MATH 547, STATISTICAL LEARNING THEORY SELECTED HOMEWORK SOLUTIONS

STEVEN HEILMAN

Contents

1. Homework 1
2. Homework 2

1. Homework 1

Exercise 1.8. Let $a>0$. Let $X^{(1)}, \ldots, X^{(k)} \in \mathbb{R}^{n}$ be independent identically distributed samples from a Gaussian random vector with mean $(a, 0, \ldots, 0)$ and identity covariance matrix). Let $X^{(k+1)}, X^{(k+2)}, \ldots, X^{(2 k)} \in \mathbb{R}^{n}$ be independent identically distributed samples from a Gaussian random vector with mean $(-a, 0, \ldots, 0)$, where $a>0$ is known. As in our analysis of the perceptron algorithm, define

$$
\begin{gathered}
\mathcal{B}:=\max _{i=1, \ldots, 2 k}\left\|X^{(i)}\right\| \\
\Theta:=\min \left\{\|w\|: \forall 1 \leq i \leq 2 k y_{i}\left\langle w, X^{(i)}\right\rangle \geq 1\right\} .
\end{gathered}
$$

(If the minimum w does not exist, instead define $\Theta:=\infty$.)
Define $y_{1}=\cdots=y_{k}:=1$, and $y_{k+1}=\cdots=y_{2 k}:=-1$.
Give some reasonable estimates for $\mathbf{E B}$ and $\mathbf{E}(1 / \Theta)$ as a function of a.
Solution. Let $t>a$. Then from the union bound

$$
\mathbf{P}(\mathcal{B}>t) \leq \sum_{i=1}^{2 k} \mathbf{P}\left(\left|X^{(i)}\right|>t\right)=2 k \mathbf{P}\left(\left|X^{(1)}\right|>t\right) \leq 2 k e^{-(t-a)^{2} / 2}
$$

Therefore, $\mathbf{E B} \leq 100 k a$.
Using independence,

$$
\begin{gathered}
\mathbf{P}\left(\forall 1 \leq i \leq 2 k y_{i}\left\langle w, X^{(i)}\right\rangle \geq 1\right)=\left[\mathbf{P}\left(y_{1}\left\langle w, X^{(1)}\right\rangle \geq 1\right)\right]^{2 k}=\left[\mathbf{P}\left(\left\langle w, X^{(1)}\right\rangle \geq 1\right)\right]^{2 k} \\
\quad=\left[\mathbf{P}\left(\left\langle(1,0, \ldots, 0), X^{(1)}\right\rangle \geq 1 /\|w\|\right)\right]^{2 k}=\left[\int_{1 /\|w\|}^{\infty} e^{-(t-a)^{2} / 2} d t / \sqrt{2 \pi}\right]^{2 k} .
\end{gathered}
$$

In particular, if $1 /\|w\| \leq a$ (i.e. $\|w\| \geq 1 / a$), then

$$
\mathbf{P}\left(\forall 1 \leq i \leq 2 k \quad y_{i}\left\langle w, X^{(i)}\right\rangle \geq 1\right) \geq 2^{-2 k} .
$$

So,

$$
\mathbf{P}\left(\min \left\{\|w\|: \forall 1 \leq i \leq 2 k y_{i}\left\langle w, X^{(i)}\right\rangle \geq 1\right\} \leq 1 / a\right) \geq 2^{-2 k}
$$

And

$$
\mathbf{E}(1 / \Theta) \geq a 2^{-2 k}
$$

2. Homework 2

Exercise 2.2. Let μ be a Borel measure on \mathbb{R}^{n} such that the measure of any open set in \mathbb{R}^{n} is positive. Let $m: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous with $\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|m(x, y)|^{2} d \mu(x) d \mu(y)<\infty$. Show that the following two positive semidefinite conditions on m are equivalent:
$\bullet \forall p \geq 1$, for all $z^{(1)}, \ldots, z^{(p)} \in \mathbb{R}^{n}$, for all $\beta_{1}, \ldots, \beta_{p} \in \mathbb{R}$ we have

$$
\sum_{i, j=1}^{p} \beta_{i} \beta_{j} m\left(z^{(i)}, z^{(j)}\right) \geq 0
$$

- $\forall f \in L_{2}(\mu)$, we have

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) f(y) m(x, y) d \mu(x) d \mu(y) \geq 0
$$

From either condition, we should see that the converse of Mercer's Theorem holds. We should also be able to deduce various properties of positive semidefinite (PSD) kernels. For example, a nonnegative linear combination of PSD kernels is PSD.

