
MATH 425A, ANALYSIS 1, HOMEWORK SOLUTIONS

STEVEN HEILMAN

Contents

1. Homework 1 1
2. Homework 2 5
3. Homework 3 8
4. Homework 4 11
5. Homework 5 15
6. Homework 6 21
7. Homework 7 28
8. Homework 8 36
9. Homework 9 40
10. Homework 10 44
11. Homework 11 53
12. Homework 12 57

1. Homework 1

Exercise 1.2. Let A,B be subsets of some set X. Define Ac := {x ∈ X : x /∈ A}. Prove:
(A ∩B)c = Ac ∪Bc.

Solution. A possible truth table is as follows:

x ∈ A x ∈ B x ∈ A ∩B x ∈ (A ∩B)c x ∈ Ac x ∈ Bc x ∈ Ac ∪Bc

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Or using various logical operation you can prove the equivalence as follows:

x ∈ (A ∩B)c ⇐⇒ not (x ∈ A ∩B)

⇐⇒ not (x ∈ A and x ∈ B)

⇐⇒ (not x ∈ A) or (not x ∈ B)

⇐⇒ (x ∈ Ac) or (x ∈ Bc)

⇐⇒ x ∈ (Ac ∪Bc)

□
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Exercise 1.3. Using the Peano axioms, show that the sum of two natural numbers is a
natural number.

Solution. We prove that n+m is a natural number using mathematical induction on n.

(Base case) When n = 0, we have 0 +m = m ∈ N for all m ∈ N by definition of addition.
(Inductive step) Suppose that n+m ∈ N for allm ∈ N. What we want to prove is that (n++)+m ∈ N

for all m ∈ N. But since n+m ∈ N by the induction hypothesis, (PA2) shows that

(n++) +m = (n+m) + + ∈ N
as desired. This proves the inductive step.

Therefore by (PA5), the mathematical induction, it follows that n+m is a natural number
for all n,m ∈ N. □

Exercise 1.4. Using the Peano axioms, show that addition is associative. That is, given
natural numbers x, y, z, we have x + (y + z) = (x + y) + z. (Hint: fix two of the variables,
and induct on the third.) (Note: you can use Lemma 2.9 from the notes.)

Solution. Choose arbitrary x, y ∈ N. We show that x+ (y + z) = (x+ y) + z for any z ∈ N
by inducting on z.

(Base case) When z = 0, Lemma 2.7 shows that

x+ (y + 0) = x+ y = (x+ y) + 0.

This proves the base case.
(Inductive step) Assume that x+ (y+ z) = (x+ y) + z holds for z ∈ N. Then what we want to prove

is that x+(y+(z++)) = (x+ y)+ (z++). Indeed, utilizing Lemma 2.9 shows that

x+ (y + (z ++)) = x+ (y + z) + + = (x+ (y + z)) + +.

One the other hand, again by Lemma 2.9, we have

(x+ y) + (z ++) = ((x+ y) + z) + +.

Then the induction hypothesis tells us that they are equal, hence proves the inductive
step.

Therefore the claim follows by the mathematical induction. □

Exercise 1.5. Let a, b, c be natural numbers. Using the definition of the order on the natural
numbers, prove the following properties.

(1) a ≥ a.
(2) If a ≥ b and b ≥ c, then a ≥ c.
(3) If a ≥ b and b ≥ a, then a = b.
(4) a ≥ b if and only if a+ c ≥ b+ c.
(5) a < b if and only if a+ c < b+ c.

Solution.

(a) Since a = a+ 0 for any a ∈ N, we have a ≥ a by definition.
(b) a ≥ b and b ≥ c imply that ∃m,n ∈ N satisfying a = b+m and b = c+n, respectively.

Then a = c+ (m+ n) and hence a ≥ c.
(c) a ≥ b and b ≥ a imply that ∃m,n ∈ N satisfying a = b+m and b = a+n, respectively.

Then a = a+ (m+ n). Applying the cancellation law, we have m+ n = 0. Then by
Corollary 2.18 we obtain m = n = 0 and hence b = a.
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(d) ( =⇒ ): Assume a ≥ b. Then a = b + m for some m ∈ N. Adding c ∈ N to both
sides, we obtain a+ c = (b+ c) +m. This implies a+ c ≥ b+ c.
( ⇐= ): Conversely, assume a + c > b + c. Then a + c = (b + c) + m for some

m ∈ N. Now appealing to the cancellation law, we obtain a = b+m and thus a ≥ b
holds.

(e) Constrapositive of the cancellation law shows that a ̸= b if and only if a+ c ̸= b+ c.
Thus

a < b ⇐⇒ a ≤ b and a ̸= b ⇐⇒ a+ c ≤ b+ c and a+ c ̸= b+ c ⇐⇒ a+ c < b+ c.

□

Exercise 1.6 (The Euclidean Algorithm). Let n be a natural number and let q be a
positive natural number. Show that there exist natural numbers m, r such that 0 ≤ r < q
and such that n = mq + r. (Hint: fix q and induct on n.)

Solution. Fix q > 0. We want to prove that for any n ∈ N the following statement holds:

∃m, r ∈ N such that n = mq + r and 0 ≤ r < q. (1)

To this end we induct on n.

(Base case) 0 = 0 · q + 0 shows that (1) holds when n = 0 with m = 0 and r = 0.
(Inductive step) Suppose that (1) holds for n ∈ N. What we want to prove is that the following

statement holds: 1

∃m′, r′ ∈ N such that n+ 1 = m′q + r′ and 0 ≤ r′ < q. (2)

Before proving this step, we make an observation that helps us build some intu-
itions. Using the induction hypothesis (1), we find that

n+ 1 = (mq + r) + 1 = mq + (r + 1).

Comparing this with (2), it is tempting to let m′ = m and r′ = r + 1. It turns out
that this fails to work only when r′ ≥ q. This exceptional case happens exactly when
r = q − 1. (The case r ≥ q is automatically excluded by the trichotomy of ordering,
together with (1).)

Now let us return to the original proof. With these observations, we divide into
two cases:

(Case 1) Suppose that 0 ≤ r < q − 1. We claim that the choice m′ = m and
r′ = r + 1 proves (2). Indeed, 0 ≤ r′ < q follows easily. Also, (1) shows that

m′q + r′ = mq + r + 1 = n+ 1.

Thus (2) follows with our choice of m′ and r′.
(Case 2) Suppose that r = q−1. In this case, we claim that the choice m′ = m+1

and r′ = 0 proves 2. The condition 0 ≤ r′ < q is clear. Also, by (1) we have

m′q + r′ = (m+ 1)q + 0 = mq + q = mq + r + 1 = n+ 1.

Thus (2) follows with our choice of m′ and r′ in this case as well.
So we have (2) in both cases and the inductive step follows.

1This is just a restatement of (1) with n replaced by n + 1. It is introduced to avoid confusion by using
different variables.
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Therefore by the mathematical induction, (1) holds for any n ∈ N.
□

Exercise 1.7. Prove the principle of infinite descent. Let p0, p1, p2, . . . be an infinite sequence
of natural numbers such that p0 > p1 > p2 > · · · . Prove that no such sequence exists. (Hint:
Assume by contradiction that such a sequence exists. Then prove by induction that for all
natural numbers n,N , we have pn ≥ N . Use this fact to obtain a contradiction.)

Solution.
We prove this by contradiction. Assume that such a sequence p0 > p1 > p2 > . . . exists.

