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1. HOMEWORK 1

Exercise 1.4. Prove the following assertion by induction:

For any natural number n, 12 + 22 + ... 4+ n? =

n(n+1)(2n+1)
-6

Solution. For the base case, n = 1, the right side of the equation above gives

%(1)(1 +1)(2-14+1) = %(1)(2)(3) =1,

17
22
30
37

so the equation holds. For the inductive step, suppose the equation holds for n — 1. That is

(x) 1*4+2°+---+(n—1)7°= 1(71—1)(71—1—1—1)(2(71— D+1) = %(n—l)n(Qn—l). (1)

6

By the inductive hypothesis (*), we can write

1
12+22+---+(n—1)2+n2:6(n—1)n(2n—1)+n2

1

= 6(2713 —3n*+n)+n’
1

= 6(2713 —3n? +n+ 6n?)
1

= 6(2713 +3n% 4+ n)

= %n(n +1)(2n+1).

Thus, by induction, the desired equation holds for all n.

O

Exercise 1.5. Write the following numbers in binary: 1,3,5,8,9. Compute the following
sums modulo 2: 1 + 3,4 + 9, 10" + 1.
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Solution. One can verify the following equations:

Iio=1z
310 = 11,
510 = 101,
810 = 10004
910 = 1001,

For example,
50=1-2240-2"4+1-2°=101,.
Modulo 2, we compute
1+43=14+1=2=0 (mod 2)
449=0+1=1 (mod 2)
10°4+1=0"+1=0+1=1 (mod 2).
O

Exercise 1.6. Tic-tac-toe is a partisan combinatorial game. Prove that it is progressively
bounded. Then, try to figure out which of the following situations is true: the first player has
a winning strategy; the second player has a winning strategy; both players have a strategy
forcing at least a draw. (You do not need to give a formal proof of which situation holds, just
try to guess the answer by playing a few tic-tac-toe games and by drawing on your personal
experience.)

Solution. To prove that Tic-tac-toe is progressively bounded, we must argue that for any
starting position z, the game must terminate after some finite number B(zx) steps (see
definition 1.0.1 in Peres). Each move consists of a player placing an X or an O in some
empty location on the board. The game ends when either there are no empty locations
on the board, or there are 3 X’s or O’s in a single row, column, or diagonal. Since there
are only 9 total positions on the board, and placing an X or an O reduces the number of
empty locations by 1, we have B(z) < 9 for all starting positions x. Thus Tic-tac-toe is
progressively bounded.

From presonal experience, both players have a strategy forcing at least a draw. 0

Exercise 1.7. Let n be a positive integer. Consider the game Chomp played on an n x n
board. Explicitly describe the winning strategy for the first player. (Hint: the first move
should remove the square which is diagonally adjacent to the lower left corner.)

Solution. Denote the square in the in the i-th row and j-th column by (7, j) so that (1,1) is
in the lower left corner and (n,n) is in the upper right corner. Following the hint, the first
player chomps at (2,2) so that the remaining board consists of an n x n “L”-shape. Note
that the second player’s move must be of the form (1,4) or (i, 1) since all remaining squares
are of this form. If the second player’s move is (1,4), the first player responds with (i, 1).
Similarly, if the second player’s move is (i,1), the first player responds with (1,7). Thus
the first player aways mimics the first player’s previous move but on the opposite side of
the L-shape. Notice that after the first player’s move, the board is always an ¢ x ¢ L-shape.
Since Chomp is progressively bounded (or by induction) the board will eventually consist of



the single square (1,1) after the first player’s turn, which is a winning position for the first
player. 0

Exercise 1.8. Consider the game of Chomp played on a board of size 2 x co. Recall that a
typical Chomp game board is n x m, so that the board has n rows and m columns. We can
label the rows as {1,2,...,n} and we can label the columns as {1,2,...,m}, where n, m are
positive integers. On a 2 x oo board, we label the rows as {1, 2}, and we label the columns
as {1,2,3,4,5,6,...}. We can think of the row and column labels as coordinates in the
xy-plane. So, the lower left corner will still have xz-coordinate 1 and y-coordinate 1, so that
the lower left square has coordinates (1,1); the square to the right of this has coordinates
(2,1), and so on.

On the 2 x oo board, which player has a winning strategy? Prove your assertion, and
describe explicitly the winning strategy.

Let n > 2 be an integer. On the n X oo board, which player has a winning strategy? Prove
your assertion, and describe explicitly the winning strategy.

Let n > 2 be an integer. On the co X 0o board, which player has a winning strategy?
Prove your assertion, and describe explicitly the winning strategy.

Solution. On the 2 x oo board, the previous (second) player has a winning strategy. As

before, denote the square in the i-th row and j-th column by (i, 7). Suppose the first player’s
first move is (1,¢) for some i. The resulting position is a 2 x ¢ board. By Theorem 1.1.2 in

Peres, the next player (i.e., second player) then has a winning strategy from this position.

Now suppose the first player’s first move is of the form (2,4). We will show that from the
resulting position, the next player (second player) still has a winning strategy. Specifically
we’'ll show that chomping (1,7 + 1) is a winning move. The result follows from the following
claim:

Claim. Let C; be the position in which the top row contains ¢ squares, and the bottom
row contains ¢ + 1 squares (i.e., C; is the 2 x i + 1 rectangle with the upper right corner
removed. Then the previous player has a winning strategy from Cj.

We will prove the claim by induction on i. For the base case i = 1, (] is the 2 x 2 rectangle
with the upper right square removed. It is easy to verify that the previous player wins from
this position (the next player has only 2 possible moves). For the inductive step, suppose the
previous player has a winning strategy for C; for all 1 < j < 7. From Cj, the next player’s
move must be of the form (1, 7) or (2, j) for some j. In the first case, the resulting position is
a 2 x j rectangle hence the following player (i.e., the previous player from C;) has a winning
strategy by Theorem 1.1.2 in Peres. On the other hand, if the next move is (2, 7) then the
previous player can move (1, j + 1) resulting in position C;. By the inductive hypothesis,
the previous player has a winning strategy from C;. In either case, the previous player wins,
so the claim follows.

Using the claim, we can explicitly describe a winning strategy for the second player:

(1) If first player chomps (1,%), second player chomps (2,7 — 1).

(2) If first player chomps (2,14), second player chomps (1,7 + 1).

(3) Repeat until the second player wins.

Since we've shown that the previous player has a winning strategy for the 2 x oo board,
we can construct a winning strategy for the next player (i.e., first player) for the n x oo
and oo X oo boards. In either case, the first player’s opening move is (3, 1) so the resulting



position is the 2 X oo position. After this opening move, the previous player (i.e., the first
player) has a winning strategy.
O

2. HOMEWORK 2

Exercise 2.1. Compute the following nim-sums: 364,5@9. Then, let a, b, c be nonnegative
integers. Prove that a @ a =0 and (a®b) 0 =a D b.

Solution. Write 3 = 0115,4 = 100,,5 = 01015,9 = 10015. Thus
304=011,100, =111, =7
and
569 =0101, ® 1001, = 1100, = 12.
For the second part, suppose a and b can be expressed in binary as a = apag_1---ag and
b = byb_1 - - - by, respectively. Since for any bit a;, we have a; ® a; = 0 (because 0 0 =
1®1=0) we compute
a®a=(agap_1---aop) ® (arag_1---ap)
= (ak D ak)(ak_l @ ak_l) e (ao @ CLQ)
=00---0
=0.
Similarly (using the fact that for any bit a;, we have a; ® 0 = a;) we compute
(a®b) &0 = ((arar—1 - ao) ® (bpbg—1---bo)) ® (00---0)
= ((ar ® br)(ar—1 ® be—1) - -+ (ag ® by)) & (00 - - 0)
= ((ar ® br) ® 0)((ak-1 ® br—1) S 0) - - - ((ao S bo) & 0)
= (ar @ by)(ar—1 ® bp—1) -~ - (ao ® by)
=a®b.
O

Exercise 2.2. Consider the nim position (9, 10,11, 12). Which player has a winning strategy
from this position, the next player or the previous player? Describe the winning first move.

Solution. Recall that by Bouton’s Theorem (Theorem 1.1.3 in Peres), the previous player
has a strategy if and only if the nim sum of the components is 0. Writing 9 = 10015, 10 =
10104, 11 = 10115, and 12 = 11004, we compute the nim sum

Ol = ==
——_0 O O
O~ = O
O = O =

0 0

so that 9@ 10 ® 11 & 12 = 4 # 0. Thus the next player has a winning strategy. The
winning move is to remove 4 from the last pile. U



Exercise 2.3. Let G1,Gy be games. Let x; be a game position for G;, and let Ng,, Pg,
denote, N and P respectively for the game G;, for each ¢ € {1,2}. Show the following;:

(1) If 2, € PG’1 and if x5 € PG2, then (l’l,l'g) € PG1+G2'

(11) If z1 € PG1 and if x, € NGQ, then (:L'l,ZL‘Q) S NG’1+G2~

(iii) If 2y € Ng, and if x5 € Ng,, then (21, x2) could be in either Ng, ¢, or Pg,+a,-

Solution. Recall that given two games G; and G, the sum G + G5 is the game in which
during each turn a player chooses which game G; to play. Terminal positions are positions
of the form (t1,ty) where each ¢; is terminal for G;.

We will prove (i) and (ii) simultaneously by induction on n = B(xy, x3), the length of the
longest game in Gy + G9 starting at position (xy,z3). For the base case n = 0, then (z1, z2)

is a terminal position, hence z; € Pg,,x2 € Pg,, and (z1,22) € Pg,+c,- Therefore (i)
and (ii) hold when n = 0. For the inductive step suppose (i) and (ii) hold for all ¥, yo with
B(y1,y2) <n—1. Suppose z; € Pg, for i = 1,2 and B(z,x2) = n. Suppose the next player
chooses to play GG; and moves to position y;. By the definition of Pg,, we have y; € Ng,,
hence we have (y1,22) € Ng,+q, by the inductive hypothesis. Thus, the previous player
from (z1,x2) has a winning strategy. An identical argument shows that the previous player
from (21, x9) if the next player chooses to play Gs.

Now suppose 21 € Pg, and x5 € Ng,. Then the next player can choose to play G, for
which she has a winning move from x,. Let yo be the resulting position. Then y» € Pg,,
so that (z1,y2) € Pg,+q, by the inductive hypothesis. Thus, the next player (from position
(x1,22)) has a winning strategy so that (x1,22) € Ng,+q,. Therefore (i) and (ii) hold by
induction.

For (iii), we will give explicit examples that demonstrate the two cases. Let G; and Gy
both be nim. First consider the case x1 = x5 = (1), the nim position with one pile containing
one chip. Then we have x1, 25 € N. Notice that the position (1,1) in G; + G2 is the same
as the position (1,1) in ordinary nim. Thus, (1,1) € P. On the other hand, taking x; = 1
and xo = 2, we have (1,2) € N while (x;), (x2) € N. O

Exercise 2.4. Let G1, Go, G3 be games. Show that the notion of two games being equivalent
is an equivalence relation. That is, show the following

e (7 is equivalent to G.
e If (3 is equivalent to (G9, then (G5 is equivalent to G.
e If GG is equivalent to G, and if GG, is equivalent to G, then G is equivalent to Gj.

Solution. Recall that two games GG; and G5 with positions x; and z, are equivalent if for all
games G and positions z, the outcome of (z1,x) in G; + G is the same as the outcome of
(x9,2) in Gy + G.