Solution. We denote $\|f\|_{2}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{2} d \mu(x)\right)^{1 / 2}$. Let $f, g \in L_{2}(\mu)$. From the CauchySchwarz inequality,

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) f(y) m(x, y) d \mu(x) d \mu(y)-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) m(x, y) d \mu(x) d \mu(y)\right| \\
& \quad=\mid \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) f(y) m(x, y) d \mu(x) d \mu(y)-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) g(y) m(x, y) d \mu(x) d \mu(y) \\
& \quad+\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) g(y) m(x, y) d \mu(x) d \mu(y)-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) m(x, y) d \mu(x) d \mu(y) \mid \\
& \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|f(x)||f(y)-g(y)||m(x, y)| d \mu(x) d \mu(y) \\
& \quad+\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|f(x)-g(x)||g(y)||m(x, y)| d \mu(x) d \mu(y) \\
& \leq \int_{\mathbb{R}^{n}}\left(|f(x)|^{2}|m(x, y)|^{2} d \mu(x)\right)^{1 / 2}|f(y)-g(y)| d \mu(y) \\
& \quad \quad+\int_{\mathbb{R}^{n}}\left(|f(y)|^{2}|m(x, y)|^{2} d \mu(y)\right)^{1 / 2}|f(x)-g(x)| d \mu(x) \\
& \leq 2\|f\|_{2}\|f-g\|_{2}\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|m(x, y)|^{2} d \mu(x) d \mu(y)\right)^{1 / 2} . \tag{*}
\end{align*}
$$

Similarly, from the Cauchy-Schwarz inequality, if $\bar{m}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, we have

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) m(x, y) d \mu(x) d \mu(y)-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) \bar{m}(x, y) d \mu(x) d \mu(y)\right| \\
& \quad=\left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y)[m(x, y)-\bar{m}(x, y)] d \mu(x) d \mu(y)\right| \\
& \quad \leq\|g\|_{2}^{2}\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|m(x, y)-\bar{m}(x, y)|^{2} d \mu(x) d \mu(y)\right)^{1 / 2} . \quad(* *) \tag{**}
\end{align*}
$$

Assume the first condition holds. Let $f \in L_{2}(\mu)$. Let $\varepsilon>0$. Let g be a simple function of the form $g=\sum_{i=1}^{k} \alpha_{i} 1_{A_{i}}$ such that $\|f-g\|_{2}<\varepsilon$, where $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ and $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{n}$ are disjoint (measurable) sets with compact closure.

Now, our aim is to show that second property holds for g. Since the support $C:=\cup_{i=1}^{k} A_{i}$ of g has compact closure, and since m is continuous, m is uniformly continuous on $C \times C$. So, for any $\varepsilon>0$, there exists $\delta>0$ such that for any $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, if $\left\|\left(x^{(1)}, y^{(1)}\right)-\left(x^{(2)}, y^{(2)}\right)\right\|<\delta$, then $\left\|m\left(x^{(1)}, y^{(1)}\right)-m\left(x^{(2)}, y^{(2)}\right)\right\|<\varepsilon$.

For any subset $A \subseteq \mathbb{R}^{n}$, define $\operatorname{diam}(A):=\sup _{x, y \in A}\|x-y\|$. Since A_{1}, \ldots, A_{n} have compact closure, we can rewrite g in the form

$$
g=\sum_{i=1}^{\ell} \gamma_{i} 1_{B_{i}}
$$

where $\gamma_{1}, \ldots, \gamma_{\ell} \in \mathbb{R}$ and $\operatorname{diam}\left(B_{i}\right)<\delta / 2$. For every $1 \leq i, j \leq \ell$, let $\left(x^{(i)}, y^{(j)}\right)$ be any point in $B_{i} \times B_{j}$. By choice of ε, δ, we have

$$
\left|m(x, y)-m\left(x^{(i)}, y^{(j)}\right)\right|<\varepsilon, \quad \forall(x, y) \in B_{i} \times B_{j}
$$

Define $\bar{m}(x, y):=\sum_{i, j=1}^{\ell} m\left(x^{(i)}, y^{(j)}\right) 1_{B_{i}}(x) 1_{B_{j}}(y)$. Then

$$
\begin{aligned}
\int_{C} \int_{C}|m(x, y)-\bar{m}(x, y)|^{2} d \mu(x) d \mu(y) & =\sum_{i, j=1}^{\ell} \int_{B_{i}} \int_{B_{j}}|m(x, y)-\bar{m}(x, y)|^{2} d \mu(x) d \mu(y) \\
& \leq \varepsilon^{2} \sum_{i, j=1}^{\ell} \mu\left(B_{i}\right) \mu\left(B_{j}\right)
\end{aligned}
$$