To derive a contradiction, we claim the following:
Claim. For any n,N ∈ N we have pn ≥ N .
To this end, we induct on N .

(Base case) Since pn are natural numbers, we automatically have pn ≥ 0 for all n ∈ N, and the
base case follows (by definition of order, pn ≥ 0 since pn = pn + 0.)

(Inductive step) Assume that pn ≥ N for all n ∈ N. Then by the assumption,

pn > pn+1 ≥ N

and it follows that pn ≥ N + 1. This proves the inductive step.

So the claim follows. Then plugging n = 0 and N = p0+1, it follows that p0 ≥ p0+1 > p0,
contradicting the trichotomy of ordering. Therefore no such sequence exists. □

Exercise 1.8. Find a set of integers aij where i, j ∈ N such that
∑∞

i=1(
∑∞

j=1 aij) = 0, but

such that
∑∞

j=1(
∑∞

i=1 aij) = 1. (Hint: an example exists where most of the numbers are
zero, and the remaining numbers are +1 or −1. It may also help to arrange the numbers in
a matrix.)

Solution.
Choose (aij) as follows:

aij =


1, if j = i,

−1, if j = i+ 1,

0, otherwise

=⇒ (aij) =


1 −1 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 1 −1 0 . . .
0 0 0 1 −1 . . .
...

...
...

...
...


On the one hand, for any i = 1, 2, 3, . . . we have

∞∑
j=1

aij = 0 + · · ·+ 0 + 1 + (−1) + 0 + 0 + · · · = 0.

In other words, the sum of i-th row is always 0. Thus we have
∞∑
i=1

(
∞∑
j=1

aij

)
= 0 + 0 + · · · = 0.

On the other hand, for each j it follows that
∞∑
i=1

aij =

{
1, if j = 1,

0 + · · ·+ 0 + (−1) + 1 + 0 + · · · = 0, if j ≥ 2.
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That is, the sum of the first column is 1 and the sum of any other column is 0. Thus we
have

∞∑
j=1

(
∞∑
i=1

aij

)
= 1 + 0 + 0 + · · · = 1.

Therefore our choice satisfies every requirement. □

2. Homework 2

Exercise 2.1. By breaking into different cases as necessary, prove the following statements.
Let x, y be rational numbers. Then |x| ≥ 0, and |x| = 0 if and only if x = 0. We also have
the triangle inequality

|x+ y| ≤ |x|+ |y| ,
the bounds

− |x| ≤ x ≤ |x|
and the equality

|xy| = |x| |y| .
In particular,

|−x| = |x| .
Also, the distance d(x, y) := |x− y| satisfies the following properties. Let x, y, z be rational
numbers. Then d(x, y) = 0 if and only if x = y. Also, d(x, y) = d(y, x). Lastly, we have the
triangle inequality

d(x, z) ≤ d(x, y) + d(y, z).

Solution. Before the proof, we observe that x < y implies −y < −x. Indeed, this follows by
adding −x− y to both sides. Now we prove each statement by splitting into several cases.

• |x| ≥ 0 for all x ∈ Q:
– If x ≥ 0, then by definition of the absolute value |x| = x ≥ 0 .
– If x < 0, then by definition of the absolute value 0 < −x = |x| by definition of
the absolute value.

Thus in any cases we have |x| ≥ 0.
• |x| = 0 if and only if x = 0:

– If x > 0, then by definition of the absolute value |x| = x > 0 and x ̸= 0 .
– If x = 0, then by definition of the absolute value |x| = x = 0 and x = 0.
– If x < 0, then by definition of the absolute value |x| = −x > 0 and x ̸= 0.

Thus we are done.
• −|x| ≤ x ≤ |x|:

– If x ≥ 0, then by definition of the absolute value and the definition of order,
|x| = x ≥ 0 ≥ −x = −|x|.

– If x < 0, , then by definition of the absolute value and the definition of order,
|x| = −x > 0 > x = −|x|.

This completes the proof.

• (Triangle inequality) |x+ y| ≤ |x|+ |y|:
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– If x+y ≥ 0, then by the previous exercise we have |x+y| = x+y. We now claim
that x + y ≤≤ |x| + |y|, which would complete the proof. To prove this claim,
note that x ≤ |x| and y ≤ |y| from the previous part of the exercise, so |x|−x ≥ 0
and |y| − y ≥ 0 by definition of order, i.e. |x| − x and |y| − y are nonnegative
rational numbers. So, their sum |x| − x + |y| − y is also a nonnegative rational
number. So by definition of order, |x|+ |y|−x−y ≥ 0, i.e. |x|+ |y|−(x+y) ≥ 0,
so that |x|+ |y| ≥ x+ y by definition of order.

– If x+ y < 0, then by the previous exercise we have |x+ y| = −(x+ y) = −x− y.
We now claim that −x − y ≤≤ |x| + |y|, which would complete the proof. To
prove this claim, note that −x ≤ |x| and −y ≤ |y| from the previous part of the
exercise, so |x| + x ≥ 0 and |y| + y ≥ 0 by definition of order, i.e. |x| + x and
|y|+ y are nonnegative rational numbers. So, their sum |x|+ x+ |y|+ y is also
a nonnegative rational number, by the definition of the sum of rationals. So by
definition of order, |x| + |y| + x + y ≥ 0, i.e. |x| + |y| − (−x − y) ≥ 0, so that
|x|+ |y| ≥ −x− y by definition of order.

Thus the claim follows.
• |xy| = |x||y|:

– If x > 0 and y ≥ 0, then x is a positive rational number by definition of order,
and y is a nonnegative rational number by definition of order. So the product xy
is a nonnegative rational number by the definition of the product of rationals.
So by the definition of order again xy ≥ 0 and |xy| = xy = |x||y|. (Since x > 0
and y ≥ 0 we have x = |x| and y = |y| by definition of absolute value)

– If x > 0 and y < 0, then −y > 0 shows that −xy = x(−y) ≥ 0 (repeating the
justification from the previous part), or equivalently, either xy < 0 or xy = 0.
In any cases, we have |xy| = −xy = x(−y) = |x||y|.

– The case x < 0 and y ≥ 0 is proved in exactly the same way.
– If x < 0 and y < 0, then −x > 0, −y > 0 and thus the first part says xy =
(−x)(−y) > 0. This yields |xy| = xy = (−x)(−y) = |x||y|. (Since x < 0 and
y ≤ 0 we have x = − |x| and y = − |y| by definition of absolute value)

Therefore the claim follows in any cases.
• Since −1 < 0, |−1| = 1 by definition of absolute value and so from the previous part
of the exercise, | − x| = |(−1)x| = | − 1||x| = 1 · |x| = |x|.

Using the above properties we can prove the metric properties of d(x, y) := |x− y|:
• (Non-degeneracy) d(x, y) = 0 if and only if x = y:

d(x, y) = 0 ⇐⇒ |x− y| = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y.

(Recall we showed above that z ∈ Q satisfies |z| = 0 if and only if z = 0, and we
used z = x− y.)

• (Symmetry) d(x, y) = d(y, x):

d(x, y) = |x− y| = | − (x− y)| = |y − x| = d(y, x).

(We showed above that z ∈ Q satisfies |z| = | − z|, and we used z = x− y.)
• (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z):

d(x, z) = |x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z).
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(We used the triangle inequality in the form |a + b| ≤ |a| + |b| for a, b ∈ Q where
a = x− y and b = y − z.)

This completes the whole proof.
□

Exercise 2.2. Using the usual triangle inequality, prove the reverse triangle inequality:
For any rational numbers x, y, we have |x− y| ≥ ||x| − |y||.