To see that GG; with position z; is equivalent to itself (equivalence is reflezive) note that
(21, z) clearly has the same outcome as (z1, ). Now suppose G is equivalent to G5. Since for
all games G and positions z, (21, ) has the same outcome as (xq, z), it is also the case that
(29, x) has the same outcome as (z1,z) (symmetry). Finally, Suppose that G is equivalent
to G5 and G, is equivalent to Gs. Then for all G, (z, ) has the same outcome as (23, ),
which has the same outcome as (3, ). In particular, (z1,z) has the same outcome as (z3, x)
so that G; and G are equivalent (transitivity).

U



Exercise 2.5. Show that in the game of chess, exactly one of the following situations is
true:

(1) White has a winning strategy.
(2) Black has a winning strategy.
(3) Each of the two players has a strategy guaranteeing at least a draw.

You may assume that chess is progressively bounded. (Hint: you should not really need to
use anything special about chess, other than that it is an impartial combinatorial game that
is progressively bounded. Also, as usual, it is probably beneficial to start from a terminal
position, and then work backwards, using induction.)

Solution. Let = be a position and i be a player (either black or white). Let B(z,4) be the
maximum number of moves of a game of chess starting from (z,4). That is, the board is in
position x and ¢ has the next move. We argue by induction on B(z,i). For the base case,
B(z,i) = 0, so (x,7) is a terminal position. The terminal position corresponds either to a
win for white, a win for black, or a draw.

For the inductive step, suppose that the claim (exactly one of items 1-3 above holds) is
true for all (y,7) with B(y,j) < n. We will show that if B(z,i) = n + 1, then exactly one
of 1-3 holds for (x,7) as well. We assume that ¢ = white. The case where i is black is
analogous. Suppose white can move from z to position y. Then B(y, black) < n, so by the
inductive hypothesis, one of the three possibilities holds.

(1) white has a winning strategy from (y, black).
(2) Black has a winning strategy from (y, black).
(3) Each player has a strategy from (y, black) resulting in a at least a draw.

Suppose that for every legal move x — y for white, the resulting position (y, black) satisfies
(b) above. Then every move from (z, white) results in a winning strategy for black, hence
black has a winning strategy from (z, white).

If not every legal move x — y for white satisfies (b), then there exists a move =z — y
for white such that (y,black) satisfies either (a) or (c¢). In the former case, white has a
winning strategy starting from (x, white). On the other hand, if no move to (z,white)
satisfies (a) but some move satisfies (c¢), then white has a move resulting in at least a draw.
Thus, starting from (z, white), one of 1-3 above are satisfied. Therefore, by induction, every
position satisfies one of 1-3 above, which gives the desired result. 0

Exercise 2.6. We first describe the game of Y. In this game, there is an arrangement of
white hexagons in an equilateral triangle. One player is assigned the color blue, and the
other player is assigned the color yellow. The players then take turns filling in one hexagon
at a time of their assigned color. The goal is to create a Y-shape that connects all three
sides of the triangle. That is, the goal of the game is to have an unbroken path of a single
color of hexagons that touches all three sides of the triangle.

Prove that the game of Hex can be realized as a special case of the game of Y. That is,
the opening position on a standard hex board is equivalent to a particular game position in
the game of Y. (Recall that we defined a notion for two games being equivalent.)

Solution. Consider the initial configuration for Y below. Notice that blue and yellow both



F1cUrE 1. A Starting Position in the game of Y

already touch two sides of the triangle, and the remaining region is an n x n parallelogram.
Thus the remaining positions constitute an initial position for hex. Further, if blue wins the
OJ

Exercise 2.7. Describe the optimal strategies for both players in rock-paper-scissors. Prove
that these strategies are optimal. This game is described by the following payoff matrix.

Player 11

R P S
~[R[0 -1 1
SlPl1 0 -1
&)
=|S|-1 1 0

Solution. We claim that the optimal strategies for rock-paper-scissors are
1/3
r=y=1|1/3
1/3
To show that Z is Player I’s optimal strategy, we must show that

min 77 A = max min 27 Ay
JEA3 TeA3 yeAs



where Aj is the set of all probability vectors of length 3.
Where A is the payoff matrix

0o -1 1
A= 1 0 -1
-1 1 0
where
As = {(z1,20,23) ER3|2; > 0,2, + 20 + 23 = 1}
and

We claim that for any fixed ¥ € Az, we have
ygreuAr; #T Ay < 0.
To see this, observe that for ¥ = (1,2, x3), we have
TTA= (29 —13 23—11 21— 1)

In particular, the sum of the entries of 7 A is 0, so at least one entry is non-positive.
Suppose 2o — 3 < 0. Then by choosing i = (1,0,0), we have 7 Ay < 0. Thus ming 77 Ay <
0. A similar argument shows that for any Z7, we have min; 77 Ay < 0 for every #. This
implies that

maxminz’ A7 < 0. ()
&g

Choosing ' = (1/3,1/3,1/3) we obtain
#"A=(0,0,0) hence mini" Ay = 0.
Yy

By (*), this final expression implies that
min TrAf=0> max min z' Ay
Yy Z Y
so that 7 is indeed an optimal strategy for player I for rock-paper-scissors. The argument
that ¥ = (1/3,1/3,1/3) is optimal for player II is analogous. Using these strategies, we can
see that the value of rock-paper-scissors is 0. O]

Exercise 2.8. Describe the optimal strategies for both players for the two-person zero-sum
game described by the payoff matrix Prove that these strategies are optimal.

Player 11
~ A B
% Clo0 2
T D|4 1

Solution. We claim that the optimal strategies for Player I and Player II are

. (3/5 L (1/5
x(2/5) and y<4/5).
To prove the optimality of & we must show that

min 77 A = max min 27 Ay
yEA2 AR TISIAT



where A is the payoff matrix

Solution. First observe that

(3/5 2/5) (O 2) @g) _8/5.

so the purported value of the game defined by A is 8/5. For any ¥ € A, we can write
= (p,1 —p), and similarly any ¢ can be written ¢ = (¢, 1 — ¢). Thus, we can write

#ai= -0 (3 1) (14,) =0 -0 (50

=2pq—2¢+4q—4pg+p+1—qg=(4—4p)g+ (p+1)(1 —q).
Thus, for any fixed p, we can compute

min 7 Ay = min (4 — 4p)g + (p+ 1)(1 — q).
AT q€[0,1]

Since 0 < ¢ < 1 and we are holding p is constant, this expression takes on a minimum value
of min{4 — 4p,p + 1} with ¢ = 1 or ¢ = 0. In order to maximize this expression, Player I
must choose p so that 4 — 4p = p + 1 which gives p = 3/5. Therefore, we obtain
max min 77 A = maxmin(4 — 4p)g + (p + 1)(1 — q) = 8/5,
gy P q
and the maximum occurs when p = 3/5 (i.e., ¥ = (3/5,2/5)). A similar argument shows
that
min max &' A§ = minmax(2 — 2¢)p + (3¢ + 1)(1 — p) = 8/5
g 7 a p
where the minimum occurs when ¢ = 1/5 (i.e., ¥ = (1/5,4/5)). O

3. HOMEWORK 3

Exercise 3.1. This exercise deals with subsets of the real line. Show that [0, 1] is closed,
but (0, 1) is not closed.

Solution. Recall that a set K is closed if and only if for every convergent sequence 2™, 2(?) .
such that (9 € K for all j, we have z = lim; ,,, 2% € K. Therefore, to show that [0, 1]
is closed, we must show that every convergent sequence {a: } such that 0 < z() < 1 for
all 7 has x = hmj_mx with 0 < x < 1. We will argue by contradiction that z < 1 by
contradiction — the proof that 0 < x is similar. Suppose towards a contradiction that 1 < x.
Since x = lim2®, we know that for every € > 0, there exists N such that j > N implies
|z — 2] < e. However, 2 < 1 < z implies that | — x| > |z — 1| > 0. Thus, choosing
e = |x — 1|/2 contradicts that x = lim z(®.

To show that (0, 1) is not closed, we must find a convergent sequence {z(V} such that
x® ¢ (0 1) for all j, but with z = lim; ., 2@ ¢ (0, 1). To this end consider the sequence

2 = j+1 Note that ® € (0, 1)for all j, but z = lim; ., — 71 =0¢(0,1). O

Exercise 3.2. This exercise deals with subsets of Euclidean space R? where d > 1. Show
that the intersection of two closed sets is a closed set.



Solution. Suppose K; and K, are closed. To see that K = K; N K, is closed, suppose
{rM} C K is a convergent sequence with x = lim 2(Y. We must show that € K. To this
end, note that since K; is closed and 29 € K C K, for all j, we have x € K. Similarly,
r € Ky, hence x € K1 N Ky = K. Therefore, K is closed. O

Exercise 3.3. Define f : RY — R by f(x) := ||z||. Show that f is continuous. (Hint:
you may need to use the triangle inequality, which says that ||z + y|| < ||z|| + ||y||, for any
r,y € RL)

Solution. Recall that f : K — R is continuous if for every convergent sequence {zV} C K
with z = lim2®, we have lim f(z®) = f(z). For f(x) = ||z||, we have

f@®) =z = [|a® — 2 + 2]

<[]z — =] + |||

Since lim ||# — || = 0 (indeed, this is what it means for z = lim (V) we have lim f(z(*)) =
l|z]| = f(z), as desired. O
Exercise 3.4. Describe in words the set of points (z1,x3) in the plane such that (z1,z5) >

(3,4).

Solution. Recall that (x,y) > (2/,¢') if and only if x > 2’ and y > /. Thus (z1,x2) > (3,4)
if and only if 1 > 3 and x5 > 4. Both of these equations are satisfied precisely for quadrant
above and to the right of (3,4) in the plane. O

Exercise 3.5. Let d be a positive integer. Consider
Ay = {x=(21,...,79) € R: Zle r;=1,2; > 0,V1 <i<d}.
Prove that Ay is convex, closed and bounded.

Solution. Recall that a set K is convex if for every z,y € K and for every ¢ € [0, 1], we have
tr+(1—t)y € K. Suppose x,y € Ay, and write z = (21, ..., xq),y = (Y1, .., Ya). Fixt € [0, 1]
and define

z=tr+ (1 =0y = (tey + (L =)y, ... txg + (1 — t)yq) = (21, .-, 24)-

To see that z € Ay, first note that because x;,y;,t,1 —t > 0 for all i, we have z;, =
tr; + (1 —t)y; > 0 for all 4. Further

S =i+ (I—t)y) =tz +(1—t) S,y =t+1—t=1

Thus z € A, as desired.

To see that Ay is closed, first observe that the function f : RY — R defined by f(z1, ..., 74) =
x1+...+x4 is continuous. Therefore, if {2V} is a convergent sequence in Ay with z = lim 2,
we have lim f(z) = f(x). Further, for all 2 we have f(z) = 1, hence f(z) =lim1 = 1.
We still need to show that if z = (1, ...,24), then x; > 0 for all 7. To this end, observe that
if z0) = (mgj), xgj), s mg)), then the sequence xgl), xﬁ”, ng), ... 18 a convergent sequence in [0,
1] with z; = lim a:z(]). Thus, by exercise 1, we have x; € [0, 1], hence z; > 0.

Finally, to show that A, is bounded, notice that for x = (xy, ..., 24) € Ay, we have z; <1
for all ¢. Therefore,

|zl = /23 + . +22<VI2+ .+ 12=4d

Therefore, Ay C B(v/d), the ball of radius v/d centered at the origin. Thus A4 is bounded.

O

Exercise 3.6.

10



e Let K be the set of points (x,y) in the plane such that |z| + |y| < 2. Is K convex?
Prove your assertion.

e Let K be the set of points (z,y,z) in R® such that max(|z], |y|,|z]) < 1/2. Is K
convex? Prove your assertion.

e Let K be the set of points (z,y, z,w) in R* such that 22 + y? + 22 + w? < 1. You
may assume that K is convex. Find a hyperplane that separates K from the point
(0,1, 1, 0).