The combination of $(*)$ and $(* *)$ implies (i.e. first choosing g so that $\|f-g\|_{2}<\varepsilon$, and then choosing B_{1}, \ldots, B_{ℓ} such that $\left.\int_{C} \int_{C}|m(x, y)-\bar{m}(x, y)|^{2} d \mu(x) d \mu(y)<\varepsilon\right)$ that

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) f(y) m(x, y) d \mu(x) d \mu(y)>0 \quad \text { if } \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) \bar{m}(x, y) d \mu(x) d \mu(y)>0 .
$$

By assumption,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x) g(y) \bar{m}(x, y) d \mu(x) d \mu(y) & =\sum_{i, j=1}^{\ell} \gamma_{i} \gamma_{j} \int_{B_{i}} \int_{B_{j}} m\left(x^{(i)}, y^{(j)}\right) d \mu(x) d \mu(y) \\
& =\sum_{i, j=1}^{\ell}\left[\gamma_{i} \mu\left(B_{i}\right)\right]\left[\gamma_{j} \mu\left(B_{j}\right)\right] m\left(x^{(i)}, y^{(j)}\right) \geq 0
\end{aligned}
$$

It follows that $\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) f(y) m(x, y) d \mu(x) d \mu(y) \geq 0$ as well.

The converse follows by reversing the above reasoning. Suppose the second condition holds. Let $\varepsilon>0$. Consider the function

$$
f_{\varepsilon}:=\sum_{i=1}^{p} \frac{\beta_{i}}{\mu\left(B\left(z^{(i)}, \varepsilon\right)\right)} 1_{B\left(z^{(i)}, \varepsilon\right)}(x) .
$$

(By assumption a division by zero does not occur.) Then

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f_{\varepsilon}(x) f_{\varepsilon}(y) m(x, y) d \mu(x) d \mu(y)=\sum_{i, j=1}^{p} \beta_{i} \beta_{j} \frac{\int_{B\left(z^{(i)}, \varepsilon\right)} \int_{B\left(z^{(j)}, \varepsilon\right)} m(x, y) d \mu(x) d \mu(y)}{\mu\left(B\left(z^{(i)}, \varepsilon\right)\right) \mu\left(B\left(z^{(j)}, \varepsilon\right)\right)} .
$$

Since m is continuous,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f_{\varepsilon}(x) f_{\varepsilon}(y) \bar{m}(x, y) d \mu(x) d \mu(y)=\sum_{i, j=1}^{p} \beta_{i} \beta_{j} m\left(z^{(i)}, z^{(j)}\right)
$$

Since the second condition holds, we conclude that $\sum_{i, j=1}^{p} \beta_{i} \beta_{j} m\left(z^{(i)}, z^{(j)}\right) \geq 0$.
Exercise 2.3. For each kernel function $m: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ below, find an inner product space C and a map $\phi: \mathbb{R}^{n} \rightarrow C$ such that

$$
m(x, y)=\langle\phi(x), \phi(y)\rangle_{C}, \quad \forall x, y \in \mathbb{R}^{n}
$$

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer's Theorem.

- $m(x, y):=1+\langle x, y\rangle \forall x, y \in \mathbb{R}^{n}$.
- $m(x, y):=(1+\langle x, y\rangle)^{d} \forall x, y \in \mathbb{R}^{n}$, where d is a fixed positive integer.
- $m(x, y):=\exp \left(-\|x-y\|^{2}\right)$.

Hint: it might be helpful to consider d-fold iterated tensor products of the form $x^{\otimes d}=$ $x \otimes x \otimes \cdots \otimes x$, along with their corresponding inner products.