Solution. Note that we both have

|x| = |(x− y) + y| ≤ |x− y|+ |y| and |y| = |(y − x) + x| ≤ |y − x|+ |x|.
Thus it follows that

|x| − |y| ≤ |x− y| and |y| − |x| ≤ |y − x| = |x− y|.
So regardless of either ||x|− |y|| = |x|− |y| or ||x|− |y|| = |y|− |x|, it follows that ||x|− |y|| ≤
|x− y| as desired. □ □

Exercise 2.3. Let x be a rational number. Prove that there exists a unique integer n such
that n ≤ x < n + 1. In particular, there exists an integer N such that x < N . (Hint: use
the Euclidean Algorithm.)

Solution. Let x ∈ Q and write it as a quotient x = p
q
of two integers p, q ∈ Z with q > 0.

Then by the Euclidean algorithm, there exists m, r ∈ Z with 0 ≤ r < q such that p = mq+r.
This gives

x =
p

q
=

mq + r

q
= m+

r

q
.

But since 0 ≤ r
q
< 1, it follows that m ≤ x < m+ 1 and this proves the existence.

To prove the uniqueness, let m,n ∈ Z satisfy m < x < m + 1 and n < x < n + 1,
respectively. We claim that in fact m = n. By relabeling if required, we may assume that
m ≤ n. Then n = m+ a for some a ∈ N. But if a ̸= 0, then a ≥ 1 and this implies

x < m+ 1 ≤ m+ a = n ≤ x =⇒ x < x,

a contradiction! Therefore a = 0 and hence m = n. □

Exercise 2.4. Let (an)
∞
n=0 be a Cauchy sequence of rationals. Prove that (an)

∞
n=0 is bounded.

Solution. The concept of Cauchy sequence is designed to capture the behavior of terms
getting closer to each other ad infinitum. In particular, (an) tends to stabilize as n grows,
and it allows to control the size of a tail (a sequence of the form (an)n≥N for some N) with
just a single term plus a small error. This motivates us to divide the sequence into two parts,
one consisting of leading terms and the other being a tail.

Solution. Let (an)
∞
n=0 be a Cauchy sequence. We want to find a constant 0 < M ∈ Q

that bounds this sequence. Indeed, by the definition of Cauchy sequence with ε = 2014,
there exists N such that

|aj − ak| < ε = 2014 whenever j, k ≥ N.

Then by the triangle inequality, for n ≥ N

|an| ≤ |an − aN |+ |aN | ≤ 2014 + |aN |
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and this gives a bound for the tail (an)n≥N . The remaining N − 1 leading terms are also
bounded by

|an| ≤ max{|a1|, . . . , |aN−1|} for n = 1, . . . , N − 1.

Thus if we put M = max{|a1|, . . . , |aN−1|, |aN | + 2014}, we always have |an| ≤ M and the
conclusion follows. □

Exercise 2.5. Let (an)
∞
n=0, (bn)

∞
n=0 be Cauchy sequences of rationals. Prove that (anbn)

∞
n=0 is

a Cauchy sequence of rationals. In other words, the multiplication of two real numbers gives
another real number. Now, let (a′n)

∞
n=0 be a Cauchy sequence of rationals that is equivalent

to (an)
∞
n=0. Prove that (anbn)

∞
n=0 is equivalent to (a′nbn)

∞
n=0. In other words, multiplication

of real numbers is well-defined.

Solution. For the first part, let Q ∋ ε > 0. Invoking the previous exercise, we can choose
M0,M1 ∈ Q with |an| ≤ M0 and |bn| ≤ M1 for all n ∈ N. Choose then M := max(M0,M1) ∈
Q. Then by definition of M , |an| ≤ M and |bn| ≤ M for all n ∈ N. Also by using
the definition of Cauchy sequence, there exists a positive natural number N0 such that
|aj − ak| < ε/2M for all j, k ≥ N0 and |bj − bk| < ε/2M for all j, k ≥ N1. Define then N :=
max(N0, N1) ∈ N. By definition of N , we then have |aj − ak| < ε/2M and |bj − bk| < ε/2M
for all j, k ≥ N . By definition of N we then have

|ajbj − akbk| ≤ |aj||bj − bk|+ |bk||aj − ak|
< M(ε/2M) +M(ε/2M)

= ε for all j, k ≥ N.

This shows that (anbn)
∞
n=0 is also a Cauchy sequence of rationals (noting also that the

product of rational numbers is a rational number).
The second part also follows in a similar manner. Let Q ∋ ε > 0 be arbitrary. Using

the previous exercise, choose Q ∋ M > 0 such that |bn| < M for all n ∈ N. Then by the
definition of equivalence of Cauchy sequences, we can pick a N ∈ N such that |an−a′n| < ε/M
whenever n ≥ N . Then

|anbn − a′nbn| = |an − a′n||bn| < (ε/M)M = ε for all n ≥ N

and hence (anbn)
∞
n=0 and (a′nbn)

∞
n=0 are equivalent Cauchy sequences. □ □

3. Homework 3

Exercise 3.1. Let x be a real number and let ε > 0 be any rational number. Show that
there exists a rational number y such that |x− y| < ε.

Solution. Choose any sequence (an)
∞
n=0 of rationals that represents x, or equivalently, x =

LIMn→∞an. Then for any Q ∋ ε > 0, there exists N such that |aj − ak| < ε/2 whenever
j, k ≥ N . This implies that for any n ≥ N ,

(∀k ∈ N)k ≥ N =⇒ |ak − an| < ε/2 ⇐⇒ (∀k ∈ N)k ≥ N =⇒ an − ε/2 ≤ ak ≤ an + ε/2

=⇒ LIMk→∞(an − ε/2) ≤ LIMk→∞ak ≤ LIMk→∞(an + ε/2) (by Prop 6.30)

=⇒ an − ε/2 ≤ x ≤ an + ε/2

=⇒ x− ε < an < x+ ε

=⇒ |x− an| < ε.
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In particular, |x− an| < ε and the choice y = an proves the claim. □
Remark. We remark that the prove above also shows the following statement:
Corollary 1. If x = LIMn→∞an, then for any Q ∋ ε > 0 there exists N such that

|x− an| < ε for any n ≥ N . □
Once we learn the notion of convergence in R, you will readily find that this justifies the

notation LIMn→∞. Anyway, this will be used to prove Exercise 8.

Exercise 3.2. Let x, z be real numbers with x < z. Show that there exists a rational number
y with x < y < z. (Hint: use the previous exercise, and the Archimedean property.)

Solution. Let y′ = (x + z)/2. Then x < y′ < z. By observing that ε = (z − x)/2 > 0,
Archimedean property says that we can choose N ∈ N satisfying 1

N
< ε. Then by the

previous exercise, we can choose a rational y ∈ Q such that |y′ − y| < 1
N
. Then

x = y′ − ε < y′ − 1

N
< y < y′ +

1

N
< y′ + ε = z.

This proves our claim. □

Exercise 3.3. Let x be a real number. Show that there exists a Cauchy sequence of rational
numbers (an)

∞
n=0 such that x = LIMn→∞an, and such that an > x for all n ≥ 0.

Solution. Using the previous exercise, for each n ∈ N choose an ∈ Q such that x < an <
x + 1

n+1
. Also choose any sequence (bn)

∞
n=0 of rationals such that x = LIMn→∞bn. We need

to show that x = LIMn→∞an, or in other words,
(a) (an)

∞
n=0 is a Cauchy sequence, and

(b) (an)
∞
n=0 and (bn)

∞
n=0 are equivalent.

