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Final Exam

This exam contains 13 pages (including this cover page) and 8 problems. Enter all requested
information on the top of this page.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

� You have 50 minutes to complete the exam,
starting at the beginning of class.

� Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

� Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

� If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper appears at the end of the
document.

Do not write in the table to the right. Good luck!a

aMay 9, 2025, © 2024 Steven Heilman, All Rights Re-
served.

Problem Points Score

1 18

2 10

3 10

4 10

5 10

6 10

7 15

8 10

Total: 93



Reference sheet. Below are some definitions that may be relevant.

∆m := {x = (x1, . . . , xm) ∈ Rm :
m∑
i=1

xi = 1, xi ≥ 0, ∀ 1 ≤ i ≤ m}.

Let A be an m×n real payoff matrix defining a zero-sum two-player game. A mixed strategy
x̃ ∈ ∆m is optimal for player I if miny∈∆n x̃

TAy = maxx∈∆m miny∈∆n x
TAy. A mixed

strategy ỹ ∈ ∆n is optimal for player II if maxx∈∆m xTAỹ = miny∈∆n maxx∈∆m xTAy. We
say the pair (x̃, ỹ) are an optimal strategy for the payoff matrix A if x̃ ∈ ∆m is optimal
for player I and ỹ ∈ ∆n is optimal for player II.

Let m,n be positive integers. Suppose we have a two-player general sum game with m× n
payoff matrices. Let A be the payoff matrix for player I and let B be the payoff matrix for
player II. A pair of vectors (x̃, ỹ) with x̃ ∈ ∆m and ỹ ∈ ∆n is a Nash equilibrium if

x̃TAỹ ≥ xAỹ, ∀x ∈ ∆m, x̃TBỹ ≥ x̃By, ∀ y ∈ ∆n.

A joint distribution of strategies is an m × n matrix z = (zij)1≤i≤m,1≤j≤n such that zij ≥ 0
for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and such that

∑m
i=1

∑n
j=1 zij = 1. We say z is a

correlated equilibrium if

n∑
j=1

zijaij ≥
n∑

j=1

zijakj, ∀ i ∈ {1, . . . ,m}, ∀ k ∈ {1, . . . ,m}.

m∑
i=1

zijbij ≥
m∑
i=1

zijbik, ∀ j ∈ {1, . . . , n}, ∀ k ∈ {1, . . . , n}.

Suppose we have a two-player symmetric game (so that the payoff matrix for player I is
A, the payoff matrix for player II is B, and with A = BT ). Assume that A,B are n × n
matrices. A mixed strategy x ∈ ∆n is said to be an evolutionarily stable strategy (ESS)
if, for any pure strategy w, we have

wTAx ≤ xTAx, and If wTAx = xTAx, then wTAw < xTAw.

A set K ⊆ Rn is called convex if, for any x, y ∈ K and for any 0 ≤ t ≤ 1, we have
tx+ (1− t)y ∈ K. A set K ⊆ Rn is called bounded if there exists r > 0 such that ||x|| ≤ r
for all x ∈ K.

We define a symmetric auction. A single object is for sale at an auction. The seller is
willing to sell the object at any nonnegative price. There are n buyers, which we identify
with the set {1, 2, . . . , n}. All buyers have some set of private values in [0,∞). We denote
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the private value of buyer i ∈ {1, . . . , n} by Vi, so that Vi is a random variable that takes
nonnegative real values. We assume that all of the random variables V1, . . . , Vn are indepen-
dent. We also assume that V1, . . . , Vn are identically distributed, with a continuous density
function. That is, there exists some continuous function f : R → [0,∞) with

∫∞
−∞ f(x)dx = 1

such that: for each i ∈ {1, . . . , n}, for each t ∈ R, the probability that Vi ≤ t is equal to∫ t

−∞ f(x)dx. We also assume that all buyers are risk-neutral, so that each buyer seeks to
maximize their expected profits.