Solution. In the first case, we use $\phi(x):=(x, 1), \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$, where $C:=\mathbb{R}^{n+1}$ has the standard inner product. Then

$$
\langle\phi(x), \phi(y)\rangle_{C}=\langle(x, 1),(y, 1)\rangle=\langle x, y\rangle+1 .
$$

In the second case, we use $\phi(x):=(x, 1)^{\otimes d}, \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d(n+1)}$, where $C:=\mathbb{R}^{d(n+1)}$ has the standard inner product (so that $\left\langle x^{\otimes d}, y^{\otimes d}\right\rangle=\langle x, y\rangle^{d}$.) Then

$$
\langle\phi(x), \phi(y)\rangle_{C}=\left\langle(x, 1)^{\otimes d},(y, 1)^{\otimes d}\right\rangle_{C}=\langle(x, 1),(y, 1)\rangle^{d}=(\langle x, y\rangle+1)^{d}
$$

In the final case, we let $C:=\bigoplus_{d=0}^{\infty} \mathbb{R}^{d n}$, where for any $a=\left(a^{(0)}, a^{(1)}, \ldots\right), b=\left(b^{(0)}, b^{(1)}, \ldots\right) \in$ C, we define

$$
\langle a, b\rangle_{C}:=\sum_{d=0}^{\infty}\left\langle a^{(i)}, b^{(i)}\right\rangle_{\mathbb{R}^{d n}} .
$$

Then, for any $x \in \mathbb{R}^{n}$, define $\phi: \mathbb{R}^{n} \rightarrow C$ by

$$
\phi(x):=e^{-\|x\|^{2}}\left(1, \frac{2^{1 / 2}}{\sqrt{1!}} x, \frac{2^{2 / 2}}{\sqrt{2!}} x^{\otimes 2}, \frac{2^{3 / 2}}{\sqrt{3!}} x^{\otimes 3}, \ldots\right)
$$

That is, the $d^{\text {th }}$ coordinated of ϕ satisfies

$$
\phi(x)_{d}=e^{-\|x\|^{2}} \frac{2^{d / 2}}{\sqrt{d!}} x^{\otimes d}
$$

Then

$$
\begin{aligned}
\langle\phi(x), \phi(y)\rangle_{C} & =e^{-\|x\|^{2}-\|y\|^{2}} \sum_{d=0}^{\infty} \frac{2^{d}}{d!}\left\langle x^{\otimes d}, y^{\otimes d}\right\rangle=e^{-\|x\|^{2}-\|y\|^{2}} \sum_{d=0}^{\infty} \frac{(2\langle x, y\rangle)^{d}}{d!} \\
& =e^{-\|x\|^{2}-\|y\|^{2}} e^{2\langle x, y\rangle}=e^{-\|x-y\|^{2}}
\end{aligned}
$$

Exercise 2.9. For any $f \in \mathcal{F}$, show that

$$
\operatorname{VCdim}(\mathcal{F})=\operatorname{VCdim}(D(f))
$$

(Recall: \mathcal{F} is a subset of $\{0,1\}$-valued functions on a set A. Let $f, g \in \mathcal{F}$. Since $f=1_{\{f=1\}}$, we can identify f with the set where it is 1 and extend set operations to functions in \mathcal{F}. For example, $f \Delta g:=1_{\{f=1\} \Delta\{g=1\}}$, where Δ denotes symmetric difference. And we define

$$
D(f):=\{f \Delta g: g \in \mathcal{F}\} .)
$$

Solution. Let $B \subseteq A$ be a set shattered by \mathcal{F}. Then, for any function $h: B \rightarrow\{0,1\}$, there exists $g \in \mathcal{F}$ such that $\left.g\right|_{B}=h$. In particular, for any $q \in \mathcal{F}$, any function of the form $\left.(f \Delta q)\right|_{B}$ has some $p \in \mathcal{F}$ such that $\left.p\right|_{B}=\left.(f \Delta q)\right|_{B}$. That is, if B is shattered by $D(f)$, then B is shattered by \mathcal{F}. It follows that

$$
\operatorname{VCdim}(\mathcal{F}) \geq \operatorname{VCdim}(D(f))
$$

We now prove the other inequality. If B is shattered by $D(f)$, then for any $h: B \rightarrow\{0,1\}$, there exists $g \in \mathcal{F}$ such that $\left.(f \Delta g)\right|_{B}=\left.h\right|_{B}$. In particular, for any $q \in \mathcal{F}$, any function of the form $\left.q\right|_{B}$ has some $p \in \mathcal{F}$ such that $\left.(f \Delta p)\right|_{B}=\left.q\right|_{B}$. That is, if B is shattered by \mathcal{F}, then B is shattered by $D(f)$. It follows that

$$
\operatorname{VCdim}(\mathcal{F}) \leq \operatorname{VCdim}(D(f))
$$

USC Department of Mathematics, Los Angeles, CA
E-mail address: stevenmheilman@gmail.com