Solution. For the first part, K is convex. To see this, suppose (x,y), (z,w) € K. That is,
|z| + |y| < 2 and |z| + |w| < 2. Then for ¢ € [0, 1],

[t + (1 —t)z| + [ty + (1 — Hw| < tlx] + (1 —t)]z| + tly] + (1 — t)|w]

= t(lz] + [y]) + (1 = t)(|2] + |w])

<t-24(1—1t)-2

= 2.

Thus, the first K is convex.

The second K is also convex. To see this, suppose (z,y, 2), (¢, v/, 2) € K. We must show
that for all t € [0, 1], we have (tx + (1 —t)2/,ty + (1 — )y, tz + (1 — t)2’) € K. That is, for
example, |tz + (1 —t)a’| < 1/2. To see this note that

[t 4+ (1 — t)2'| < t|z|+ (1 —t)|2'| < mazx(|z|, |2']) < 1/2.

Similarly, |ty + (1 —t)y'| < 1/2 and |tz + (1 —t)2’| < 1/2, implying that the maximum of
these three values is at most 1/2, as desired.

For the final part, notice that K is the unit ball in R*. Since (0, 1, 1, 0) lies outside
the ball, we expect to find a separating hyperplane. Let x = (0,1,1,0). Then for any
y = (z,y,2z,w) € K, the Cauchy-Schwarz inequality gives

ey =a-y <zl |lyl] < V2.

On the other hand, 27(0, 1,1,0) = 2. Thus for any c satisfying V2 < ¢ < 2, the hyperplane
given by

{yeRlz-y=c}

is a separating hyperplane. O

Exercise 3.7. Show that the intersection of two convex sets is convex. Then, show that the
intersection of any finite number of convex sets is convex. Finally, find two convex sets A,
B such that the union A U B is not convex.

Solution. Suppose A and B are convex, and let z,y € AN B. We must show that for all
t€10,1),tx+(1—t)y € AN B. To this end, note that tx+ (1 —t)y € A because A is convex,
while tx + (1 — t)y € B because B is convex. Thus tz + (1 —t)y € AN B, as desired.

Now suppose Aj, A, ..., A, are convex sets. We argue by induction on n that A;N...N A,
is also convex. The base case, n = 1 is clear because A; is assumed to be convex. For the
inductive step, define

B == Al ﬂAQ N...N Anfl.

By the inductive hypothesis, B is convex. By the argument above (for two convex sets),

BNA,=AiNnAN...NA,_1NA,

is also convex, which gives the desired result.

For the final part, consider the example A = {0} and B = {1}. Then A and B are both
convex, but AUB = {0, 1} is not convex. For example, (1/2)0 + (1/2)1 = (1/2) ¢ AUB.

O
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Exercise 3.8. Let A be an m x n real matrix. Let b € R™,¢ € R". Using the Minimax
Theorem, prove the following equality, which is known as duality for linear programming;:

T — i T
MAXyeRm, Ar<b,e>0 € L = Milye pm ATy<cy>0 0 Y

Consider now an example where n = m = 2, b = (1, 0), ¢ = (1, 1) and A = (i (1)>
Using the duality above, show that

MaXgeRpn: Az<b cTr < 1.

Solution. Consider the two person zero sum game with (m +n + 1) x (m + n + 1) payoff
matrix

0 A —b
B=|[-AT 0 c
bt =T 0

First observe that B is antisymmetric — that is, BY = —B. Therefore, the value of the
game must be 0. To see this, suppose X and Y are optimal strategies for player I and II
respectively. If XTBY < 0, then player I can switch strategies to Y. Then the expected
payoff YT BY satisfies

YTBY = (YT'BY) =YTBT(YT)T =YT(-B)Y = -YTBY,

implying that Y7 BY = 0. Thus X7BY < YTBY, contradicting the optimality of X. A
similar argument shows that X7 BY cannot be positive, so it must be 0. Note that this

argument also shows that if Y is an optimal strategy for player II, Y is also an optimal
strategy for player I. Now let

Y
Y=|z
t

be an optimal strategy (for both players). By Exercise 10, the smallest row in BY is

positive, hence we have

0 A —=b Y Ax — bt

BY = | -AT 0 c | =|-Aly+ct] >0
b —c 0 t by —cl'x

We can rewrite the final inequality as

Ax > bt,

ATy < ct,

by —cl'z > 0.

As the problem indicates, assume that ¢t > 0. Then we will show that z/t maximizes ¢z,

while y/t minimizes by (while A(z/t) > b and AT (y/t) < ¢). To this end, we claim that for
any x € R™ with Az > b and y € R"® with ATy < c and x,y > 0, we have by — cTx > 0.
To see this, observe that

Az > by >0 = by < (Az)Ty = 2T ATy.

Similarly,

ATy <cx >0 = cla > (ATy)Tz = yT Ax.

Putting the previous two expressions together, we find

by <2TATy =yT Az < 'z

Therefore, b7y — T2 < 0. Since the points (x/t) and (y/t) satisfy the opposite inequality
(bT(y/t) — cT'(z/t) > 0), we must have that, in fact, b7 (y/t) = ¢! (z/t) which is optimal.

For the particular example with

12



1 1 11
= (o) = () 4-(0)
e have

maxyepr2 ATy<c,y>0 bTy = mianR,szb,zZO CTx

Thus, finding any z € R? which satisfies Az > b and x > 0 gives us an upper bound for
the max on the left side above. In particular, taking x = (1,0), we have Az > b,x > 0 and
¢’z = 1. Thus

maxyeszATygcijO bTy S 1

as desired. 0

Exercise 3.9. Let x € A,,,,y € A, and let A be an m x n matrix. Show that
maXgea,, $TA?J = maXi:l,...,m(Ay)ia
mingea, 1 Ay = minj—;_,(z7A);.
Using this fact, show that

-----

max min 7 Ay = max min (27 A);.
TEA, YEA, €A, j=1,...,n
Using the second equality, conclude that the value of the game with payoff matrix A can be
found via the following Linear Programming problem:
Maximize ¢ subject to the constraints: > . Az, > t, for all 1 < i < m; Z;”:l x; = 1;
x> (0,...,0).
Efficient methods for solving linear programming problems are well-known. However,
below we will focus on ways to compute the values of two-person zero-sum games by hand.

Solution.
We first show that
T
Ay = Ay);.

max z” Ay = max (Ay);
The proof of minyea, 27 Ay = min;—;__,(z7 A); is analogous. We argue by induction on m.
The base case, m = 1 is trivial as in this case Ay consists of a single entry and A, = {1}.
Assume that the statement is true for m — 1, and suppose & = # maximizes 7 Ay. Denote
x = (x1,%9, ..., 7). If any x; = 0, then we have x € A,,_1, hence the claim follows by
induction. Now assume that z; > 0 for all i. Let k be the index for which (Ay) is maximal.
Then for any ¢ # k, we can form the vector

/
= (21, i1, 0,01, oo, Th1, Tk + Ty Thg 1y ooey T
and we have

t' Ay > TAy = max z” Ay.
€A,

Further, 2’ € A,,_1 because one of its entries is 0. Thus, by the inductive hypothesis,
there exists k such that z = e, maximizes z7 Ay where e, is the vector with a 1 in its k-th
coordinate and 0’s elsewhere.

Since for all y we have

13



max v’ Ay = max (Ay);

TEA, i=1,....m
taking a minimum over all values of y gives

min max z’ Ay = min max(Ay);.
yeAn TEAM yeAn )

Similarly,

max min 7 Ay = max min (z7A)

€Ay, yEA, €A j=1,...n a

Suppose A = (a;j), = (21, ..., Tm), and y = (y1, ..., y,). Then we can express

wT Ay = Z Z @ijZilYs

i=1 j=1

hence an optimal strategy for the row player is the choice of x = x for which

m n m n
max min g g a;;;y; = Mmin g g Qi Ty
2€Am yEA, I yeA, I

i=1 j=1 i=1 j=1
By the equality above, this last expression is equal to

m

mg?x]:rrlunn E(szxi)j.
1=
Let ¢ = max, min; > .(A;;z;);. Then the previous expression implies that z € A,, is an
optimal strategy if and only if

Zaija:j 2 t for all ]

i=1
Thus finding an optimal strategy for z is equivalent to maximizing ¢ subject to > a;jz; >t
for all 4, > o; =1 and x > (0,...,0), as desired. O

Exercise 3.10. Find the value of the two-person zero-sum game described by the payoff
matrix
0911
A=15 0 6 7
2 4 3 3
Solution. We use the technique of domination to reduce the dimension of the payoff matrix.
Let C1, Cs, C3, Cy denote the columns of A. Notice that C5 < Cy4, hence no optimal strategy

¥ = (y1,Y2,ys,ys) for player IT will have y, > 0. Thus we can eliminate the final column.
The game is thus equivalent to one with payoff matrix

091
5 0 6
2 4 3
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Let Ry, Ry, R3 denote the rows of this matrix. Since R3 < %Rl + %RQ, no optimal strategy
T = (x1, x9, x3) for player I will have x3 > 0. Thus the game is equivalent to one with payoff

matrix
0 9 1
5 0 6

Let Dy, Dy, D3 denote the columns of this matrix. Then ng + gDQ < D3, so no optimal
strategy will have y3 > 0. Therefore, the game is equivalent to one with payoff matrix

o)

To find the value of this game, suppose Z = (p,1 —p) and § = (¢, 1 — q). An optimal strategy
for I maximizes miny 27 Ay. We compute

Aj=(p 1-p) (g 8) (13(1) = 5(1—p)g+9p(1 —q).

The max-min is therefore achieved when 5(1 —p) = 9p, implying that p = 5/14. In this case,
the value of the matrix is

(5/14 9/14) (g 8) (13(1) -

OJ
Exercise 3.11. Find the value of the two-person zero-sum game described by the payoff
matrix
0706
4 4 3 3
8 2 6 0
Solution. Again, we use domination.
0706 4 4 3 <30 7 0 6+i8 2 6 0 (0 7 0 6
4 4 3 3 *1s 2 6 0
8 2 6 0
(0 6<O 8,6 0<7 2 (0 6
6 0
The value of this final matrix (and hence the original matrix) is 3. U

Exercise 3.12. This Exercise shows that von Neumann’s Minimax Theorem no longer holds
when we consider games for three or more players.

First, note that there is a suitable generalization of this theorem to two-player general-sum
games. That is if A is the payoff matrix for player I and B is the payoff matrix for player
II, then

max min 27 AJ = min max '’ A7
FEAm €A GEAL TEAM,
max min 7! By = min max Z' BY.
FEAm JEAL GEA, TEAR

In words, the first equality says: the maximum over player I's strategies followed by the

minimum of the other players strategies of the payoff of player I is equal to the minimum of
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the other players strategies followed by the maximum over player I's strategies of the payoff
of player I.

Now, consider a three-player general-sum game. The analogue of von Neumann’s Theorem
just applied to player I would say: the maximum over player I's strategies followed by the
minimum of the other players strategies of the payoff of player I is equal to the minimum
of the other players strategies of followed by the maximum over player I's strategies of the
payoft of player 1.

Show that this statement is false for the following example.