For (a), let 0 < ε ∈ Q be arbitrary and choose N such that 1
N+1

< ε. Then

j, k ≥ N =⇒ x < aj < x+
1

j + 1
and x < ak < x+

1

k + 1

=⇒ − 1

k + 1
< −ak + x < 0 =⇒ − 1

N + 1
< x− ak < 0

shows that (an)
∞
n=0 is indeed a Cauchy sequence.

For part (b), let 0 < ε ∈ Q be arbitrary. Then by Corollary 1 and the Archimedean
property, we can pick N such that |bn − x| < ε/2 whenever n ≥ N and 1

N+1
< ε/2. Then

|an − bn| ≤ |an − x|+ |x− bn|
< (an − x) + (ε/2)

<
1

N + 1
+ (ε/2) < (ε/2) + (ε/2) = ε.

This proves that (an)
∞
n=0 and (bn)

∞
n=0 are equivalent as desired. □

Exercise 3.4. For every real number x, show that exactly one of the following statements
is true: x is positive, x is negative, or x is zero. Show that if x, y are positive real numbers,
then x+ y is positive, and xy is positive.

Solution. Before the proof, we first claim the following:
Lemma 2. x is positive if and only if there exist a rational ε > 0, a Cauchy sequence

(an)
∞
n=0 and a natural number N such that x = LIMn→∞(an) and an > ε for all n ≥ N .
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Remark. Note the difference with the definition: In the lemma, only the existence of a
such Cauchy sequence is required. On the other hand, the definition needs to hold for any
Cauchy sequence that represents x.
Proof of Lemma. The ( =⇒ ) direction is clear. So it suffices to prove ( ⇐= ) direction.

Let ε, (an)
∞
n=0 and N be as in the Lemma 2. Let (bn)

∞
n=0 be any Cauchy sequence with

x = LIMn→∞(bn).

• Since (an)
∞
n=0 and (bn)

∞
n=0 are equivalent, there exists N2 such that |an − bn| < ε/3

for any n ≥ N2.
• Since (bn)

∞
n=0 is Cauchy, there exists N3 such that |bj − bk| < ε/3 for any j, k ≥ N3.

Then with N ′ := max{N,N2, N3}, we find that

n ≥ N ′ =⇒ bn = (bn − bN ′) + (bN ′ − aN ′) + aN ′ > −(ε/3)− (ε/3) + ε = ε/3.

In summary, the definition of positivity for x is satisfied with the positive rational ε/3 (which
is independent of the choice of (bn)

∞
n=0). This completes the proof. ////

Now we return to the original problem.

• (Trichotomy of ordering) Exactly one of the following holds: x is positive, x is neg-
ative, or x = 0: To prove this, we check the following three properties: (a) No real
number is both positive and negative. (b) 0 is neither positive nor negative. (c) Any
non-zero real number is either positive or negative.

Indeed, if we denote the set of positive reals as P , the set of negative reals as N , then these
3 properties show that

P ∩N = ∅, (P ∪N ) ∩ {0} = ∅, and R∖ {0} = P ∪N
and thus R is written as the disjoint union of P , N and {0} as desired. So it suffices to
prove them.

(a) We prove this by contradiction. Assume otherwise that x = LIMn→∞an is both positive
and negative. Since −x = LIMn→∞(−an), by invoking Definition 6.21, there exists a rational
ε > 0 and a natural number N > 0 such that

an > ε and − an > ε for any n ≥ N.

In particular,
aN > ε > 0 > −ε > aN

and this contradicts the trichotomy of rationals. With this claim, it suffices to prove that a
real number is non-zero if and only if it is either positive or negative.

(b) Proving that 0 is not positive amounts to showing the negation of Definition 6.21 for
x = 0:

Claim. For any rational ε > 0, there exists a Cauchy sequence (an)
∞
n=0 with 0 =

LIMn→∞(an) such that for any natural number N , there exists n > N with an ≤ ε.
But this is clearly satisfied with the choice (an)

∞
n=0 = (0, 0, 0, . . . ). The claim that 0 is not

negative also follows in the same way.
(c) Choose a rational ε > 0 that satisfies the conclusion of Lemma 6.13. So if (an)

∞
n=0 is

a Cauchy sequence with x = LIMn→∞(an), then there exist N ′ such that |an| > ε whenever
n ≥ N ′. Also, choose N ′′ such that |aj − ak| < ε/3 for all j, k ≥ N ′′. Then for any
n ≥ max{N ′, N ′′} =: N , it follows that

|an| = |(an − aN)− aN | ≥ |aN | − |an − aN | > ε− (ε/3) = 2ε/3.
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In particular, |an| > 2ε/3 > 0 and hence aN is either positive or negative. Now if aN > 0,
then for any n ≥ N

an = aN + (an − aN) > aN − |an − aN | > (2ε/3)− (ε/3) = ε/3.

and hence x is positive by Lemma 2. If aN < 0 then by applying the similar argument to
−aN shows that −x is positive. Therefore x is either positive or negative as desired.

This completes the proof of trichotomy.

• x and y are positive, then so are x+ y and xy.

Suppose that x = LIMn→∞(an) and y = LIMn→∞(bn). Using Definition 6.23, choose ε > 0
and N > 0 such that an > ε and bn > ε for all n ≥ N . Then

an + bn > 2ε > 0 and anbn > ε2 > 0 for all n ≥ N.

Now by noting that x+y = LIMn→∞(an+bn) and xy = LIMn→∞(anbn), positivity of x+y
and xy follow from Lemma 2. □

Exercise 3.5. Let x, y be real numbers. Prove that (x2 + y2)/2 ≥ xy.

Solution. Notice that

(x2 + y2)/2 ≥ xy ⇐⇒ (x− y)2 = x2 − 2xy + y2 ≥ 0.

So it suffices to prove that any square of real number is non-negative. Indeed,

• If z ≥ 0, then it is clear that z2 ≥ 0.
• If z < 0, then −z > 0 and thus z2 = (−z)2 > 0.

Therefore the claim follows with the choice z = x− y. □

Exercise 3.6. Let A be the set of real numbers

A =
{ 1
n
: n ≥ 1, n ∈ N

}
= {1, 1/2, 1/3, 1/4, . . .}.

Compute sup (A) and inf (A).

Solution. We have sup (A) = 1 and inf (A) = 0. For the first statement, note that x ≤ 1 for
all x ∈ A so 1 is an upper bound for A. Also 1 ∈ A, so any t ∈ R with t < 1 cannot be an
upper bound for A. Therefore, 1 is the least upper bound of A. For the second statement,
note that 0 ≤ x for all x ∈ A, so 0 is a lower bound of A. Moreover, for any t ∈ R with
t > 0, there exists a positive natural number n such that 0 < 1/n < t, by the Archimedean
property. That is, any t > 0 is not a lower bound for A. That is, 0 is the greatest lower
bound of A, so inf (A) = 0. □

4. Homework 4

Before the solution.

How to prove bijectivity? The following equivalence is useful when establishing the bi-
jectivity of a function:

Proposition. Let f : X → Y be a function. Then the followings are equivalent:

• f is both injective and surjective.
• f has an inverse, i.e., there exists a function g : Y → X such that g ◦ f = idX and
f ◦ g = idY .
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Here idX denotes for the identity function X → X defined by idX(x) = x, and likewise
for idY . The second criteria is often useful when you can explicitly guess how the inverse
should be defined.