Finally, we assume that all of the above assumptions are common knowledge. That is,
every player knows the above assumptions; every player knows that every player knows the
above assumptions; every player knows that every player knows that every player knows the
above assumptions; etc.

Under the above assumptions, a pure strategy for Player i ∈ {1, . . . , n} is a function
βi : [0, 1] → [0,∞). So, if Player i has a private value of Vi, he will make a bid of βi(Vi) in
the auction. (We will not discuss mixed strategies in auctions.)

Given the strategies β = (β1, . . . , βn), and given any v ∈ [0, 1], Player i has expected profit
Pi(β, v), if her private value is v. (If buyer i wins the auction, and if buyer i has private value
v and bid b, then the profit of buyer i is v− b.) We say that a strategy β is an equilibrium
if, given any v ∈ [0, 1], any b ≥ 0, and any i ∈ {1, . . . , n},

Pi(β, v) ≥ Pi((β1, . . . , βi−1, b, βi+1, . . . , βn), v).

Let n be a positive integer. Let x = (x1, . . . , xn) ∈ {−1, 1}n. Let f, g : {−1, 1}n → R.
For any subset S ⊆ {1, . . . , n}, define a function WS : {−1, 1}n → R by WS(x) :=

∏
i∈S xi.

Define also the inner product ⟨f, g⟩ := 2−n
∑

x∈{−1,1}n f(x)g(x). Any f : {−1, 1}n → R can

be expressed as f(x) =
∑

S⊆{1,...,n}⟨f,WS⟩WS(x). For any S ⊆ {1, . . . , n}, if we denote

f̂(S) := ⟨f,WS⟩ = 2−n
∑

y∈{−1,1}n f(y)WS(y), then we have f(x) =
∑

S⊆{1,...,n} f̂(S)WS(x).

The noise stability of f with parameter ρ ∈ (−1, 1) is defined to be
∑

S⊆{1,...,n} ρ
|S||f̂(S)|2.

Let A = {1, . . . , k}. Let (Pa)a∈A be a set of probability distributions. Let H be a positive
integer or ∞. A bandit problem is a two-player game with incomplete information played
over H rounds. For each round 0 ≤ t ≤ H of the game, the learner chooses an action At ∈ A.
The learner then obtains a reward Rt, where Rt is sampled from PAt .

Since the game occurs over many rounds, At is a function of the history A0, . . . , At−1,
R0, . . . , Rt−1 at time t. A policy π is a function whose input is the history (at any time t)
and whose output is an action in A.

For any a ∈ A, let µa be the expected value of a random variable with distribution Pa. The
expected regret rH at time H is:

Hmax
a∈A

µa −
H−1∑
t=0

ERt.
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1. Label the following statements as TRUE or FALSE. If the statement is true, EXPLAIN
YOUR REASONING. If the statement is false, PROVIDE A COUNTEREX-
AMPLE AND/OR EXPLAIN YOUR REASONING.

(a) (3 points) Every two-player zero-sum game has an optimal strategy.

TRUE FALSE (circle one)

(b) (3 points) Suppose I have a polynomial time algorithm that, when given any two-
player general sum game defined by two n×n integer-valued payoff matrices, could
output an ESS, or determine that no ESS exists. (This algorithm has a run time
that is polynomial in n and in the log of the largest integer in the payoff matrices.)
Then P=NP. (Equivalently, it is NP-hard to: find an ESS or decide no ESS exists.)

TRUE FALSE (circle one)

(c) (3 points) In the game of chess, it is known that the first player has a winning
strategy. That is, the first player can guarantee a win, regardless of what the
second player does.

TRUE FALSE (circle one)
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(d) (3 points) Consider the problem of deciding if a general sum game has at least two
Nash equilibria. This problem is NP-complete.

TRUE FALSE (circle one)

(e) (3 points) Suppose we have a bandit problem with rewards satisfying 0 ≤ Rt ≤ 1
for all times t ≥ 0. Assume that k ≤ H. Then there is an algorithm for the bandit
problem with expected regret at time H bounded by 100

√
kH logH.