L R L R

0 1 1

1 1 0

T 1

B 1
w E
These matrices describe the payoffs for player I. In the game, player I chooses a row (T or
B), player II chooses a column (L or R), and player III chooses a matrix (W or E)

T
B

Solution. Suppose player’s strategies are © = (p,1 —p), ¥ = (¢,1 — q), and 2 = (r,1 — )
respectively with p,q,r > 0. That is, player I chooses T with probability p, and B with
probability 1 — p, and so on. We wish to show that

max minmin f (&, 7, Z) # min min max f (%, ¢, )
T 7 zZ 7 zZ z

where f(Z, 7, 2) is the payoff for player I. We first compute the right side of the expression
above. To this end, suppose p and ¢ are fixed. We can express the expected payouts for
player I as

()80l D02 - (U

Given the payouts above, player I will choose p = 0 or 1 (whichever maximizes his payout).
We claim that the largest entry in vector above is always at least 3/4. To see this, suppose
r(l1—q)+ (1 —r)=1—gr <3/4. We must show that the second coordante r + (1 — r)q =
q + r — qr is always at least 3/4 when the first coordinate satisfies 1 — ¢gr < 3/4. To this
end, notice that the equations ¢, < 1 and 1 — ¢gr < 3/4 (or equivalently r > 1/4¢) form a
bounded region in the qr-plane. Using multivariable calculus style optimization, the function
q + r — qr attains a minimum value of 3/4 (at the point p = ¢ = 1/2) in this region. Hence
r 4+ q —rq > 3/4 whenever 1 — rq < 3/4, implying that

min min max f(Z,y, 2) > 3/4.
i Z T

On the other hand, suppose ¥ = (p,1 — p) is fixed. Then

(p 1—19)(? D:(l—p 1) and (p 1—p)G (1))2(1 p).

Thus, if p satisfies p < 1/2, players II and III can choose R and E respectively to obtain
a payoff of p < 1/2. Similarly if p > 1/2, they can choose L. and W to obtain a payoff of
1—p<1/2. Thus

max minmin f(Z, v, 2) < 1/2.
T g Z
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4. HOMEWORK 4

Exercise 4.1. Show the following fact, which will be mentioned after our proof of Sperner’s
Lemma:

Let d be a positive integer. Let K be a closed and bounded subset of R?. Then the set
K x K is also a closed and bounded set.

(Recall that K x K = {(7,49) e R* xR?: # € K and y € K} C R*))

Solution. First, we show that K x K is closed. To this end, we need to show that for any
sequence 2N, 72 with ) € K x K for all j, and Z = lim £, we have Z € K x K. Write
70 = (7, 20)) with ¢, 20) € K and # = (¥, 7). Notice that = lim ¥ and Z = lim 1.
Therefore, since K is closed, ¥, 2 € K implying that © = (¢, 2) € K x K. Therefore, K x K
is closed.

To see that K x K is bounded, suppose K C B,(r), the n dimensional ball of radius r
centered at the origin. We must show that there exists some 7’ such that K x K C By, (r').
To this end, we take ' = 2r. Then for any ¥ = (¢,2) € K x K, we have ||y]],||Z]| < 7.
Therefore

|11 = 1[(Z, 9)]]
= [[(Z,9) = (0,9) + (0, 9|
< 1(Z,9) — (0, )] + [1(0, 5]
= |1Z[| + [|71|
<r-+r.
Thus, K x K is bounded, as desired. ([l

Exercise 4.2. Show the following facts, which will be used in our discussion of Correlated

equilibria: For any #,7 € Ay, T’ # <1(/)2 1(/)2).

For any &, € Ao, T G?g 1[/)3).

Solution. Write ¥ = (z1,29) and § = (y1,y2). If the first equality held, we would have
x1y2 = 0, implying that z; = 0 or yo = 0. Since z1y; = 1/2, we cannot have z; = 0.
However, we also have yozy = 1/2, implying that ys # 0, a contradiction.

Similarly, if the second inequality held, we must have zoy, = 0, implying that x5 = 0 or
y2 = 0. However, xoy; = 1/3 implying that x5 # 0, while z1y, = 1/3 implying that ys # 0.
Either way, we arrive at a contradiction.

This result also follows from the general result in linear algebra which states that if A is
an n x m matrix, and B and m x k matrix, then rank(AB) j rank(A), rank(B). Since & and
iy are 2 x 1 and 1 x 2 matrices, respectively, they both have rank at most 1. Thus, their
product 1 must have rank at most 1. However, the two matrices above have rank 2! [

Exercise 4.3. Recall the prisoner’s dilemma, which is described by the following payoffs
Recall that this two-person game has exactly one Nash equilibrium, where both parties
confess. However, if this game is repeated an infinite number of times, or a random number
of times, this strategy is no longer the only Nash equilibrium. This exercise explores the
case where the game is repeated an infinite number of times. Let N be a positive integer.
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Prisoner I1
silent confess
silent | (=1,—1) (—10,0)
confess | (0,—10) (—8,—8)

Prisoner 1

Suppose the game is repeated infinitely many times, so that player I has payoffs a1, as, as, . ..
and player I1 has payoffs by, by, bs, . ... That is, at the i** iteration of the game, player I has
payoff a; and player I1 has payoff b;. In the infinitely repeated game, each player would like
to maximize her average payoff over time (if this average exists). That is, player I wants to
maximize limpy_, o % Zfil a; and player 11 wants to maximize limy_, % ZZ]\LI b;.

Consider the following strategy for player I. Suppose player I begins by staying silent,
and she continues to be silent on subsequent rounds of the game. However, if player 17
confesses at round ¢ > 1 of the game, then player I will always confess for every round of
the game after round ¢. Player /1 follows a similar strategy. Suppose player I begins by
staying silent, and she continues to be silent on subsequent rounds of the game. However, if
player I confesses at round 7 > 1 of the game, then player I will always confess for every
round of the game after round j.

Show that this pair of strategies is a Nash equilibrium. That is, no player can gain

something by unilaterally deviating from this strategy.
Solution. Denote the strategy described above by (Z, 7). Observe that if both players follow
this strategy, they will be silent in every round. Thus the payoff for player I in each round
is -1, hence the average payoff for I is a = —1. Now suppose II plays g, while I plays ¥ # .
Since ¥ # ¥, there is some round ¢ in which I confesses. Since II uses the strategy i described
above, II confesses in each round ¢ > ¢. If II confesses in round 7, the best payoff that I can
achieve in that round is -8 (by confessing), hence we have a; < —8 for all ¢ > ¢. Thus

1
— i _E < -8 < —1.
a ]\}1le1@1 8< 1

An identical argument shows that if II deviates from ¢ while I plays ¥ then II's average
payoff is at most -8. Therefore, (Z, ) is indeed a Nash equilibrium. O

Exercise 4.4. Show that the following strategy (known as ”quid pro quo”) is also a Nash
equilibrium for Prisoner’s Dilemma iterated an infinite number of times.

Player I begins by staying silent. If Player II plays x on round ¢, then Player I plays x on
round ¢+ 1. Similarly, Player II begins by staying silent. If Player I plays z on round i, then
Player II plays x on round ¢ + 1.

Solution. Notice that if both players follow the quid pro quo strategy (Z, %) described above,
then (by induction) in all rounds both players will be silent. Thus, the average payoff for
both players is a = b = —1. Now suppose II plays ¢ while I plays & # 7, and define the
sequence ¢y, Ca, ... by

a; if I is silent in rounds i and i- 1
ci = { 5(a; + ai41) if T confesses in round i
+(a;_1 4+ a;) if I confesses in round i - 1 but not in round i
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Observe that

i=1 i=1
because each a; appears either as some ¢; = a; or a;/2 appears in ¢; and ¢;41. If I confesses
in the i-th round, then II will confess in the (i + 1)-st round, implying that a;y; is at most
—8. Thus, ¢; < —4 < —1. In particular, ¢; < —1 for all 7. Thus, if I deviates from ', then
we have

1 & 1 &
a:]\}l_rgoﬁzlcig—l<ﬁzl—1:—l.

A similar argument shows that b < —1 if II deviates from g while I plays &, which gives the
desired result. 0

Exercise 4.5. Find all Correlated Equilibria for the Prisoner’s Dilemma.

Solution. Recall that the payoff matrices for the prisoner’s dilemma are given by
-1 —10 -1 0
A_<0 —8> and B‘(—m —8>
7 — (211 212)
221 <22

is a correlated equilibrium. Thus, for player I, we must have

Suppose

—z11 — 10212 2> 0211 — 8212 Oz12 — 8299 = —291 — 10292
and similarly for player II,
—2z11 — 10291 > 0211 — 8212 0z12 — 8292 > —212 — 10299.
Rearranging gives
0> 211 + 2212 0> 212 + 2229 0> z11 + 229 0> z12 + 229.

Since ), j7i; = 1and z; > 0 for all 4,7, these four inequalities combine to give zp = 1,
211 = 212 = 291 = 0. Thus, the only correlated equilibrium is

7= %)

Exercise 4.6. Show that any convex combination of Nash equilibria is a Correlated Equi-
librium. That is, if 2, ..., 2 are Correlated Equilibria, and if t,...,t, € [0,1] satisfy
Zle t; = 1, then Zle t;2 is a Correlated Equilibrium.

O

Solution. We will show that the convex combination of two correlated equilibria is another
correlated equilibrium. The general result follows by induction (on k). Suppose z = (z;;) and
w = (w;;) are correlated equilibria for a game with payoff matrices A and B. Let t € [0, 1].
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We will show that v = (v;;) = tz + (1 — t)w is also a correlated equilibrium. That is, we
must show that for all i,k € {1,2,...,m}

(5) ) vy =Y vija (2)
j=1 j=1

and for all j,k € {1,2,...,n}

(**) Zvijbij Z Zvijbik. (3)
i=1

i=1

We will prove (*) -the argument for (**) is analogous.
Since z and w are correlated equilibria, we have for all i,k € {1,2,...,m},
n n n n
Z Zij Qi Z Z Zij Ak and Z Wi Qi Z Z WijQej-
Jj=1 Jj=1 Jj=1 j=1

Writing v;; = tz;; + (1 — t)w;;, we obtain

n

Y vgaig =ty zjay+(1—1)) wyay
i=1 i=1

J=1

Z t Z zijakj + (]_ — t) Z wijakj
7j=1 j=1
= (tzij + (1 = thwy;)ax
j=1

n
D
j=1
which gives the desired result. 0

Exercise 4.7. Recall the Game of Chicken is defined as follows. Each player chooses to
chicken out (C) by swerving away, or she can continue drive straight (D). Each player would
prefer to continue driving while the other chickens out. However, if both players choose to
continue driving, catastrophe occurs. The payoffs follow:

Player IT

C D

C (6,6) (2,7)
Player Ly (7.9) (0, 0)

Find all Nash equilibria for the Game of Chicken. Prove that these are the only Nash

equilibria. Then, verify that
~(1/3 1/3
= \1/3 0

is a Correlated Equilibrium. Can you find a Correlated Equilibrium such that both players
have a payoff larger than 57 (Hint: when trying to find such a matrix z, assume that 299 = 0
and z12 = 291.)
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Solution. We first observe that the pure strategies (C, D) and (D, C) are pure Nash equilibria,
which correspond to the correlated equilibria

(o) = ()

respectively. Recall that if (Z,7) is a mixed Nash equilibrium, then Player I should be
indifferent to his pure strategy payoffs for Ay. If ¥ = (¢, 1 — ¢q), then we compute

L (6 2 q _ [4q+2
= 5) ()= (%)
Solving 4q + 2 = Tq gives ¢ = 2/3, hence ¥ = (2/3,1/3). Similarly, ¥ = (2/3,1/3). We can
equivalently write the three Nash equilibria as the correlated equilibria

o) (0) = (o 7)

For the second part of the question, we characterize all correlated equilibria for the game.
Suppose z = (z;) is a correlated equilibrium. Then the z; must satisfy the following
inequalities:

6211 + 2212 Z 7211 7221 Z 6221 + 2222 6211 + 2221 Z 7211 7212 Z 6212 + 2222.

