Math 499, Spring 2025, USC		Instructor:	Steven Heilman
Name:	USC ID:	Date:	
Signature:	Discussion Section:		
(By signing here, I certify that I have	e taken this test while refr	aining from	cheating.)

Exam 1

This exam contains 8 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Reference sheet

Below are some definitions that may be relevant.

Problem	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
Total:	48	

 $[^]a\mathrm{February}$ 20, 2025, © 2024 Steven Heilman, All Rights Reserved.

An **impartial combinatorial game** is a combinatorial game with two players who both have the same set of legal moves. A **terminal position** is a position from which there are no legal moves. Every non-terminal position has at least one legal move. Under **normal play**, the player who moves to the terminal position wins.

For any impartial combinatorial game, let \mathbf{N} (for "next") be the set of game positions such that the first player to move can guarantee a win. Let \mathbf{P} denote the set of game positions such that any legal move leads to a position in \mathbf{N} . We also let \mathbf{P} contain all terminal positions.

Let m be a positive integer.

$$\Delta_m := \{ x = (x_1, \dots, x_m) \in \mathbf{R}^m : \sum_{i=1}^m x_i = 1, \ x_i \ge 0, \ \forall \ 1 \le i \le m \}.$$

Let m, n be positive integers. Let A be an $m \times n$ real matrix. Then the **value** of the two-person zero-sum game with payoff matrix A is

$$\max_{x \in \Delta_m} \min_{y \in \Delta_n} x^T A y.$$

A mixed strategy $\widetilde{x} \in \Delta_m$ is **optimal for player** I if

$$\min_{y \in \Delta_n} \widetilde{\boldsymbol{x}}^T A \boldsymbol{y} = \max_{\boldsymbol{x} \in \Delta_m} \min_{y \in \Delta_n} \boldsymbol{x}^T A \boldsymbol{y}.$$

A mixed strategy $\widetilde{y} \in \Delta_n$ is **optimal for player** II if

$$\max_{x \in \Delta_m} x^T A \widetilde{y} = \min_{y \in \Delta_n} \max_{x \in \Delta_m} x^T A y.$$

We say the pair $(\widetilde{x}, \widetilde{y})$ are **optimal strategies** for the payoff matrix A if $\widetilde{x} \in \Delta_m$ is optimal for player I and $\widetilde{y} \in \Delta_n$ is optimal for player II.

For any $x = (x_1, \ldots, x_m) \in \mathbf{R}^m$, we denote

$$||x|| := \left(\sum_{i=1}^{m} x_i^2\right)^{1/2}.$$

- 1. Label the following statements as TRUE or FALSE. If the statement is true, **explain** your reasoning. If the statement is false, provide a counterexample and explain your reasoning.
 - (a) (2 points) In any impartial combinatorial game under normal play, any game position lies in **N** or in **P**.

(b) (2 points) Let A be a real 10×10 matrix. Then

$$\max_{x \in \Delta_{10}} \min_{y \in \Delta_{10}} x^T A y = \min_{y \in \Delta_{10}} \max_{x \in \Delta_{10}} x^T A y.$$

(c) (2 points) Let A be a real 10×10 matrix. Let $(\widetilde{x}, \widetilde{y})$ be optimal strategies for the two person zero sum game with payoff matrix A. Then

$$\widetilde{x}^T A \widetilde{y} = \max_{x \in \Delta_{10}} \min_{y \in \Delta_{10}} x^T A y.$$

(d) (2 points) Optimal strategies are unique. That is, for any positive integers m, n, and for any real $m \times n$ matrix A, there is at most one pair of optimal strategies $(\widetilde{x}, \widetilde{y})$ for the two person zero sum game with payoff matrix A, where $\widetilde{x} \in \Delta_m$ and $\widetilde{y} \in \Delta_n$.

2. (10 points) Consider the game of Nim, where the game starts with four piles of chips. These piles have 1, 7, 2 and 15 chips, respectively. Which player has a winning strategy from this position, the first player, or the second? Describe a winning first move.

[This was a modified practice exam question.]

3. (10 points) Let $n \geq 2$ be an integer. Prove that Δ_n is convex and bounded.

(Recall a set $K\subseteq \mathbf{R}^n$ is convex if, for any $x,y\in K$ and for any $t\in [0,1],$ we have $tx+(1-t)y\in K.)$

(Recall a set $K \subseteq \mathbf{R}^n$ is bounded if there exists r > 0 such that $||x|| \le r$ for all $x \in K$.) [This was a homework question.]

4. (10 points) Find the value of the two-person zero-sum game described by the payoff matrix:

		Player II	
I		W	X
yer	Y	0	1
Plaj	Z	3	0

[This was a modified homework question.]

 $5.~(10~{
m points})$ Find the value of the two-person zero-sum game described by the payoff matrix

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
5 & 8 & 10 & 1
\end{pmatrix}$$

Describe optimal strategies for this game.

[This was a modified homework question]

(Scratch paper)