Exercise 4.1. Show that the notion of two sets having equal cardinality is an equivalence
relation. That is, for sets X, Y, Z, show

• X has the same cardinality as X.
• If X has the same cardinality as Y , then Y has the same cardinality as X.
• If X has the same cardinality as Y , and if Y has the same cardinality as Z, then X
has the same cardinality as Z.

Proof. Recall the definition that X and Y have the same cardinality if we can find a bijection
X → Y .

• (reflexivity) The identity function id : X → X (which satisfies id(x) = x for all
x ∈ X) is a bijection from X onto itself. So X has the same cardinality as X, by
definition of cardinality. (To see that the identity function is a bijection, note that
each y ∈ X has exactly one element x ∈ X such that (id)(x) = y. That is, we can
choose x := y so that id(y) = y by definition of the identity function. And any other
x ∈ X with x ̸= y satisfies id(x) = x ̸= y.)

• (symmetry) Suppose there is a bijection f : X → Y . We know that the inverse
function f−1 : Y → X is also bijective. Thus Y also have the same cardinality as X,
by definition of cardinality.

• (transitivity) Suppose there is a bijection f : X → Y and g : Y → Z. We claim that
g ◦ f : X → Z is also bijective. Indeed, f−1 ◦ g−1 : Z → X is an inverse of g ◦ f ,
which we easily check as follows:

(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ g−1 ◦ g ◦ f = f−1 ◦ idY ◦ f = f−1 ◦ f = idX

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ f ◦ f−1 ◦ g−1 = g ◦ idY ◦ g−1 = g ◦ g−1 = idZ .

This proves that g◦f is bijective and hence X has the same cardinality as X, by definition
of cardinality. □

Exercise 4.2. Using a proof by contradiction, show that the set N of natural numbers is
infinite.

Proof. We argue by contradiction. Suppose N is finite, i.e., there exists n ∈ N and there
exists a bijection f : {1, . . . , n} → N. Now take m = max{f(1), . . . , f(n)}. Then clearly
m+1 ∈ N, but m+1 does not lie in the range {f(1), . . . , f(n)} of f . This is a contradiction
to the surjectivity of f ! Having found a contradiction, we are done. □

Exercise 4.3. Let X be a subset of the natural numbers N. Prove that X is at most
countable.

Proof. Let X ⊆ N. Then either X is finite or infinite. If X is finite, then we are done. So
we assume that X is infinite and prove and X is indeed countable.
Idea. Clearly we are going to use the properties of natural number system extensively.

We know that N is ordered in a very nice way: we can count all the natural numbers starting
from 0 and adding 1 successively. This property is encoded in the principle of mathematical
induction. Consequently, any subset of N also inherits this ordering structure, which allows

12



us to enumerate all the elements in increasing order. The precise statement that encrypts
this idea is as follows:

Theorem (Well-Ordering Principle). Any non-empty subset of N has a minimum.
This is intuitive clear, but nevertheless requires a rigorous proof. (Interested readers may

find a proof by referring Homework 1.1.) In this proof we will actually demonstrate a way
of arranging elements of X in increasing order and claim that this arrangement yields a
bijection from N to X.

To this end, we inductively define a sequence (an)
∞
n=0 of natural numbers and a sequence

(Xn)
∞
n=0 of subsets of X as follows:

X0 = ∅, an = min(X −Xn), and Xn+1 = {a0, . . . , an} = Xn ∪ {an}.
Then we claim that this yields well-defined sequences with an additional property.
Claim. For every n ∈ N the followings hold:
(a) Both (ak)

∞
k=0 and (Xk)

∞
k=0 are well-defined.

(b) (ak)
∞
k=0 is (strictly) increasing: a0 < a1 < · · · < an.

Proof of Claim. We appeal to the principle of mathematical induction.

• (Base case) Clearly X0 = ∅ is well-defined. Also, well-ordering principle (WOP)
shows that a0 = minX exists, hence is well-defined as well and proves (a) for n = 0.
Part (b) holds trivially.

• (Inductive step) Assume that the claim holds for n ≥ 0. Then Xn+1 = Xn ∪ {an} is
also well-defined.

Next, we check that an+1 is well-defined. By invoking WOP again, this amounts to
prove that X −Xn+1 is non-empty, or in other words, X ̸= Xn+1. Indeed, (b) shows
that the mapping

{1, . . . , n+ 1} → X, k 7→ ak−1

is injective with the range Xn+1. Thus if X = Xn+1 then this map is also surjective
and hence bijective. This contradicts the assumption that X is infinite. Therefore
X ̸= Xn+1 and the well-definedness follows. This proves part (a) for n+ 1.

For (b), X −Xn+1 ⊆ X −Xn shows that

an = min(X −Xn) ≤ min(X −Xn+1) = an+1.

But if an = an+1, then we have both an = an+1 ∈ X − Xn+1 and an ∈ Xn+1, a
contradiction! So we must have an < an+1 and part (b) follows for n+ 1.
Therefore by induction the claim follows for all n ∈ N. ////

Now we are ready to prove the countability of X. Define f : N → X by f(n) = an. Then

• f is injective by (b) of the claim. Indeed, if m ̸= n, then by assuming m < n without
losing the generality we have f(m) = am < an = f(n) and hence f(m) ̸= f(n).

• f is surjective. To this end, suppose otherwise. Then X− f(N) is non-empty and we
can pick the minimum m = min(X − f(N)). Then X − f(N) ⊆ X −Xn shows that

an = min(X −Xn) ≤ min(X − f(N)) = m for any n ∈ N.
This shows that the sequence

(m− a0,m− a1,m− a2, . . . )

is a (strictly) decreasing sequence of natural number, a contradiction by infinite descent.
This proves that f is surjective.

13



Therefore f gives a bijection from N to X and hence X is countable. □

Exercise 4.4. Let Y be a set. Let f : N → Y be a function. Then f(N) is at most countable.
(Hint: consider the set A := {n ∈ N : f(n) ̸= f(m) for all 0 ≤ m < n}. Prove that f is a
bijection from A onto f(N). Then use the previous exercise.)

Proof. Following the hint, we show that the function f |A : A → f(N) which is induced from
f by f |A(n) = f(n) is bijective.

• f |A is injective. Indeed, let m,n ∈ A be distinct. We may assume m < n without
losing the generality. Then by definition of A,

f |A(m) = f(m) ̸= f(n) = f |A(n)
and hence f |A is injective.

• f |A is surjective. To this end, pick any y ∈ f(N). Then the set

X = {n ∈ N : f(n) = y}
is non-empty, and thus by WOP we can pick the minimum

n = minX.

Then for any 0 < m < n we must have f(m) ̸= y = f(n), for otherwise we get a
contradiction to the minimality of n. This shows that n ∈ A and f |A(n) = f(n) = y, hence
f |A is surjective.

Therefore f |A gives a bijection from A to f(N). But since we know that A is at most
countable by the previous exercise, the same is true for f(N) (by the first exercise). □

Exercise 4.5. Let X, Y be countable sets. Show that X ∪ Y is a countable set.

Solution. Let f : X → N be a bijection. Let g : Y → N be a bijection. We need to find
a bijection h : X ∪ Y → N. We define h as follows. h(x) := 2f(x) for all x ∈ X and
h(y) := 2h(y) + 1 for all y ∈ Y .
Proof of surjectivity. For any n ∈ N, either n is even or odd. If n is even, n/2 ∈ N.

