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1. Homework 1

Exercise 1.8. Let a > 0. Let X(1), . . . , X(k) ∈ Rn be independent identically distributed
samples from a Gaussian random vector with mean (a, 0, . . . , 0) and identity covariance
matrix). Let X(k+1), X(k+2), . . . , X(2k) ∈ Rn be independent identically distributed samples
from a Gaussian random vector with mean (−a, 0, . . . , 0), where a > 0 is known. As in our
analysis of the perceptron algorithm, define

B := max
i=1,...,2k

∥∥X(i)
∥∥

Θ := min
{
‖w‖ : ∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1

}
.

(If the minimum w does not exist, instead define Θ :=∞.)
Define y1 = · · · = yk := 1, and yk+1 = · · · = y2k := −1.
Give some reasonable estimates for EB and E(1/Θ) as a function of a.

Solution. Let t > a. Then from the union bound

P(B > t) ≤
2k∑
i=1

P(
∣∣X(i)

∣∣ > t) = 2kP(
∣∣X(1)

∣∣ > t) ≤ 2ke−(t−a)2/2.

Therefore, EB ≤ 100ka.
Using independence,

P(∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1) = [P(y1〈w,X(1)〉 ≥ 1)]2k = [P(〈w,X(1)〉 ≥ 1)]2k

= [P(〈(1, 0, . . . , 0), X(1)〉 ≥ 1/ ‖w‖)]2k = [

∫ ∞
1/‖w‖

e−(t−a)2/2dt/
√

2π]2k.

In particular, if 1/ ‖w‖ ≤ a (i.e. ‖w‖ ≥ 1/a), then

P(∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1) ≥ 2−2k.

So,

P
(

min
{
‖w‖ : ∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1

}
≤ 1/a

)
≥ 2−2k.

Date: October 30, 2021 c© 2021 Steven Heilman, All Rights Reserved.

1



And

E(1/Θ) ≥ a2−2k.

�

2. Homework 2

Exercise 2.2. Let µ be a Borel measure on Rn such that the measure of any open set in
Rn is positive. Let m : Rn ×Rn → R be continuous with

∫
Rn

∫
Rn |m(x, y)|2 dµ(x)dµ(y) <∞.

Show that the following two positive semidefinite conditions on m are equivalent:

• ∀ p ≥ 1, for all z(1), . . . , z(p) ∈ Rn, for all β1, . . . , βp ∈ R we have

p∑
i,j=1

βiβjm(z(i), z(j)) ≥ 0.

• ∀ f ∈ L2(µ), we have∫
Rn

∫
Rn

f(x)f(y)m(x, y)dµ(x)dµ(y) ≥ 0.

From either condition, we should see that the converse of Mercer’s Theorem holds. We
should also be able to deduce various properties of positive semidefinite (PSD) kernels. For
example, a nonnegative linear combination of PSD kernels is PSD.

Solution. We denote ‖f‖2 := (
∫
Rn |f(x)|2 dµ(x))1/2. Let f, g ∈ L2(µ). From the Cauchy-

Schwarz inequality,∣∣∣∣∫
Rn

∫
Rn

f(x)f(y)m(x, y)dµ(x)dµ(y)−
∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y)

∣∣∣∣
=
∣∣∣ ∫

Rn

∫
Rn

f(x)f(y)m(x, y)dµ(x)dµ(y)−
∫
Rn

∫
Rn

f(x)g(y)m(x, y)dµ(x)dµ(y)

+

∫
Rn

∫
Rn

f(x)g(y)m(x, y)dµ(x)dµ(y)−
∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y)
∣∣∣

≤
∫
Rn

∫
Rn

|f(x)| |f(y)− g(y)| |m(x, y)| dµ(x)dµ(y)

+

∫
Rn

∫
Rn

|f(x)− g(x)| |g(y)| |m(x, y)| dµ(x)dµ(y)

≤
∫
Rn

(|f(x)|2 |m(x, y)|2 dµ(x))1/2 |f(y)− g(y)| dµ(y)

