Math 499, Spring 2025, USC		Instructor: Steven Heilm	aı
Name:	USC ID:	Date:	_
Signature:	Discussion Section	on:	-
(By signing here, I certify that I ha	ave taken this test whi	le refraining from cheating.)	

Exam 2

This exam contains 8 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
Total:	48	

 $[^]a\mathrm{March}$ 29, 2025, © 2024 Steven Heilman, All Rights Reserved.

Reference sheet

Below are some definitions that may be relevant.

$$\Delta_m := \{ x = (x_1, \dots, x_m) \in \mathbf{R}^m : \sum_{i=1}^m x_i = 1, \ x_i \ge 0, \ \forall \ 1 \le i \le m \}.$$

Let m, n be positive integers. Suppose we have a two-player general sum game with $m \times n$ payoff matrices. Let A be the payoff matrix for player I and let B be the payoff matrix for player II. A pair of vectors $(\widetilde{x}, \widetilde{y})$ with $\widetilde{x} \in \Delta_m$ and $\widetilde{y} \in \Delta_n$ is a **Nash equilibrium** if

$$\widetilde{x}^T A \widetilde{y} \ge x A \widetilde{y}, \quad \forall x \in \Delta_m, \qquad \widetilde{x}^T B \widetilde{y} \ge \widetilde{x} B y, \quad \forall y \in \Delta_n.$$

A joint distribution of strategies is an $m \times n$ matrix $z = (z_{ij})_{1 \le i \le m, 1 \le j \le n}$ such that $z_{ij} \ge 0$ for all $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$, and such that $\sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij} = 1$. We say z is a **correlated equilibrium** if

$$\sum_{j=1}^{n} z_{ij} a_{ij} \ge \sum_{j=1}^{n} z_{ij} a_{kj}, \qquad \forall i \in \{1, \dots, m\}, \, \forall k \in \{1, \dots, m\}.$$

$$\sum_{i=1}^{m} z_{ij} b_{ij} \ge \sum_{i=1}^{m} z_{ij} b_{ik}, \qquad \forall j \in \{1, \dots, n\}, \ \forall k \in \{1, \dots, n\}.$$

Suppose we have a two-player symmetric game (so that the payoff matrix for player I is A, the payoff matrix for player II is B, and with $A = B^T$). Assume that A, B are $n \times n$ matrices. A mixed strategy $x \in \Delta_n$ is said to be an **evolutionarily stable strategy** if, for any pure strategy w, we have

$$w^T A x \le x^T A x,$$
 If $w^T A x = x^T A x$, then $w^T A w < x^T A w$.

Suppose we have a game with n players together with a characteristic function $v: 2^{\{1,\dots,n\}} \to \mathbb{R}$. For each $i \in \{1,\dots,n\}$, we define the **Shapley value** $\phi_i(v) \in \mathbb{R}$ to be any set of real numbers satisfying the following four axioms:

- (i) (Symmetry) If for some $i, j \in \{1, ..., n\}$ we have $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq \{1, ..., n\}$ with $i, j \notin S$, then $\phi_i(v) = \phi_j(v)$.
- (ii) (No power/ no value) If for some $i \in \{1, ..., n\}$ we have $v(S \cup \{i\}) = v(S)$ for all $S \subseteq \{1, ..., n\}$, then $\phi_i(v) = 0$.
- (iii) (Additivity) If u is any other characteristic function, then $\phi_i(v+u) = \phi_i(v) + \phi_i(u)$, for all $i \in \{1, ..., n\}$.
- (iv) (Efficiency) $\sum_{i=1}^{n} \phi_i(v) = v(\{1, ..., n\}).$

1. Label the following statements as TRUE or FALSE. If the statement is true, EXPLAI YOUR REASONING . If the statement is false, PROVIDE A COUNTERE	X-
AMPLE AND EXPLAIN YOUR REASONING . Unlike other questions on the exam, you may cite homework problems to complete this part of the exam.	ΩIS
(a) (2 points) Let $K \subseteq \mathbf{R}^2$ be a convex set. Let $f: K \to K$ be continuous. Then f h a fixed point. That is, there exists $k \in K$ such that $f(k) = k$. TRUE FALSE (circle one)	ıas
(b) (2 points) There exists a symmetric two-person general-sum game such that all its Nash equilibria are not symmetric.	O.
TRUE FALSE (circle one)	
(c) (2 points) Every two-player general sum game has at least two correlated equilibriant TRUE FALSE (circle one)	ia

2. (10 points) Recall the prisoner's dilemma, which has the following payoffs.

I		Prisoner II	
er		silent	confess
son	silent	(-1, -1)	(-10,0)
Pris	confess	(0, -10)	(-8, -8)

Find all Nash equilibria for this game. JUSTIFY YOUR ANSWER. [this example was done in class]

3.	In al	l parts of this problem, JUSTIFY YOUR ANSWER.		
	[these examples were discussed in class]			
	. ,	(5 points) Give an example of a convex and bounded subset K of Euclidean space, and give an example of a continuous function $f \colon K \to K$ such that f has no fixed point.		
		(5 points) Give an example of a function $f:[0,1]\to [0,1]$ such that f has no fixed point.		

4. (10 points) Recall that the game of Rock-Paper-Scissors is defined by the payoff matrices

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \quad B = A^T.$$

Then the game is symmetric. (And also, note that A+B=0, so that the game is a zero-sum game.)

You may assume that (1/3, 1/3, 1/3) is a (symmetric) Nash equilibrium.

Show that this Nash equilibrium is **not** evolutionarily stable.

[this was a repeated homework exercise]

5. (10 points) Define $v: 2^{\{1,2,3\}} \to \mathbf{R}$ so that $v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = v(\{1,2,3\}) = 1$, whereas $v(\{1\}) = v(\{2\}) = v(\{3\}) = v(\emptyset) = 0$.

Arguing directly using the axioms for the Shapley value, compute all of the Shapley values of v. JUSTIFY YOUR ANSWER.

[this example was done in class]

(Scratch paper)