Rearranging, we find that z is a correlated equilibrium if and only if 219,291 > 217/2 and
212, 291 > 2295. Since the choices of z1; = 219 = 297 = 1/3 and z99 = 0 satisfy all of these

inequalities,
1/3 1/3
/3 0

is indeed a correlated equilibrium. Finally, to find a correlated equilibrium with good payout
for both players, observe that we should try to make z1; as large as possible (as both player
I and player II benefit from a large z11), and make z99 as small as possible. By symmetry,
it suffices to consider the case where z19 = 25;. Since 219, 291 > 211/2, we should choose
212 = 291 = 211/2, which gives z11 = 1/2, 219 = z9; = 1/4. The expected payoff for player I

is then
1 6+1 2+1 74+0-0=5.25
2 4 4 T

Symmetrically, the payoff for player II is also 5.25, so

1/2 1/4
/4 0
does the job. O

Exercise 4.8. In the Game of Chicken, you should have found only three Nash equilibria.
Recall that any convex combination of Nash equilibria is a correlated equilibrium. However,
the converse is false in generall We can see this already in the Game of Chicken. Show that

the Correlated Equilibrium
L 1/3 1/3
- \1/3 0

is not a convex combination of the Nash equilibria. Put another way, the payoffs from this
Correlated Equilibrium cannot be found by randomly choosing among the Nash equilibria.
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Solution. If z is a convex combination of Nash equilibria for Chicken, by the previous

problem, we must have
B 10 00 4/9 2/9
#=h (0 0)”2 (1 0)“3 (2/9 1/9)

where t; + t, +t3 = 0, and ¢; > 0 for all 7. However, since 295 = 0, this implies that t3 = 0.
But if t3 =0, z;; = 0. Thus z is not the convex combination of Nash equilibria. OJ

Exercise 4.9. Give an example of a two-person zero-sum game where there are no pure Nash
equilibria. Can you give an example where all entries of the payoff matrix are different?

Solution. It is easy to see that the zero sum game with payoff matrix

A= (_11 —11> or equivalently with bi-matrix (El_’l_’g EE;};)

does not have any pure Nash equilibria. In particular, the unique Nash equilibrium is
((1/2,1/2),(1/2,1/2)). However, it has only two distinct entries. To find a payoff matrix
with distinct entries, intuitively, we should be able to gently perturb the entries of A without
dramatically changing its Nash equilibria. For example, the zero sum game with payoff

matrix
—1.01 1.01
0.99 —-0.99
does not have a pure Nash equilibrium, and all of its entries are (pairwise) distinct. 0

5. HOMEWORK 5

Exercise 5.1. Suppose we have a two-person zero-sum game with (n + 1) x (n + 1) payoff
matrix A such that at least one entry of A is nonzero. Let ¥, € A,.;. Write & =
(1, .oy, L= >0 @), ¥ = (Tpg1se .oy Top, 1 — E?Znﬂ x;). Consider the function f :
R?* — R defined by f(xy,...,7,) = ¥ Ay. Show that the Hessian of f has at least one
positive eigenvalue, and at least one negative eigenvalue. Conclude that any critical point of
f is a saddle point. That is, if we find a critical point of f (as we do when we look for the
value of the game), then this critical point is a saddle point of f. In this sense, the minimax
value occurs at a saddle point of f.

Solution. Suppose A has entries a;;. Then we can write

n+1 n+1
ST 4=
flzr,. . xen) =3 Ay = E E TiQijTjin,
i=1 j=1
n n n
=Y mitiin Y (1= 21— = n)n g1 T
i=1 j=1 j=1
n
+ E TiGipi1(1 — Tpgr — -+ — Top)
i=1
+ (1 — Ty — In)an+1,n+1(1 i T x2n)-
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Observe that f is a degree two polynomial in the variables x1, . .., z9,. Further f(z1,..., za,)
does not contain any terms of the form cz?. Therefore, we have

%:0 forall i=1,...,2n.
Let H = (h;;) be the Hessian matrix of f, defined by
o
Y OOz

By the observation above, the diagonal entries satisfy h;; = 0 for all 7, hence the trace
of H (the sum of H’s diagonal entries) satisfies trace(H) = 0. Further, the equality of
mixed partial deriviatves implies that H is symmetric. Thus, by the spectral theorem, H is
diagonalizable. Denote the eigenvalues of H by A1, ..., Ay, (possibly with repetition). Since
the trace of a matrix is the sum of its eigenvalues, we have

trace(H) = Ay + -+ 4+ Ay, = 0.

Finally, since A has at least one non-zero entry, H is not the zero matrix. Since H is
diagonalizable, it must have at least one nonzero eigenvalue. Thus, expression trace(H) = 0
implies that H has at least one positive and at least one negative eigenvalue, as desired. [

Exercise 5.2. Suppose we have a two-person zero-sum game. Show that any optimal strat-
egy is a Nash equilibrium. Then, show that any Nash equilibrium is a optimal strategy. In
summary, the Nash equilibrium generalizes the notion of optimal strategy.

Solution. Note that if A is the payoff matrix for player I in a zero-sum game, then B = — A
is the payoff matrix for player II. First suppose ¥ and ¢ are optimal strategies for player I
and player II respectively. Then
min T Ay = max min ZL Ay
g &g
and

max 71 Af = min max 2" Aj.
T Y T

Arguing as in Remark 3.30 from the notes, (using the Minimax Theorem in the middle),

7T Ay > min TL Ay = max min LAy = min max T Ay = max TT Ay > 7T Ay
g A g z

In particular,
" Ay < min7 Ay — " By > i By for all ¥,
]
and
T Ay > max 7 Ay — i Ay > 7 Ay,
Thus (&, ) is a Nash equilibrium.
Conversely, suppose (Z,7) is a Nash equilibrium. That is, for all &
(x) @Ay >7"Ag (4)

and for all 7,
(%) 2T Ay < 7T Ay, (5)
Observe that we have
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81

TAy < ming 2" Ay
maxz ming T _’TAg’
ming maxx 7T Ay
axz T1 Aif

Ay

Inequality (1) holds by (**), while (2) holds by definition of maxz. Inequality (3) always
holds, while (4) holds by definition of ming. Finally, (5) holds by (*). Since the left side of
(1) is equal to the right side of (5), all terms in (1)-(5) must be equal. In particular

VA VAR VANVAY

min 77 Aj = maxminZ7 A7 and maxZ’ Aj = min max z’ Ag.
g oy z g 7

Therefore, ¥ and g are optimal strategies, as desired. O

Exercise 5.3. Show that, in any two-player general-sum game, for any ¢ € {1,2}, the
payoffs for player 7 in any Nash equilibrium exceeds the minimax value for player . (If A
is the m x n payoff matrix for player ¢, then the minimax value for player ¢ is the quantity
maxzea,, Milgea, 7 AY = mingea, maxzea,, T° Ay)

Solution. For player 1, this follows immediately from inequalities (3)-(5) in the previous
solution, as those inequalities depend only on (*) and the definition of ming. For player 2,
repeat the same argument interchanging the roles of the players using the payoff matrix B
instead of A. O

Exercise 5.4. Recall that the game of Rock-Paper-Scissors is defined by the payoff matrices

Then the game is symmetric. (And also, note that A+ B = 0, so that the game is a zero-sum
game.)

Show that (1/3,1/3,1/3) is the unique Nash equilibrium. Then, show that this Nash
equilibrium is not evolutionarily stable.

This observation leads to interesting behaviors in population dynamics. A certain type
of lizard has three kinds of sub-species whose interactions resemble the Rock-Paper-Scissors
game. The dynamics of the population cycle between large, dominant sub-populations of
each of the three sub-species. That is, first the "Rock” lizards are a majority of the popula-
tion, then the ”Paper” lizards become the majority, then the ”Scissors” lizards become the
majority, and then the "Rock” lizards become the majority, and so on.

Solution. We first observe that Rock-Paper-Scissors (RPS) does not have pure Nash equilib-
ria. To look for mixed equilibrium strategies, suppose 4 = (p,q, 1 —p — ¢q). Then the payoffs
for player I are given by

1—p—2q
Ajy=|2p+q—-1
—P+q
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Equating 1—p—2¢ = —p+q gives ¢ = 1/3, while 2p+¢—1 = —p+q gives p = 1/3. Repeating
this procedure for player II gives ¥ = ¢ = (1/3,1/3,1/3), the unique Nash equilibrium.
Observe that for this strategy, we have 77 A% = 0.

In order to see that ¥ = (1/3,1/3,1/3) is not an evolutionarily stable equilibrium, we
must find a different strategy w such that

W' AT = 7T AT and W' Ad > 7T Ad.

Since AZ = (0,0,0) and ZTA = (0 0 0), it suffices to find & satisfying @’ A = 0. To this
end, we observe that any pure strategy w satisfies W/ Aw = 0, as the payoff to both players
is 0 if they both choose the same move. For example, @/ = (1,0, 0) works. 0

Exercise 5.5. Let n be a positive integer. Let v : 2{b+m} — {01} be a characteristic
function that only takes values 0 and 1. Assume also that v is monotonic. That is, if
S, T CA{l,...,n} with S C T, then v(S) < v(T). The Shapley-Shubik power index of each
player is defined to be their Shapley value.

By monotonicity of v, we have v(S U {i}) > v(9S) for all S C {1,...,n} and for all
i€ {l,...,n}. Also, since v only takes values 0 and 1, we have

1 when v(SU{i}) > v(S5)

v(SULi}) — () = {0 when v(S U {i}) =v(S)

Consequently, we have the following simplified formula for the Shapley-Shubik power index
of player i € {1,...,n}:

¢ b=y BleoISZt (©)

n!
SC{1,...,n}
v(SU{i})=1 and v(S)=0

Compute the Shapley-Shubik power indices for all players on the UN security council, with
pre-1965 and post-1965 structure. Which structure is better for nonpermanent members?

In pre-1965 rules, the UN security council had five permanent members, and six nonper-
manent members. A resolution passes only if all five permanent members want it to pass, and
at least two nonpermanent members want it to pass. So, we can model this voting method,
by letting {1,2,...,11} denote the council, and letting {1,2,3,4,5} denote the permanent
members. Then we use the characteristic function v : 2{t--11% — £0 1} so that, for any
S CA{l,...,11}, v(S) =11if {1,2,3,4,5} C S and if |S| > 7. And v(S) = 0 otherwise.

This voting method was called unfair, so it was restructured in 1965. After the restructur-
ing, the council had the following form (which is still used today). The UN security council
has five permanent members, and now ten nonpermanent members. A resolution passes only
if all five permanent members want it to pass, and at least four nonpermanent members want
it to pass. So, we can model this voting method, by letting {1,...,15} denote the council,
and letting {1,2,3,4,5} denote the permanent members. Then we use the characteristic
function v : 2{1-1% — 0,1} so that, for any S C {1,...,15}, v(S) = 1if {1,2,3,4,5} C S
and if |S| > 9. And v(S) = 0 otherwise.

IWe are actually being careless here. In general, we must also check that there are no equilibrium strategies
of the form g: (pa 1- b, 0)7 :'-7: (pa 07 1- p)7 and g: (07p7 1 _p)
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Solution. We first examine the pre-1965 rules. By symmetry, all permanent members have
the same power index, as do all nonpermanent members. We compute the power index of
the nonpermanent members first. To this end, suppose i is a nonpermanent member, that
is i € {6,...,11}. Then notice that S C {1,...,11} satisfies v(S) = 0 and v(SU{i}) =1
if and only if {1,...,5} € S and |S| = 6. That is, S contains all permanent members and
precisely one nonpermanent member other than i. Notice that for each i there are 5 such
sets S, corresponding to the 5 nonpermanent members other than i. Thus, applying (*), we
find

sy -y Steisi-y

n!
SC{1,...,n}
v(SU{i})=1 and v(S)=0
_ 611 -6-1)!
B 11!
614!
T
. 5:4-3.2
0 11-10-9-8-7
1
= — =~ 0.0022.
462

Now let j be a permanent member. Instead of computing ¢; directly, we appeal to efficiency.
That is,

Z or(v) =v({1,...,11}) = 1.