+

∫
Rn

(|f(y)|2 |m(x, y)|2 dµ(y))1/2 |f(x)− g(x)| dµ(x)

≤ 2 ‖f‖2 ‖f − g‖2 (

∫
Rn

∫
Rn

|m(x, y)|2 dµ(x)dµ(y))1/2. (∗)
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Similarly, from the Cauchy-Schwarz inequality, if m : Rn × Rn → R, we have∣∣∣∣∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y)−
∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y)

∣∣∣∣
=

∣∣∣∣∫
Rn

∫
Rn

g(x)g(y)[m(x, y)−m(x, y)]dµ(x)dµ(y)

∣∣∣∣
≤ ‖g‖2

2 (

∫
Rn

∫
Rn

|m(x, y)−m(x, y)|2 dµ(x)dµ(y))1/2. (∗∗)

Assume the first condition holds. Let f ∈ L2(µ). Let ε > 0. Let g be a simple function of

the form g =
∑k

i=1 αi1Ai
such that ‖f − g‖2 < ε, where α1, . . . , αk ∈ R and A1, . . . , Ak ⊆ Rn

are disjoint (measurable) sets with compact closure.
Now, our aim is to show that second property holds for g. Since the support C := ∪ki=1Ai

of g has compact closure, and since m is continuous, m is uniformly continuous on C × C.
So, for any ε > 0, there exists δ > 0 such that for any (x(1), y(1)), (x(2), y(2)) ∈ Rn × Rn, if∥∥(x(1), y(1))− (x(2), y(2))

∥∥ < δ, then
∥∥m(x(1), y(1))−m(x(2), y(2))

∥∥ < ε.
For any subset A ⊆ Rn, define diam(A) := supx,y∈A ‖x− y‖. Since A1, . . . , An have

compact closure, we can rewrite g in the form

g =
∑̀
i=1

γi1Bi
,

where γ1, . . . , γ` ∈ R and diam(Bi) < δ/2. For every 1 ≤ i, j ≤ `, let (x(i), y(j)) be any point
in Bi ×Bj. By choice of ε, δ, we have∣∣m(x, y)−m(x(i), y(j))

∣∣ < ε, ∀ (x, y) ∈ Bi ×Bj.

Define m(x, y) :=
∑`

i,j=1m(x(i), y(j))1Bi
(x)1Bj

(y). Then∫
C

∫
C

|m(x, y)−m(x, y)|2 dµ(x)dµ(y) =
∑̀
i,j=1

∫
Bi

∫
Bj

|m(x, y)−m(x, y)|2 dµ(x)dµ(y)

≤ ε2
∑̀
i,j=1

µ(Bi)µ(Bj).

The combination of (∗) and (∗∗) implies (i.e. first choosing g so that ‖f − g‖2 < ε, and

then choosing B1, . . . , B` such that
∫
C

∫
C
|m(x, y)−m(x, y)|2 dµ(x)dµ(y) < ε) that∫

Rn

∫
Rn

f(x)f(y)m(x, y)dµ(x)dµ(y) > 0 if

∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y) > 0.

By assumption,∫
Rn

∫
Rn

g(x)g(y)m(x, y)dµ(x)dµ(y) =
∑̀
i,j=1

γiγj

∫
Bi

∫
Bj

m(x(i), y(j))dµ(x)dµ(y)

=
∑̀
i,j=1

[γiµ(Bi)][γjµ(Bj)]m(x(i), y(j)) ≥ 0.

It follows that
∫
Rn

∫
Rn f(x)f(y)m(x, y)dµ(x)dµ(y) ≥ 0 as well.
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The converse follows by reversing the above reasoning. Suppose the second condition
holds. Let ε > 0. Consider the function

fε :=

p∑
i=1

βi
µ(B(z(i), ε))

1B(z(i),ε)(x).

(By assumption a division by zero does not occur.) Then∫
Rn

∫
Rn

fε(x)fε(y)m(x, y)dµ(x)dµ(y) =

p∑
i,j=1

βiβj

∫
B(z(i),ε)

∫
B(z(j),ε)

m(x, y)dµ(x)dµ(y)

µ(B(z(i), ε))µ(B(z(j), ε))
.

