theorem.

e m(x,y) =1+ (x,y) Vz,y € R".

o m(z,y) == (1+ (z,y))¢ V 2,y € R", where d is a fixed positive integer.

o m(z,y) == exp(— |z — y[|*).
Hint: it might be helpful to consider d-fold iterated tensor products of the form z®¢ =
r®r®---®x, along with their corresponding inner products.

Solution. In the first case, we use ¢(z) := (z,1), ¢: R® — R""! where C' := R"™! has the
standard inner product. Then

(0(2), o(W))o = (2, 1), (y, 1)) = (z,y) + 1.

o= ((z,1),
In the second case, we use ¢(v) := (z,1)®4 ¢: R" — R¥"*D where C' := R¥ ") has the
standard inner product (so that (27, y®?) = (z,y)?.) Then

(0(2), o(y))e = ((#,1)%, (y, D*)e = (2. 1), (3, 1)) = ({x,y) + D™

In the final case, we let C' := @57, R, where for any a = (a!?,aW,...), b= (6,61, .. ) €
C, we define

o0

(a,b)c = Z(a(i), b gan.

d=0
Then, for any x € R", define ¢: R" — C' by

*||96H2(1 A )

) \/ﬂxv ﬁx ) \/§$

4

o(z)=e



That is, the d** coordinated of ¢ satisfies

d/2
() = a2 ed

V!
Then

(6(x), d(y))o = eIl Il f: Z_C:@@d, y®4) — g lell* Il i (2{z, y))*

d!
d=0

_ 2 2 _ _ 2
_ o el 2oy — o—lleyl

Exercise 2.9. For any f € F, show that
VCdim(F) = VCdim(D(f)).

(Recall: F is a subset of {0, 1}-valued functions on a set A. Let f,g € F. Since f = 1513,
we can identify f with the set where it is 1 and extend set operations to functions in F. For
example, fAg := li;_13a{y=1}, Where A denotes symmetric difference. And we define

D(f):={fAg: g€ F}.)

Solution. Let B C A be a set shattered by F. Then, for any function h: B — {0,1}, there
exists g € F such that g|p = h. In particular, for any ¢ € F, any function of the form
(fAq)|p has some p € F such that p|gp = (fAq)|s. That is, if B is shattered by D(f), then
B is shattered by F. It follows that

VCdim(F) > VCdim(D(f)).

We now prove the other inequality. If B is shattered by D(f), then for any h: B — {0, 1},
there exists g € F such that (fAg)|p = h|p. In particular, for any ¢ € F, any function of
the form ¢|p has some p € F such that (fAp)|p = ¢|g. That is, if B is shattered by F, then
B is shattered by D(f). It follows that

VCdim(F) < VCdim(D(f)).
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