Since there are 5 permanent members all of whom have the same power index (¢,(v)), and
6 nonpermanent members with the same power index (¢;(v)), we therefore, have

5 5\ 462) 385

Thus, the permanent members have approximately 91 times as much power as the nonper-
manent members in the pre-1965 rules.

We compute the post-1965 power indices analogously. If ¢ is a nonpermanent member
(1 € {6,...,15}), we note that if v(S) =0 but v(SU{i}) = 1, we must have {1,...,5} C S
and |S| = 8 so that S contains 3 nonpermanent members other than i. Thus, by (*),

NQIAl 9
O s

5 (v) + 65(v) = 1 —> @@):1(1—6@(@)):1(1 0 ) 0 <0197

%) =5 = s
If j is a nonpermanent member, then as before, efficiency gives
1 127
(v) = =(1 —10¢; = —~0.18.
65(0) = 21 106,(0) = =
Thus, in the post-1965 rules, permanent members have approximately 16 times as much
power as non-permanent members. 0J

Exercise 5.6. Let n be a positive integer. Let v : 2847} — {0,1} be a characteristic
function that only takes values 0 and 1. Assume also that v is monotonic and v({1,...,n}) =
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1. For eachi € {1,...,n}, let B; be the number of subsets S C {1,...,n} such that v(S) =0
and v(S U {i}) = 1. The Banzhaf power index of player i is defined to be
B;
V) = < -
Bi(v) ST B
Like the Shapley-Shubik power index, the Banzhaf power index is another way to measure
the relative power of each player.
Compute the Banzhaf power indices for all players for the glove market example.
Then, compute the Banzhaf power indices for all players on the UN security council, with
pre-1965 and post-1965 structure. Which structure is better for nonpermanent members?

Solution. Recall that for the glove market example, we had n = 3 and

v({1,2}) = v({L,3}) = v({1,2,3}) = 1
where v(S) = 0 for all other subsets S C {1,2,3}. Notice that v(S) =0 and v(SU{1}) =1
for S = {2},{3},{2,3}. Thus B; = 3. For i = 2,3 we have v(S) = 0 and v(SU {i}) =1
only for S = {1}. Thus By = B3 = 1. Thus

fiv) =3 while fy(v) = fy(0) = =

For the pre-1965 UN security council rules, suppose ¢ is a nonpermanent member. Then as
before, there are 5 sets S such that v(S) = 0 and v(S U {i}) = 1, hence B; = 5. For j a
permanent member v(S) = 0 with v(S U {j}) = 1 if and only if (1), S contains all other
permanent members, and S contains at least 2 nonpermanent members. There are 2° total
subsets of nonpermanent members, 1 of which contains no nonpermanent members, and 6
of which contain exactly one nonpermament member. Thus there are 26 — 1 — 6 = 57 sets of
at least 2 nonpermanent members. Thus B; = 57. We compute

ZBk:5-57+6-5:315.
k

Therefore,
57 -
2L ~ (.18 k is permanent member
Br(v) = 3;5 . p _
31z 2 0.016 k£ is nonpermanent member

We compute the Banzhaf power indices for post-1965 similarly. If ¢ is a nonpermanent

member, there are () = 84 sets S such that v(S) = 0 and v(S U {i}) = 1, so B; = 84. If j

is a permanent member, then there are

10 10 10 10
210 — — — — =84
()= () =(2) - (5) ==
sets S such that v(S) =0 and v(SU{j}) = 1. We compute
> By =15-848 4 10 - 84 = 5080.
k

Thus
Bi(v) —58048% ~ 0.17 k is permanent member
v) = .
* —5g§0 ~ 0.017 k is nonpermanent member
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Exercise 5.7. Suppose we have two buyers, and f(v) = 1 for any v € [0,1] in a sealed-bid
second price auction. That is, V; and V5 are uniformly distributed in the interval [0, 1]. Show
that an equilibrium strategy is 51(v) = v, fa(v) = v,Vo € [0,1]. That is, each player will
bid exactly her private value.

Solution. Suppose player 2 bids f2(v) = v and has private valuation V5, and player 1 has
valuation v and bids b. Since we’re in a second price auction, the winner pays the bid of his
opponent. Note player 1 wins the auction if b > V5 and loses if b < V5. Thus the payoff for
player 1 is

0 if b< Vs,

v—Vy ifb>V,.

Now if v < V5, player 1 wants to lose the auction, since the payoff if he won would be
negative. However, if v > V5, player 1 wants to win the auction, and receives the same payoff
regardless of exactly how large b is in this case. The choice of b that always accomplishes
these objectives is b = v, so f;(v) = v.

By symmetry, if we assume (31 (v) = v, then we can conclude as above that fo(v) =v. O

Exercise 5.8. (Muddy Children Puzzle / Blue-Eyed Islanders Puzzle). This exercise is
meant to test our understanding of common knowledge.

Situation 1. There are 100 children playing in the mud. All of the children have muddy
foreheads, but any single child cannot tell whether or not her own forehead is muddy. Any
child can also see all of the other 99 children. The children do not communicate with each
other in any way, there are no mirrors or recording devices, etc. so that no child can see her
own forehead. The teacher now says, "stand up if you know your forehead is muddy.” No
one stands up, because no one can see her own forehead. The teacher asks again. ” Knowing
that no one stood up the last time, stand up now if you know your forehead is muddy.” Still
no one stands up. No matter how many times the teacher repeats this statement, no child
stands up.

Situation 2. After Situation 1, the teacher now says, ”I announce that at least one of
you has a muddy forehead.” The teacher then says, "stand up if you know your forehead is
muddy.” No one stands up. The teacher pauses then repeats, ”"stand up if you know your
forehead is muddy.” Again, no on stands up. The teacher continues making this statement.
The hundredth time that she makes this statement, all the children suddenly stand up.

Explain why all of the children stand up in Situation 2, but they do not stand up in
Situation 1. Pay close attention to what is common knowledge in each situation.

Solution. We first analyze situation 2. Throughout, let M denote the set of children with
muddy foreheads, and C' the set with clean foreheads. We argue that if k children have
muddy foreheads (|M| = k), then after k rounds (i.e., after the teacher asks the students k
times), every muddy foreheaded child m € M will stand up, while no clean ¢ € C' will stand
up. We argue by induction on k. For the base case, suppose k = 1, i.e., |[M| = 1. Notice
that every ¢ € C' sees exactly one child with a muddy forehead, while the lone m € M sees
no other muddy foreheads. When the teacher announces that at least one child has a muddy
forhead, then m € M knows he is the (only) child with a muddy forhead, so he stands up.
A child ¢ € C does not stand, because she sees m € M and knows that either |[M| =1 (and
m is the unique muddy child) or |M| = 2 and she is the other muddy child. Thus, she does
not know whether or not she is muddy.
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For the inductive step, assume that | M| = k. By induction, no one stood up the first k£ —1
times the teacher asked the students to stand. Notice that every m € M sees k — 1 muddy
foreheads, while each ¢ € C' sees k muddy foreheads. Therefore, each m € M knows that
either there are k — 1 muddy forheads (if m’s forehead is not muddy) or & muddy foreheads
(if m’s forehead is muddy). Similarly, each ¢ € C' knows there are either k or k + 1 muddy
foreheads. By the indcutive hypothesis, no child stood after the (k — 1)-st time the teach
asked the students to stand. Therefore (again by the inductive hypothesis), each m € M
knows that |M| # k — 1. Since each m € M sees k — 1 muddy foreheads, she must therefore
know that |M| = k, and that she also has a muddy forehead. Thus, the next time the teacher
asks she will stand.

The difference between situations 1 and 2 is most drastically seen in the base case, k = 1.
If the teacher never tells the children that some child has a muddy forehead, then the one
m € M never knows that she has a muddy forehead—for all she knows, no one has a muddy

forehead. 0

Exercise 5.9. There are five pirates on a ship. It is also common knowledge that every
pirate prefers to maximize his amount of gold. There are 100 gold pieces to be split amongst
the pirates. The game begins when the first pirate proposes how he thinks the gold should be
split amongst the five pirates. All five pirates vote whether or not to accept the proposal, by
a majority vote. If the proposal is accepted, the game ends. If the proposal is not accepted,
the first pirate is thrown overboard, and the game continues. The second pirate now proposes
how he thinks the gold should be split amongst the four remaining pirates. All four pirates
vote whether or not to accept the proposal, by a majority vote (the second pirate breaks a
tie). If the proposal is accepted, the game ends. If the proposal is not accepted, the second
pirate is thrown overboard, and the game continues, etc. (At each stage of the game, the
pirate that could be thrown overboard next can break the tie in the majority vote.) What
is the largest amount of gold that the first pirate can obtain in the game?

Solution. The idea of the solution is as follows: as long as the first pirate promises at least
2 of the other other pirates more coins than they would get otherwise, they will approve
and the vote passes. Label the pirates pi, pa, p3, pa, ps, where p; makes the first proposal, ps
the second, and so on. We’ll work backwards from the case where pq, ps, and ps where all
thrown overboard. In this case, pirate p, will propose that she takes all of the coins and ps
gets nothing.

Now suppose p; and ps were thrown overboard, and p3 makes a proposal. As long as p3
promises to give ps at least one gold coin, ps will accept (as ps will get nothing if she rejects).
Thus, p3 proposes to take 99 coins, give nothing to ps, and 1 coin to ps. Pirates ps3 and ps
will accept the proposal, so the proposal passes.

Now suppose only p; was thrown overboard. Pirate p, still only needs to get one additional
vote (in addition to hers) for her proposal to pass. So as long as she promises p4 one coin,
ps will accept. So ps proposes that she takes 99 coins, gives 1 to ps, who will vote in favor,
while p3 and ps receive nothing.

If p; is to have her vote accepted, she has to promise two other pirates at least as many
coins as they would be guaranteed if they were to reject her proposal. Again, p; needs only
promise ps a single coin for her to accept p;’s proposal. Since p3 and p, are not guaranteed
anything if they throw p; overboard, p; need only promise one of them a single gold coin,
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say ps. Therefore, p; suggest that she keeps 98 coins, ps and ps keep a single coin, and ps
and p, get nothing. So it seems the most that p; can guarantee herself is 98 gold coins! I

Exercise 5.10. Explain what a buyer in an open-bid decreasing auction knows when the
current announced price is z that she did not know prior to the start of the auction. (What
is common knowledge?)

Solution. Rational buyers in this auction know that the optimal strategy is to bid their
private value. (This fact and anything else it implies is common knowledge.) Hence when
the announced price reaches x without anyone previously bidding on the item (else the item
would be auctioned off already), each buyer can conclude that the others’ private values are
no larger than z. 0

6. HOMEWORK 6

Exercise 6.1. Suppose we have an auction with n buyers and k£ < n is a positive integer.
In a sealed-bid k-unit Vickrey auction, the top k£ bidders win the auction at a price equal to
the (k + 1)-st highest bid. For this auction, prove that it is a symmetric equilibrium when
all buyers bid their private value.

Solution. A buyer with private value v can make a profit at most max(v — m,0) where m is
the (k + 1)-st highest bid, and this profit is achieved when a buyer bids their private value.
Moreover, this strategy dominates all other strategies. That is, each buyer with this strategy
maximizes their profit, regardless of what the other players do. U

Exercise 6.2. In the India Premier League (IPL), cricket franchises can acquire a player
by participating in the annual auction. The rules of the auction are as follows. An English
auction is run until either only one bidder remains or the price reaches $m (for example
$m could be $750,000). In the latter case, a sealed-bid first-price auction is run with the
remaining bidders. (Each of these bidders knows how many other bidders remain).