Since f is a bijection, there exists x ∈ X such that f(x) = n/2, i.e. 2f(x) = n, i.e. h(x) = n.
If n is odd, then (n − 1)/2 ∈ N. Since g is a bijection, there exists y ∈ Y such that
g(y) = (n− 1)/2, i.e. 2g(y) + 1 = n, i.e. h(y) = n. So, h is surjective.
Proof of injectivity. Let a, b ∈ X ∪ Y . Assume h(a) = h(b). If a, b ∈ X, then

h(a) = 2f(a) and h(b) = 2f(b) by definition of h, so that 2f(a) = 2f(b), i.e. f(a) = f(b), so
that a = b by injectivity of f . Similarly, if a, b ∈ Y , then h(a) = 2g(a)+1 and h(b) = 2g(b)+1
by definition of h, so that 2g(a)+ 1 = 2g(b)+ 1, i.e. g(a) = g(b), so that a = b by injectivity
of g. In the remaining case that a, b are not both in X or both in Y , we have a ∈ X and
b ∈ Y (without loss of generality), in which case h(a) is even by definition of h, and h(b) is
odd by definition of h, which violates that h(a) = h(b), i.e. this last case cannot occur.

Since we have shown that h is surjective and injective, we conclude that h is a bijection.
□

Exercise 4.6. Let X, Y be countable sets. Show that X × Y is a countable set.

Solution. This follows from Lemma 2.1.22 in the notes, where we showed that N × N is
countable. Since X and Y are each countable, we can let f : X → N be a bijection and let
g : Y → N be a bijection. We then claim that h : X × Y → N × N defined by h(x, y) :=
(f(x), g(y)) is a bijection.
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Proof of surjectivity. Let m,n ∈ N. Since f, g are each bijections, we can find x ∈ X
and y ∈ Y such that f(x) = m and g(y) = n. So, by definition of h we have h(x, y) =
(f(x), g(y)) = (m,n). So, h is surjective.

Proof of injectivity. Let (x1, y1), (x2, y2) ∈ X × Y . Assume h(x1, y1) = h(x2, y2). By
definition of h, this means f(x1) = f(x2) and g(y1) = g(y2). Since f, g are each injective
themselves, we conclude that x1 = x2 and y1 = y2. That is, (x1, y1) = (x2, y2). We have
shown therefore that h is injective.

Since we have shown that h is surjective and injective, we conclude that h is a bijection.
Since h is a bijection from X × Y to N×N, we conclude by definition of cardinality that

X × Y and N× N have the same cardinality. Since N× N is countable by Lemma 2.1.22 in
the notes, we conclude that X × Y is also countable. □

5. Homework 5

Exercise 5.1. Let (an)
∞
n=0 be a sequence of real numbers. Then (an)

∞
n=0 is convergent if and

only if (an)
∞
n=0 is a Cauchy sequence. (Hint: Given a Cauchy sequence (an)

∞
n=0, use that the

rationals are dense in the real numbers to replace each real an by some rational a′n, so that
|an − a′n| is small. Then, ensure that the sequence (a′n)

∞
n=0 is a Cauchy sequence of rationals

and that (a′n)
∞
n=0 defines a real number which is the limit of the original sequence (an)

∞
n=0.)

Preliminary Before the solution, we remark the following observation (which you may
already know if you have carefully read my solution of 2nd homework):

Observation 1. Let (an)
∞
n=0 be a Cauchy sequence of rational numbers and x = LIMn→∞(an) ∈

R its formal limit. Then (an)
∞
n=0 actually converges to x as a sequence in R. In other words,

x = LIMn→∞(an) =⇒ x = lim
n→∞

an.

Proof of Observation 1. Before the proof, we remind that what we want to prove is the
following statement:

(∀ε ∈ R) ε > 0 =⇒ ((∃N ∈ N)(∀n ∈ N) n ≥ N =⇒ |an − x| < ε) .

To this end, choose arbitrary positive real ε > 0 and pick a positive rational ε′ with 0 < ε′ < ε
by utilizing the Archimedean property. Then there exists N (depending on ε′ and hence on
ε) such that

j, k ≥ N =⇒ |aj − ak| < ε′

k ≥ N =⇒ |an − ak| < ε′.

Now fix n ≥ N . Then we get In view of Proposition 6.30, taking formal limit LIMk→∞, we
obtain

|an − x| ≤ ε′.

In summary, for any positive real ε > 0 we was able to find N ∈ N such that |an − x| < ε
whenever n ≥ N . This proves the desired statement at the beginning of the proof and hence
an converges to x in R. /////
Solution. With this observation in our hand, the solution is as follows:

• (⇒): Assume that (an)
∞
n=0 is convergent with the limit L ∈ R. To prove that (an)

∞
n=0

is Cauchy, we invoke the standard ’2ε-argument’. For any positive real ε > 0, there
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exists N ∈ N such that

n ≥ N =⇒ |an − L| < ε

2
.

Then for any j, k ≥ N , the triangle inequality shows

|aj − ak| ≤ |aj − L|+ |L− ak| <
ε

2
+

ε

2
= ε.

Therefore (an)
∞
n=0 is Cauchy.

• (⇐): Assume that (an)
∞
n=0 is Cauchy.

Idea. If it were the case that (an)
∞
n=0 consists of only rational numbers, then (an)

∞
n=0

would have become convergent in view of Observation 1. But here (an)
∞
n=0 is assumed

to be any Cauchy sequence of real numbers. To remedy this situation, we approximate
(an)

∞
n=0 by a sequence of rational numbers, check that this approximation converges,

and finally the original sequence also converges to the same limit.
(Step 1) To realize this idea, we first choose an ”approximating sequence”. Define

a sequence (a′n)
∞
n=0 of rational numbers by picking a′n ∈ Q satisfying

|an − a′n| <
1

n+ 1

for each n ∈ N. (This is possible by Exercise 6 in Homework 2.) We claim the
followings:
(1) (a′n) is a Cauchy sequence in the sense of Definition 5.6.
(2) If we put x = LIMn→∞(a′n), then (a′n)

∞
n=0 converges to x.

Note that the statement follows once (1) and (2) are verified.
(Step 2) To prove (1), let ε > 0 be any positive rational. We invoke the standard

’3ε-argument’ as follows:
– By exploiting the Archimedean property, pick N1 ∈ N such that 1/(N1 + 1) <
(ε/3).

– Since (an)
∞
n=0 is Cauchy, pick N2 ∈ N such that |aj − ak| < (ε/3) whenever

j, k ≥ N2.
Then for N = max{N1, N2}, it follows from the triangle inequality that

j, k ≥ N =⇒ |a′j − a′k| = |a′j − aj + aj − ak + ak − a′k|
≤ |a′j − aj|+ |aj − ak|+ |ak − a′k|

<
1

j + 1
+

ε

3
+

1

k + 1

<
ε

3
+

ε

3
+

ε

3
= ε.

This proves that (a′n)
∞
n=0 is Cauchy in the sense of Definition 5.6. Then by Observation

1, (a′n)
∞
n=0 converges to the formal limit x = LIMn→∞(a′n). (Step 3) To complete the

proof, we prove that (an)
∞
n=0 also converges to x. This essentially follows from the

squeezing lemma, which is not in our hand yet. So we make a direct proof with the
standard ’2ε-argument’ as follows: Let ε > 0 be an arbitrary positive real. Then

– Choose N1 ∈ N such that 1/(N1 + 1) < (ε/2) with aid of the Archimedean
property.