Since m is continuous,

lim
ε→0+

∫
Rn

∫
Rn

fε(x)fε(y)m(x, y)dµ(x)dµ(y) =

p∑
i,j=1

βiβjm(z(i), z(j)).

Since the second condition holds, we conclude that
∑p

i,j=1 βiβjm(z(i), z(j)) ≥ 0. �

Exercise 2.3. For each kernel function m : Rn×Rn → R below, find an inner product space
C and a map φ : Rn → C such that

m(x, y) = 〈φ(x), φ(y)〉C , ∀x, y ∈ Rn.

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer’s
Theorem.

• m(x, y) := 1 + 〈x, y〉 ∀ x, y ∈ Rn.
• m(x, y) := (1 + 〈x, y〉)d ∀ x, y ∈ Rn, where d is a fixed positive integer.
• m(x, y) := exp(−‖x− y‖2).

Hint: it might be helpful to consider d-fold iterated tensor products of the form x⊗d =
x⊗ x⊗ · · · ⊗ x, along with their corresponding inner products.

Solution. In the first case, we use φ(x) := (x, 1), φ : Rn → Rn+1, where C := Rn+1 has the
standard inner product. Then

〈φ(x), φ(y)〉C = 〈(x, 1), (y, 1)〉 = 〈x, y〉+ 1.

In the second case, we use φ(x) := (x, 1)⊗d, φ : Rn → Rd(n+1), where C := Rd(n+1) has the
standard inner product (so that 〈x⊗d, y⊗d〉 = 〈x, y〉d.) Then

〈φ(x), φ(y)〉C = 〈(x, 1)⊗d, (y, 1)⊗d〉C = 〈(x, 1), (y, 1)〉d = (〈x, y〉+ 1)d.

In the final case, we let C :=
⊕∞

d=0 Rdn, where for any a = (a(0), a(1), . . .), b = (b(0), b(1), . . .) ∈
C, we define

〈a, b〉C :=
∞∑
d=0

〈a(i), b(i)〉Rdn .

Then, for any x ∈ Rn, define φ : Rn → C by

φ(x) := e−‖x‖
2
(

1,
21/2

√
1!
x,

22/2

√
2!
x⊗2,

23/2

√
3!
x⊗3, . . .

)
.
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That is, the dth coordinated of φ satisfies

φ(x)d = e−‖x‖
2 2d/2

√
d!
x⊗d.

Then

〈φ(x), φ(y)〉C = e−‖x‖
2−‖y‖2

∞∑
d=0

2d

d!
〈x⊗d, y⊗d〉 = e−‖x‖

2−‖y‖2
∞∑
d=0

(2〈x, y〉)d

d!

= e−‖x‖
2−‖y‖2e2〈x,y〉 = e−‖x−y‖

2

�

Exercise 2.9. For any f ∈ F , show that

VCdim(F) = VCdim(D(f)).

(Recall: F is a subset of {0, 1}-valued functions on a set A. Let f, g ∈ F . Since f = 1{f=1},
we can identify f with the set where it is 1 and extend set operations to functions in F . For
example, f∆g := 1{f=1}∆{g=1}, where ∆ denotes symmetric difference. And we define

D(f) := {f∆g : g ∈ F}.)

Solution. Let B ⊆ A be a set shattered by F . Then, for any function h : B → {0, 1}, there
exists g ∈ F such that g|B = h. In particular, for any q ∈ F , any function of the form
(f∆q)|B has some p ∈ F such that p|B = (f∆q)|B. That is, if B is shattered by D(f), then
B is shattered by F . It follows that

VCdim(F) ≥ VCdim(D(f)).

We now prove the other inequality. If B is shattered by D(f), then for any h : B → {0, 1},
there exists g ∈ F such that (f∆g)|B = h|B. In particular, for any q ∈ F , any function of
the form q|B has some p ∈ F such that (f∆p)|B = q|B. That is, if B is shattered by F , then
B is shattered by D(f). It follows that

VCdim(F) ≤ VCdim(D(f)).

�
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