Use the Revenue Equivalence Theorem to determine equilibrium bidding strategies in an
IPL cricket auction for a player with n competing franchises. Assume that the value each
franchise has for this player is uniform from 0 to 1 million dollars.

Solution.

If a buyer’s private value is v, and if v < m, then the buyer should bid up to their
private value v (repeating the argument from the notes/class that this strategy dominates
other strategies). Meanwhile, if v > m, then among the remaining k& > 2 buyers, there is a
sealed-bid first-price auction, where it is common knowledge that buyer’s private values are
uniform in [m, 1]. So if we did , from Theorem 7.13 in the notes, if Z is the maximum of
k —11i.i.d random variables that are uniform on [0, 1 —m], then P(Z < t) = t*"}(1 —m)!~*
and fz(t) = (k— 1)t*2(1 —m)'*, and the symmetric equilibrium strategy is to bid m plus
Jo Mag(x)de [T 2R da (v —m)*/k k—1

e e e T e mi = YR,

That is, the bid should be

v(l—1/k) +m/k.
Note that since k > 2, this bid is smaller than v, as we would expect

30



Exercise 6.3. Prove The following Lemma from the notes: The set of functions {Wg} SC{1,...,n}
is an orthonormal basis for the space of functions from {—1,1}" — R. (When we write
S C {1,...,n}, we include the empty set () as a subset of {1,...,n}.) (Also, for any

7e{-1, 1}” Ws(Z) = [;cq i)

Solution. Let V = {f : {—1,1}" — R}. It suffices to show that {IWs} is an orthonormal set
in V and that [{Wgs}| = dim V. First, we will show that dim V' = 2". For each 2 € {£1}",

define
ﬁ 1 if 7
f2() = {O i 7

We claim that B = {fz|Z € {£1}"} is a basis for V. Since |B| = 2", this implies that
dimV = 2". To see that B is a basis, we must show that it is a linearly independent
spanning set for V. Let f € V (that is, f : {£1}" — R). Then for each ¥ € {£1}", we can
write

z?

NI
Nl

f(@) = f(2) )Y @)= ) fEfF

Ze{£1}" Ze{£l1}m

Thus, every f € V can be written as a linear combination of the fz € B, so B is a spanning
set. To see that B is linearly independent, suppose there are coefficients az such that

Z azfz=0.

Ze{£1}m

Then for © € {£1}", we have

0= Z agfg(f) = afff(f) = Qz.

Ze{£1}"

Thus, az = 0 for all 2, implying that B is linearly indpendent. Therefore, dimV = 2", as

desired. Since there are 2" subsets S C {1,...,n}, in order to show {Ws} is an orthonormal
basis, it suffices to show {Wg} is an orthonormal set.
To show {Wg} is an orthonormal set, we first compute for each S C {1,...,n}

(W, Wy =2"" ) Ws(Z)Ws()

re{£1}"

oy (1)

ge{£1} \ieS

=27 Y 1 (g=1lor —1)
re{£1}"

=27"(2") = 1.
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Now suppose S # T. In particular, assume that there exists k € S with k ¢ T. Then we
compute

(W, W) =27 > We(@)Wr(F)
ze{£1}"

o ()

T yeeny rpe{£1} 1€S,i#£k JeT

L 3 (H g;) (ij) S

Iie{il} 1€S,i#k JeT xke{il}

= > (H ) (ij) (0)
r;e{E1} \i€S,i#k jET
ik
= 0.

Thus, {Ws} is an orthonormal set with 2" elements, hence an orthonormal basis for V. O

Exercise 6.4. Let f: {—1,1}?> — {—1,1} such that f(z) = 1 for all z € {—1,1}2. Compute

A

f(S) for all S C {1,2}.
Let f: {—1,1}® — {—1,1} such that f(z,xs,x3) = sign(x; +xo+x3) for all (z1,z9,x3) €
{—1,1}3. Compute f(S) for all S C {1,2,3}. The function f is called a majority function.

Solution. First consider f : {#1}*> — {£1} given by f(x) = 1. Observe that Wy(x) = 1 for
all x as well, hence f = Wjy. By the previous exercise, we have

1 ifS=40

Now consider f the majority function as defined above. Specifically, f has values

f(17171):f(_1?171) :f(17_171):f(1717_1) =1
f(=1,-1,1) = f(—-1,1,-1) = f(1,-1,-1) = f(—-1,-1,-1) = —1.

We compute

=231 4+14+14+41-1-1-1-1)
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For S = {1}, we have Ws(z1, x2, x3) = x1. Therefore
@ =rwy =2 3 @)

ze{£1}"

=277 Z f(@1, 2, 13)31

ze{£1}"

(@) + M=) + M) + M(D) + (=D(=1) + (=1)(=1) + (=1)(1) + (=1)(=1))

N| — ool —

Similarly, we find that f(S) =1/2 for |S| = 1. When |S| = 2, we find f(S) = 0, and when
S =1{1,2,3}, f(S) =—1/2. Thus
0 if S| = 0,2
f8)=<1/2 if|9]=1
—1/2 if |S] =3.
0

Exercise 6.5. Let f: {—1,1}3 — {—1,1} such that f(xy,xs,x3) = sign(x; + x5+ x3) for all
(21,20, 23) € {—1,1}3. In the previous homework, we computed f(S) for all S C {1,2,3}.
The function f is called a majority function. Compute the noise stability of f, for any
pe(—1,1).

Let n be a positive odd integer. The majority function for n voters can be written as
f(x1,...,2,) =sign(zxy + - -+ x,), where xq,...,x, € {—1,1} and f: {-1,1}" — {-1,1}.
In the limit as n — oo, the noise stability of the majority function approaches a limiting
value. (We implicitly used this fact in stating the Majority is Stablest Theorem.) You will
compute this limiting value A in the following way. We have A = 4B — 1, where B is defined
below. Let 21, z; be vectors of unit length in R?. Let p € (—=1,1). Let - denote the standard
inner product of vectors in R?. Assume that z; - zo = p. Let C C R? be the set such that

C={rcR*:2-z>0and -2 >0}

(e ?)/2
B= / T dedy.
C 2T

Compute the value of A. (You should get a relatively simple quantity involving an inverse
trigonometric function.)

Then

Solution. By the computation in the previous exercise, we compute the noise stability of the
majority function f with n =3 by

(LT =Y. A

5C{1,2,3}

1\? —1\°
=3p( = 3 —
(3) +(5)
_3 1
TPy
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To compute the integral

e~ (@ +y?)/2
B—/ —— dxdy,
C 27T

first observe that that the region C'is an infinte "wedge” centered at the origin consisting of
points ¥ satisfying - 21 > 0 and & - Z; > 0. The angle of the wedge is m — 1, where 1) is the
angle between 27 and z;. We compute v by

p=7= 2 =||7lll|Zllcost = ¢ =cos™(p)

because ||Z1|| = ||Z2|| = 1. Thus, the angle of the wedge is © = 7 — ¢ = 7 — cos™'(p) =
cos~!(—p). The region C can be expressed in polar coordinates as

C={(r0):0<r<oo,t <0<06,} wherefy—0; =0.

Notice that by symmetry, the integral for B depends only on ©, not on the actual values of
0, and Ay. Therefore, a change of variables to polar coordinates gives

o (@2 +y?)/2
B= / —dzdy
C

2m
I
= —/ / re” " 2dfdr
27T 0 01
= 9 re” "2 dr
2 Jo
@ oo
= — e du  (u=r1r?/2)
2 Jo
6
o
Since © = cos™!(—p), we find that
—1 _
Acap_1= 2o =)y
T

0

Exercise 6.6. Let f denote the majority function for n voters. In class, we showed that
L(f) = 1/y/n for all i € {1,...,n}. Explain why we can interpret this calculation as
saying: your influence in a majority election is a lot more than 1/n, so you should vote. On
the other hand, give reasons why the influence calculation may not accurately reflect your
actual influence in a majority election. (If you are thinking of elections in the US, feel free
to consider or ignore the electoral college system.)

Solution. We can interpret I;(f) as the probability that x; determines the outcome of an
election assuming that all x; for j # ¢ are assigned randomily. The fact that for a majority
vote, I;(f) ~ 1/4/n means that the likelyhood that any particular person’s vote changes the
outcome of an election is approximately 1/y/n. This fact is perhaps counterintuitive, as all
of the n votes count equally—one might naively expect, therefore, that the probability of one
particular vote changing the outcome of an election to be 1/n. Since your influence as a
voter is relatively large, you should vote!
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The problem with this intuition (and the definition of I;(f) from a practical standpoint)
is that it assumes that all other votes are cast randomly. In particular, it assumes that
every voter j # i is equally likely to vote for both candidates. In reality, this would be very
unusual. If, on the other hand, voters are even slightly more likely to vote for candidate
A than candidate B, then an individual’s influence on the outcome of the election is much
smaller. 0

Exercise 6.7. Let n be a positive integer. Let f, g : {—1,1}" — {—1,1}. Let ag, ..., an, bo, - . .

R. Let & = (xy,...,2,) € {—1,1}". For any & € {—1,1}", define

Lf(f) = CL0—|—ZCL7;J]Z‘7 Lg(f) :bo—f—ZbZZL’Z

Assume that Ly(Z) # 0 and Ly (%) # 0 for all ¥ € {-1 1}" Assume also that f(¥) =
sign(L(Z)) and g(Z) = sign(Ly(T)) for all Z € {—1,1}". Assume that f(S) = §(S) for all
S C{1,...,n} with |[S] < 1. Prove that f = ¢. (Hint: what does the Plancherel Theorem
say about (f,L;)? How does this quantity compare with (g, L) and (g, L,)? Also, note

that f(Z)L;(Z) = [Lp(Z)] = g(Z)Ls(Z) for any T € {-1,1}")

Solution. First, observe that Wy(Z) = 1, while W;(Z) = x; for all i € {1,...,n}. Therefore,
we have

Ly(z )—a0+2ale—a0W@ —l—ZaZ

Therefore,
ap if S =10
Li(S)=1<a; ifS={i}
0  otherwise.

Thus, applying Plancherel’s theorem, we compute

(f.Lpy =Y f(S)Ly(S)

The third equality holds because of the hypthesis that f(S) = §(S) for all S with |S| < 1.
On the other hand, we compute

(fiLpy =27 f@L;@ =27 ) |Ly(&)
S ESR re{x1}"

and similarly,



Since ¢(Z) € {1}, we have g(Z)L;(Z) < |L;(Z)| for all ¥ with equality if and only if
g(Z) = sign(Ls(Z)) = f(&). Therefore, since

27" Y g@Lp(@) =g, L) = (f. Ly =2" Y |L;@),

ze{+1}n Fe{+1}»
we must have f(Z) = ¢g(Z) for all &, as desired. O

Exercise 6.8. Let n be a positive integer. Show that there is a one-to-one correspondence (or
a bijection) between the set of functions f where f: {—1,1}" — R, and the set of functions
g where g : 2112 5 R, For example, you could identify a subset S C {1,...,n} with
the element 7 = (z1,...,7,) € {—1,1}" where, for all i € {1,...,n}, we have z; = 1 if
i€ S,and x; = —1ifi ¢ S. Let 4,5 € {1,...,n} and let ¥ € {—1,1}". Let S(¥) = {j €
{1,...,n} : z; = 1}. Using this one-to-one correspondence, show that the i’* Shapley value
of f:{-1,1}" — {—1,1} can be written as

spn= 3 BOMeZIS@OIZD G L) - ).

n!
ze{-1,1}"
zi=—1

So, ¢i(f) is similar to, but distinct from, I;(f). On the other hand, the i* Banzhaf power
index is essentially identical to I;(f). That is, if we define

[, o, =T, T, - @) — f(F)
B.(f) =
RENY 5 :
ze{-1,1}"
then By(f)/ 327, B;(f) is the i*" Banzhaf power index of f.
Solution. Consider the function ¢ : {#1}" — 2{L2-7} given by

Y(Z) =S5 where S = {i|z; = 1}.