– Choose N2 such that |a′n − x| < (ε/2) whenever n ≥ N2.
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Then for N = max{N1, N2}, the triangle inequality says

n ≥ N =⇒ |an − x| ≤ |an − a′n|+ |a′n − x| < ε

2
+

ε

2
= ε.

This completes the proof that (an)
∞
n=0 is convergent as desired.

□

Exercise 5.2. Let (an)
∞
n=0, (bn)

∞
n=0 be real convergent sequences. Let x, y be real numbers

such that x = limn→∞ an, y = limn→∞ bn.

(i) The sequence (an + bn)
∞
n=0 converges to x+ y. That is,

lim
n→∞

(an + bn) = ( lim
n→∞

an) + ( lim
n→∞

bn).

(ii) The sequence (anbn)
∞
n=0 converges to xy. That is,

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

(iii) For any real number c, the sequence (can)
∞
n=0 converges to cx. That is,

c lim
n→∞

an = lim
n→∞

(can).

(iv) The sequence (an − bn)
∞
n=0 converges to x− y. That is,

lim
n→∞

(an − bn) = ( lim
n→∞

an)− ( lim
n→∞

bn).

(v) Suppose x ̸= 0 and there exists m such that an ̸= 0 for all n ≥ m. Then (a−1
n )∞n=m

converges to x−1. That is,

lim
n→∞

a−1
n = ( lim

n→∞
an)

−1.

(vi) Suppose x ̸= 0 and there exists m such that an ̸= 0 for all n ≥ m. Then (bn/an)
∞
n=m

converges to y/x. That is,

lim
n→∞

(bn/an) = ( lim
n→∞

bn)/( lim
n→∞

an).

(vii) Suppose an ≥ bn for all n ≥ 0. Then x ≥ y.

(Hint: you can save time by using some of these statements to prove the others. For example:
(iii) follows from (ii); (iv) follows from (i); and (vi) follows from (v) and (ii).)

Solution.

(i) We invoke the standard ’2ε-argument’. Let ε > 0. Then there exist N1, N2 ∈ N such
that

n ≥ N1 =⇒ |an − x| < ε

2
and n ≥ N2 =⇒ |bn − y| < ε

2
.

Then for N = max{N1, N2}, we obtain from the triangle inequality that

n ≥ N =⇒ |(an + bn)− (x+ y)| ≤ |an − x|+ |bn − y|

<
ε

2
+

ε

2
= ε.

This proves that limn→∞(an + bn) = x+ y as expected.
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(ii) We invoke the following variant of the ’2ε-argument’: From Corollary 3.14, we know
that (an)

∞
n=0 is bounded. Pick a bound M > 0 of (an)

∞
n=0. Now let ε > 0 be arbitrary,

and choose N1, N2 ∈ N such that

n ≥ N1 =⇒ |an − x| < ε

2(|y|+ 2014)
and n ≥ N2 =⇒ |bn − y| < ε

2M
.

Then for N = max{N1, N2}, we obtain from the triangle inequality that

n ≥ N =⇒ |anbn − xy| = |anbn − any + any − xy|
≤ |an||bn − y|+ |an − x||y|

< M · ε

2M
+ |y| · ε

2(|y|+ 2014)

=
ε

2
+

ε

2
= ε.

(Notice here how we circumvented the technical issues of possible division by zero.) This
completes the proof.

(iii) Notice that the constant sequence (bn)
∞
n=0 = (c, c, c, . . . ) converges to c. (For any

ε > 0, just pick N = 0 for the definition of convergence.) Plug this to (ii).
(iv) Utilize (iii) with the choice c = −1 to derive that limn→∞(−bn) = −y. Then apply

(i) to (an)
∞
n=0 and (−bn)

∞
n=0.

(v) The key ingredient is to find a lower bound of (an)
∞
n=m. Indeed, with the choice

ε = |x|/2 there exists N ∈ N such that |an − x| < ε = |x|/2 whenever n ≥ N . Then
by the reverse triangle inequality,

n ≥ N =⇒ |an| = |x+ (an − x)| ≥ |x| − |an − x| > |x| − |x|
2

=
|x|
2
.

Thus if we put δ = min{|am|, |am+1|, . . . , |aN−1|, |x|/2} then we have δ > 0 by the
assumption and

(∀n ∈ N) n ≥ m =⇒ |an| ≥ δ. (1)

This lower bound is necessary for the actual proof as we will see.
Returning to the actual proof, pick any ε > 0. (Forget the choice of ε above!)

Then choose N ∈ N such that

n ≥ N =⇒ |an − x| < δε|x|.

Then it follows from (1) that

n ≥ N =⇒ |an| ≥ δ and |an − x| < δε|x| =⇒
∣∣∣∣ 1an − 1

x

∣∣∣∣ = |an − x|
|an||x|

<
δε|x|
δ|x|

= ε.

This proves that (a−1
n )∞n=m converges to x−1.

(vi) Apply (v) to deduce that (b−1
n )∞n=m converges to y−1. Then apply (ii) to (an)

∞
n=m and

(b−1
n )∞n=m.

(vii) Assume otherwise so that x < y. Then for the choice ε = (y − x)/3, we can find
N1, N2 ∈ N such that

n ≥ N1 =⇒ |an − x| < ε and n ≥ N2 =⇒ |bn − y| < ε.
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Choose any n ≥ max{N1, N2}. Then
x− ε < an and bn < y + ε

and hence we get

y − x

3
= ε < bn − y and x− ε < an =⇒ y − x

3
= ε < 2ε

a contradiction! Therefore x ≥ y as desired.

□

Exercise 5.3. For each natural number n, let an be a real number such that |an| ≤ 2−n.
Define bn := a1 + a2 + · · ·+ an. Prove that the sequence (bn)

∞
n=0 is convergent.

Solution. This is a special case of Proposition 7.15. The idea is that, since it is almost
impossible to find an expression for a possible limit of (bn), we appeal to an indirect argument.
That is, we show that (bn) is Cauchy. Once this is established, the completeness of R
guarantees the existence of a limit.

For ε > 0, choose N ∈ N such that 2−N < ε. (Indeed, using the Archimedean property
choose N ∈ N such that Nε > 1. Now check that k ≤ 2k for any k ∈ N either from
mathematical induction or from any appropriate theorem you like. This gives 1 < 2Nε and
hence 2−N < ε.) Also let j, k ≥ N be arbitrary. Without loss of generality we assume that
j ≥ k. Then

|bj − bk| = |ak+1 + · · ·+ aj|
≤ |ak+1|+ · · ·+ |aj|
< 2−(k+1) + · · ·+ 2−j

= 2−k(2−1 + · · ·+ 2−(j−k))

= 2−k 1− 2−(j−k)

2
< 2−k ≤ 2−N < ε.

This shows that (bn) is Cauchy, hence convergent. This completes the proof. □

Exercise 5.4. Let E be a subset of R∗. Then the following statements hold.

• For every x ∈ E, we have x ≤ sup (E) and x ≥ inf (E).
• Let M ∈ R∗ be an upper bound for E, so that x ≤ M for all x ∈ E. Then
sup (E) ≤ M .

• Let M ∈ R∗ be a lower bound for E, so that x ≥ M for all x ∈ E. Then inf (E) ≥ M .

(Hint: it may be helpful to break into cases concerning whether or not E contains +∞ or
−∞.)

Solution.

