499 Midterm 2 Solutions¹

1. Question 1

TRUE/FALSE

(a) Let $K \subseteq \mathbb{R}^2$ be a convex set. Let $f: K \to K$ be continuous. Then f has a fixed point. That is, there exists $k \in K$ such that f(k) = k.

FALSE. Let f(x,y) = (x+1,y) for all $(x,y) \in \mathbf{R}^2 =: K$. Then f is continuous with no fixed point, since a fixed point (x,y) would satisfy x+1=x which has no solution.

(b)There exists a symmetric two-person general-sum game such that all of its Nash equilibria are not symmetric.

FALSE. Every symmetric game has at least one symmetric Nash equilibrium, a corollary of Nash's Theorem.

(c) Every two-player general sum game has at least two correlated equilibria.

FALSE. The Prisoner's Dilemma has only one correlated equilibrium

(d) Any correlated equilibrium is a convex combination of Nash equilibria.

FALSE. In the game of chicken, we showed there is a correlated equilibrium which is not a convex combination of Nash equilibria.

2. Question 2

Recall the prisoner's dilemma, which has the following payoffs.

I		Prisoner II	
er		silent	confess
Prison	silent	(-1, -1)	(-10,0)
	confess	(0, -10)	(-8, -8)

Find all Nash equilibria for this game.

Solution. As shown in the notes, it follows from a domination argument that x = (0, 1) and y = (0, 1) is the only Nash equilibrium for this game.

3. Question 3

- (a) Give an example of a convex and bounded subset K of Euclidean space, and give an example of a continuous function $f: K \to K$ such that f has no fixed point. Solution. Let K = (0,1) and let f(x) = x/2 for all $x \in \mathbf{R}$. Then K is convex and bounded, and f is continuous, but f has no fixed points, since f(x) = x would say x/2 = x, i.e. 1/2 = 1 (since x > 0), which can never be satisfied.
 - (b) Give an example of a function $f:[0,1]\to[0,1]$ such that f has no fixed point.

Solution. For any $x \in [0,1)$, let f(x) = 1, and let f(1) = 0. Then f has no fixed point, since f(x) = x is never satisfied, by definition of f.

¹March 29, 2025, © 2025 Steven Heilman, All Rights Reserved.

4. Question 4

Recall that the game of Rock-Paper-Scissors is defined by the payoff matrices

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \quad B = A^T.$$

Then the game is symmetric. (And also, note that A+B=0, so that the game is a zero-sum game.)

You may assume that (1/3, 1/3, 1/3) is a (symmetric) Nash equilibrium.

Show that this Nash equilibrium is **not** evolutionarily stable.

Solution. In order to see that $\vec{x} = (1/3, 1/3, 1/3)$ is not an evolutionarily stable equilibrium, we must find a different strategy \vec{w} such that

$$\vec{w}^T A \vec{x} = \vec{x}^T A \vec{x}$$
 and $\vec{w}^T A \vec{w} > \vec{x}^T A \vec{w}$.

Since $A\vec{x}=(0,0,0)$ and $\vec{x}^TA=(0\quad 0\quad 0)$, it suffices to find \vec{w} satisfying $\vec{w}^TA\vec{w}=0$. To this end, we observe that any pure strategy \vec{w} satisfies $\vec{w}^TA\vec{w}=0$, as the payoff to both players is 0 if they both choose the same move. For example, $\vec{w}=(1,0,0)$ works.

5. Question 5

Define $v: 2^{\{1,2,3\}} \to \mathbf{R}$ so that $v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = v(\{1,2,3\}) = 1$, whereas $v(\{1\}) = v(\{2\}) = v(\{3\}) = v(\emptyset) = 0$.

Arguing directly using the axioms for the Shapley value, compute all of the Shapley values of v.

Solution. We first claim that $\phi_1(v) = \phi_2(v) = \phi_3(v)$. This will follow by an application of Axiom (i). We need to check the assumption of Axiom (i) holds for all eight subsets S of $\{1,2,3\}$. When $S = \emptyset$, it is given that $v(\{1\}) = v(\{2\}) = v(\{3\})$. When $S = \{1\}$, we know $v(\{1,2\}) = v(\{1,3\})$; similarly the assumption of Axiom (i) holds for $S = \{2\}$ and $S = \{3\}$. The remaining assumptions of Axiom (i) hold vacuously (in the case that $|S| \geq 2$). We conclude that Axiom (i) tells us $\phi_1(v) = \phi_2(v) = \phi_3(v)$. Now, from Axiom (ii), $\phi_1(v) + \phi_2(v) + \phi_3(v) = v(\{1,2,3\}) = 1$. In conclusion, $\phi_1(v) = \phi_2(v) = \phi_3(v) = 1/3$.