TRUE FALSE (circle one)

(f) (3 points) The Condorcet paradox no longer occurs if we consider an election be-
tween four candidates. That is, the Condorcet paradox only occurs in Condorcet
elections between three candidates.

TRUE FALSE (circle one)
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2. (10 points) Prove the following. On a standard Hex game board, the first player has a
winning strategy. That is, the first player has a strategy that guarantees a win, regardless
of what the second player does.

(You may assume that exactly one person wins the game, so that the game never ends
in a tie.)

: A Starting Position in Hex
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3. (10 points) Let m ≥ 1 be a positive integer.

Show that ∆m is convex and bounded.

(You need to justify your answer.)
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4. (10 points) Suppose we have a Vickrey auction, i.e. a sealed-bid second-price auction,
with n ≥ 2 bidders. Each bidder submits a bid to the seller (in a sealed envelope), and
the winner of the auction is the highest bidder, and they pay the second-highest bid.

� Explain why it is an equilibrium when each bidder bids their private value.

� Explain why the total expected revenue of the seller is

n

∫ ∞

−∞
FY (t)E(Y |Y ≤ t)f(t)dt,

where Y = max(V2, . . . , Vn) is the maximum private value of n− 1 bidders. (Hint:
the expected payment of buyer 1 with private value t is FY (t)E(Y |Y ≤ t) where
FY (t) := P(Y ≤ t) for all t ∈ R.)
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5. (10 points)
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Consider a network with four vertices v1, v2, v3, v4 (cities) and four edges (roads): (v1, v3), (v3, v2),
(v1, v4), (v4, v2). Each edge has a cost which describes the time it takes for a driver to
traverse that road. Suppose the edges have costs t, 1, 1, t, respectively. (A cost of t
means: the cost is equal to the amount of traffic on that road.)

Suppose there is one unit of traffic, representing a large number of players. Each player
wants to go from v1 to v2. Each player acts independently of each other player. And
each player wants to minimize their travel time. Assume that every player is using the
same strategy at equilibrium.

� Under the above assumptions, describe the unique Nash equilibrium for the players
and the mean travel time of one player. Justify your answer.

Suppose now we add a short and fast (one way) highway from v3 to v4 with zero cost.

� Under the above assumptions, for the new highway system, describe the unique
Nash equilibrium for the players and the mean travel time of one player. Justify
your answer.

� What is the ratio between your current answer and your previous answer?
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6. (10 points) Let f : {−1, 1}n → {−1, 1}.

� Show that the noise stability of f with parameter 0 < ρ < 1 is at most 1.

� If
∑

x∈{−1,1}n f(x) = 0, show that the noise stability of f with parameter 0 < ρ < 1
is at most ρ.
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7. (15 points) Suppose we have a two-player symmetric game with payoffs described by a
matrix such as the following.

A =


4 3 2 5 6
3 1 8 9 1
7 0 7 0 7
1 3 3 2 1
0 1 2 9 1


Describe in detail an algorithm that outputs a Nash equilibrium of this game.

Make sure to justify why your algorithm outputs a Nash equilibrium.

Also give a bound on the run time of the algorithm.

Hint: you can freely use that, if (x̃, ỹ) ∈ ∆m ×∆n is a Nash equilibrium and if

I := {1 ≤ i ≤ m : x̃i > 0}, J := {1 ≤ j ≤ n : ỹj > 0}. (∗)

then with payoff matrices A,B respectively, we have

max
i=1,...,m

(Aỹ)i = (Aỹ)i, ∀ i ∈ I. and max
j=1,...,n

(x̃TB)j = (x̃TB)j, ∀ j ∈ J.
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8. (10 points) Let X1, . . . , Xn be real-valued i.i.d. (independent identically distributed)
random variables. Assume that

EeαX1 ≤ eα
2/2, ∀α ∈ R.

Assume also that EX1 = 0. Prove that

P
( 1
n

n∑
i=1

Xi > t
)
≤ e−nt2/2, ∀ t > 0.
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(Scratch paper)
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