1 ifie S

¢—1(S):fwherexi:{_1 ifids

Similarly, given a function f : {£1}® — R we can define g : 2{b"t — R by ¢(5) =
f(71(S)). Since 1 is a bijection, it is clear that the correspondence f <> g is also a
bijection.

Shapley value of g to be

oilg) = 3 B =IO iy — o)),

n!
S¢S
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Given f : {£1}" — R, we can define the Shapley values of f by ¢;(f) = ¢i(g) where
f = go1. Therefore we obtain

oi(f) = ¢i9)
=y B =ISI= Dl 5 iy - u(s))

n!
S¢S

2)(n — |yY(2)] — 1)!
3 [ (@)[Hn = [(@)] = 1)

n!

(f(xlv ey Li—1, 17$i+17 B 73:11) - f(f))

re{x1}"
r;=—1

This gives the desired result.
Similarly, using the bijection on the formula for Banzhaf power indices yields the final
expression in the exercise. O

Exercise 6.9. Let f: {—1,1}" — {—1,1}. Assume that f(S) = 0 whenever S C {1,...,n}
and |S| # 1. Show that there exists i € {1,...,n} such that f(Z) = f(x1,...,2,) = z; for
all 7 € {—1,1}", or f(¥) = —x; for all ¥ € {—1,1}".

Solution. Since f(S) = 0 for all S with |S| > 1, we have
f=>, (FWs)Ws= D (f,Ws)Ws.
SC{1,...,n} 5:9|<1

Since Wy(Z) = 1 for all Z, and W;(Z) = z; for all i = 1,...,n. Therefore, we can write

f(&) =ag+ Zaixi where ag = (f, W) and a; = (f, W;).

=1

Therefore, we must show that there is precisely one j € {0, 1,...,n} such that a; = £1, while
a; = 0 for all i # 7. We first show by induction on n that each a; satisfies a; € {1,0,—1}. It
is clear that for n = 0, we must have a9 = £1. For the inductive step, write & € {£1}" by

(2/,x,) where 2/ € {#1}""" and z,, € {£1}. Then for any fixed 2/, we must have
+2 i f(af,1) # [, 1),

Therefore, a; € {1,0,—1} for all i. Now consider Z € {+1}" given by z; = sign(a;) if a; # 0,
and x; arbitrary otherwise. Then

f(@',1), f(a',—1) € {£1} so that f(£,1)—f(£/,_1):{

f(@) =ag+ Z a;x;.
=1

Since this value must be -1 or 1, with all of the a;’s equal to 1, 0, or -1, there can clearly be
at most one a; with ay # 0. This gives the desired result. U

7. HOMEWORK 7

Exercise 7.1. Show that, in a Condorcet election with three candidates, if we use a majority
vote to compare each pair of candidates, then as the number of voters goes to infinity, the
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probability that a Condorcet winner occurs approaches

3 3
1 + 7 sin™(1/3).
(Assume that each voter ranks their candidates uniformly at random and independently of

all other voters.)

Solution. From (the proof of) Arrow’s Impossibility Theorem in the notes, the probability
of a Condorcet winner occurring is

3
20— (T,
where f: {—1,1}" — {—1, 1} is the voting method defining the Condorcet election (which is
the majority function). From a previous exercise (or the notes), the noise stability of majority
(as the number of voters goes to infinity) is (f,7,f) = 2sin”"(p) for any —1 < p < 1. So,
plugging in p = —1/3, the probability of a paradox is
3 2 3 2
1(1 — %sin_l(—l/?))) = Z(l + %sin_l(l/?))).
O

Exercise 7.2. Create an algorithm that finds an evolutionarily stable strategy in a two-
person general sum game (if the strategy exists). Find a reasonable bound on the run time
of this algorithm.

[See next exercise]

Exercise 7.3. Find all Nash equilibria of a two-player symmetric game with the following
payoffs

4 3 25 6
31 8 91
70707
133 21
01291

(Hint: maybe you should use a computer program.)
Find all evolutionary stable strategies.
(Hint: maybe you should use a computer program.)

The program below finds all Nash equilibria of the game.

import numpy as np
from itertools import combinations

def all_nonempty_subsets(n):
"""Generate all nonempty subsets of {0,...,n-1}."""
return [list(c) for r in range(l, n+1) for ¢ in combinations(range(n), r)]

def solve_support_pair_general(A, B, I, J, tol=1e-8):

Try to find a Nash equilibrium with supports I (row) and J (col).
Returns (x, y) if successful, else None.
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A, B are the m by n payoff matrices, specified as numpy arrays

m, n = A.shape
size_I = len(I)
size_J = len(J)

num_vars = size_I + size_J # x_i (1 in I) + y_j (j in J)

x_idx = {i: k for k, i in enumerate(I)}
y_idx = {j: k + size_I for k, j in enumerate(J)}

Cc =[]

# For each i in I, we want: (A y)_i = constant over support
# we write this as: (Ay)_i - (Ay)_i0 = 0, for all i in I except iO
# that is A_mod y =0 where A_mod_ij = A_ij - A_i0j for all i in I
# also since y_j=0 for all j not in J, we ignore indices outside of J
i0 = 1[0]
for i in I[1:]:

row = np.zeros(num_vars)

for j in J:

row[y_idx[jl] += A[i, jl - A[i0, jl
C.append(row.tolist())

# For j in J: (x°T B)_j = constant over support

# we write this as: (x"T B)_j - (x"T B)_jO = 0, for all j in J except jO
# that is x~ T B_mod =0 where B_mod_ij = B_ij - B_ijO for all j in J

# that is, B_mod"T x =0

jo = J[0]
for j in J[1:]:
col = np.zeros(num_vars)
for i in I:
col[x_idx[i]] += B[i, j] - B[i, jO]
C.append(col.tolist())

+*

combine equations in block form, to get [A, 0; 0, B] [y, x]°T =0
but then also add constraint on sum being 1 to get
[A, O0; O, B°T; 1...1 0...0; 0...0 1...1] [y, x]°T =0

H =

Q

.append([1]*size_I + [0]*size_J)
.append ([0]*size_I + [1]*size_J)

Q

+*

Finally, solve Cz =0. C is [I|+|J|+2 X |I[+|J[+2, b is

39



C = np.array(C)

b = np.array([0] * num_vars)
b[-2] =1

b[-1] =1

z = np.linalg.solve(C, b)

X = np.zeros(m)

y = np.zeros(n)

for i in I:

x[i] = z[x_idx[i]]
for j in J:
y[j]1 = zly_idx[j]1]

# Check that all entries of x, y are nonnegative, and maximizing property holds:
# (Ay)_i <= x°T Ay for all indices i, and (Ay)_i <= x"T Ay
player_1_payoff = x.T Q@ A Qy
player_2_payoff = x.T @ B Q y
if all((x[i] > -tol) for i in range(m)) and \
all((y[j] > -tol) for j in range(n)) and \
all((A[i] @ y <= player_1_payoff + tol) for i in range(m)) and \
all((x @ B[:, j] <= player_2_payoff + tol) for j in range(n)):
return x, y
return None

def find_nash_equilibrium_general(A, B, tol=le-14):
"""Find all Nash equilibria in a 2-player general-sum game."""
m, n = A.shape
result=[]
for I in all_nonempty_subsets(m):
for J in all_nonempty_subsets(n):

try:
new_result = solve_support_pair_general(A, B, I, J, tol)
result.append(new_result)
except:
if result:
return result

else:
return None

def is_ESS(A, B, x, y, tol=1le-8):
"""Checks if a Nash Equilibria is an Evoluationarilyi Stable Strategy."""
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# first, check if x,y is symmetric
if any((abs(x[i] - y[i]) > tol) for i in range(len(A))):
return False

# then, check for invasive populations
for i in range(m):
w = np.zeros(m)
wli] =1
if abs(w.T @ A @ x - w.T @A Q@x) <tol and (wT@AQw>x.T@Q@AQuw- tol):
return False

return True

if __name__ == "__main__":
A = np.array(
((4, 3, 2, 5, 6],
(3, 1, 8, 9, 11,
(7, 0, 7, 0, 71,
(1, 3, 3, 2, 11,
[0, 1, 2, 9, 111

)
B =A.T

result = find_nash_equilibrium_general(A, B)
num_equilibria = 0
if result:
print (" Nash Equilibrium Found:")
for equilibria in result:
if equilibria:
X, y = equilibria
print(" Player 1 strategy: x=", x, ". Player 2 strategy: y=", y, "Is ES
num_equilibria += 1
print ("Total Number of Equilibria (with duplicates):", num_equilibria)
else:
print("No equilibria found.")

The output of this program was:

Nash Equilibrium Found:

Player 1 strategy: x= [0. 1. 0. 0. 0.] . Player 2 strategy: y= [0. 0. 0. 1. 0.] Is ESS
Player 1 strategy: x= [0. 0. 0. 1. 0.] . Player 2 strategy: y= [0. 1. 0. 0. 0.] Is ESS
Player 1 strategy: x= [0.69230769 O. 0. 0.30769231 0 ] Playe
Player 1 strategy: x= [-0. 0. 0. 1. 0.] . Player 2 strategy: y= [ 0. 1. 0. 0. -
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Player 1 strategy: x= [0. 1. 0. 0. 0.] . Player 2 strategy: y= [0.69230769
Player 1 strategy: x= [ 0. 1. 0. 0. -0.] . Player 2 strategy: y= [-0.
Player 1 strategy: x= [0.2 0.575 0.225 0. 0. ] . Player 2 strategy:
Player 1 strategy: x= [0.08 0.68 0.24 0. 0. ] . Player 2 strategy: y= [
Player 1 strategy: x= [0.57894737 0.18421053 0. 0.23684211 0.

Total Number of Equilibria (with duplicates): 9
So, after deleting some duplicates, we obtained 7 Nash equilibria, none of which are ESS.

Player 1 strategy: x= [0. 1. 0. 0. 0.] . Player 2 strategy: y= [0. 0. 0. 1
Player 1 strategy: x= [0. 0. 0. 1. 0.] . Player 2 strategy: y= [0. 1. 0. O.
Player 1 strategy: x= [0.69230769 O. 0. 0.30769231 O.

Player 1 strategy: x= [0. 1. 0. 0. 0.] . Player 2 strategy: y= [0.69230769
Player 1 strategy: x= [0.2 0.575 0.225 0. 0. 1 . Player 2 strategy:
Player 1 strategy: x= [0.08 0.68 0.24 0. 0. 1 . Player 2 strategy: y= [
Player 1 strategy: x= [0.57894737 0.18421053 0. 0.23684211 0.

THE EXERCISES BELOW WERE OPTIONAL.

Exercise 7.4 (Optional). Prove a Hoeffding inequality for random variables X, ..., X,, that
are 1-sub-Gaussian.
A real-valued random variable X is called k-sub-Gaussian if E|X| < oo and

EelXEXI < ek2t2/2, VteR.
Solution. This is a repetition of the argument from the notes. O

Exercise 7.5 (Optional). Write a computer program that implements the bandit algorithms
we discussed in class. (Explore-then-Commit, Successive Elimination, and UCB) Consider
e.g. some rewards with different expected values, and plot the regret over time. Compare
your findings with our theoretical regret bounds.

Try also rewards that are Gaussian random variables with different means. How do your
regret bounds behave?

Try also rewards that are Poisson with different means. How do your regret bounds
behave?

USC DEPARTMENT OF MATHEMATICS, LOS ANGELES, CA
Email address: stevenmheilman@gmail.com
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