• For every x ∈ E, we have x ≤ sup (E) and x ≥ inf (E):
The proof is just a typical application of the divide-and-conquer method. We first

prove that x ≤ sup (E).
– (Case 1) Suppose that ∅ ̸= E ⊆ R and is bounded above. Then sup (E) ∈ R is
the least upper bound of E and thus x ≤ sup (E) for all x ∈ E by the definition
of upper bound.
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– (Case 2) Suppose that ∅ ≠ E ⊆ R but is not bounded above. Then sup (E)
is defined as +∞, and by the definition of ordering on R∗ we always have x ≤
+∞ = sup (E) for all x ∈ E.

– (Case 3) Suppose that E = ∅. Then the statement (∀x ∈ E) x ∈ E =⇒ x ≤
sup (E) is vacuously true.

– (Case 4) Suppose that +∞ ∈ E. Then sup (E) is defined as +∞, and the claim
follows exactly by the same argument as above.

– (Case 5) Suppose that +∞ /∈ E and −∞ ∈ E. Then sup (E) := sup (E\{−∞}).
So if x ∈ E, then either x ∈ E\{−∞} or x = −∞. In the former case,
x ≤ sup (E) follows from one of Case 1-3. (Note that any of Case 1-3 is possible.)
And in the latter case, x ≤ sup (E) follows from the definition of ordering on
R∗.

These five cases exhaust all the possible cases for E ⊆ R∗. The proof for x ≥ inf (E)
follows mutatis mutandis.

• Let M ∈ R∗ be an upper bound for E, so that x ≤ M for all x ∈ E. Then
sup (E) ≤ M . Again, we prove this by dividing cases:

– (Case 1) If either M = +∞ or sup (E) = −∞, then in view of the definition of
ordering on R∗, there is nothing to prove.

– (Case 2) If M = −∞, then whenever x ∈ E we must have −∞ ≤ x ≤ M = −∞
and thus x = −∞. This shows that either E = ∅ or E = {−∞}. In any cases,
we have sup (E) = −∞ and hence sup (E) ≤ M .

– (Case 3) So it suffices to show the claim when M ∈ R and sup (E) > −∞. An
immediate observation is that +∞ /∈ E and E\{−∞} ⊆ R is non-empty.

∗ If −∞ /∈ E, then E ⊆ R is non-empty and M is an upper bound of E. So
sup (E) ≤ M is clear.

∗ If −∞ ∈ E, then E\{−∞} ⊆ R is non-empty and M is an upper bound
of E\{−∞}. So sup (E) = sup (E\{−∞}) ≤ M .

This proves the desired claim.
• This follows from the same argument as in the previous part.

□

Exercise 5.5. Let (an)
∞
n=m be a sequence of real numbers. Let x be the extended real

number x := sup (an)
∞
n=m. Then an ≤ x for all n ≥ m. Also, for any M ∈ R∗ which is an

upper bound for (an)
∞
n=m (so that an ≤ M for all n ≥ m), we have x ≤ M . Finally, for any

y ∈ R∗ such that y < x, there exists at least one integer n with n ≥ m such that y < an ≤ x.
(Hint: use the previous exercise.)

Solution.

• For any n ≥ m, x = sup {an : n ≥ m,n ∈ N} is an upper bound of the set
{an : n ≥ m,n ∈ N} in which an is contained. So we have an ≤ x.

• If M is an upper bound of (an)
∞
n=m, then it is also an upper bound of the set {an : n ≥

m,n ∈ N}. So by the previous exercise we get x = sup {an : n ≥ m,n ∈ N} ≤ M .
• Finally, assume otherwise. Then for any n ≥ m we have either y ≥ an or an > x.
Since the latter is impossible, we always have y ≥ an for all n ≥ m. Then y is
an upper bound of (an)

∞
n=m and hence y ≥ x, contradicting the assumption. This

completes the proof.
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□

Exercise 5.6. Let (an)
∞
n=m be a bounded sequence of real numbers. Assume also that

(an)
∞
n=m is monotone increasing. That is, an+1 ≥ an for all n ≥ m. Then the sequence

(an)
∞
n=m is convergent. In fact,

lim
n→∞

an = sup (an)
∞
n=m.

(Hint: use the previous exercise.)

Solution. Let ε > 0 be an arbitrary positive real number. Denote x = sup (an)
∞
n=m. Since

(an)
∞
n=m is bounded, we have x ∈ R. Then x − ε < x and thus we can choose an integer

N ≥ m such that x− ε < aN ≤ x. Then for any n ≥ N , we have

x− ε < aN ≤ aN+1 ≤ · · · ≤ an ≤ x < x+ ε

and hence |an − x| < ε. This proves that (an)
∞
n=m converges to x. □

6. Homework 6

Exercise 6.1. Let (an)
∞
n=m be a sequence of real numbers that converges to a real number

x. Then x is a limit point of (an)
∞
n=m. Moreover, x is the only limit point of (an)

∞
n=m.

Solution.

• The first part is essentially follows by the definition: Let ε > 0 and N > m be
arbitrary. We have to show that |an − x| < ε holds for some n ≥ N .
Indeed, from the convergence of (an)

∞
n=m, there exists N ′ ∈ N such that we have

|an − x| < ε for any n ≥ N ′. Then by picking any n ∈ N that satisfies n ≥
max{N,N ′}, the definition of limit point is satisfied.

• It amounts to proving that (an)
∞
n=m has a unique limit point, which is x. Assume

that y ∈ R is any limit point of (an)
∞
n=m. To show that y = x, we assume otherwise

and derive a contradiction. To this end, for ε = |y − x|/3 > 0,
– Pick N1, from the convergence of (an)

∞
n=m, such that |an − x| < ε whenever

n ≥ N1.
– Pick n ≥ N1, from the definition of limit point for y, such that |an − y| < ε.

Then it follows that

3ε = |y − x| = |(y − an) + (an − x)| ≤ |y − an|+ |an − x| < ε+ ε = 2ε,

a contradiction! Therefore y = x as desired and the claim follows.

□

Exercise 6.2. Let (an)
∞
n=m be a sequence of real numbers. Let L+ be the limit superior of

this sequence, and let L− be the limit inferior of this sequence. (Note that L+, L− ∈ R∗.)

(iii) inf (an)
∞
n=m ≤ L− ≤ L+ ≤ sup (an)

∞
n=m.

(iv) If c is any limit point of (an)
∞
n=m, then L− ≤ c ≤ L+.

(v) If L+ is finite, then it is a limit point of (an)
∞
n=m. If L− is finite, then it is a limit

point of (an)
∞
n=m.

(vi) Let c be a real number. If (an)
∞
n=m converges to c, then L+ = L− = c. Conversely, if

L+ = L− = c, then (an)
∞
n=m converges to c.
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Solution. Before the proof, define sequences (ℓn)
∞
n=m and (un)

∞
n=m in R∗ by

ℓn = inf k≥n(ak) and un = sup k≥n(ak) for n ≥ m,

respectively. This will save our ink and space. We also remark that (ℓn)
∞
n=m is monotone

increasing and (un)
∞
n=m is monotone decreasing in R∗, which we have already checked in

Definition 6.4 and 6.5.

(iii) It is clear that

inf k≥m(ak) = ℓm ≤ ℓn ≤ an ≤ un ≤ um = sup k≥m(ak) for all n ≥ m.

Now the first inequality and the third inequality are immediate:

ℓm ≤ sup n(ℓn) = L− and L+ = inf n(un) ≤ um.

To prove the intermediate inequality, notice that every uk is an upper bound of
(ℓn)

∞
n=m and likewise that every ℓj is a lower bound of (un)

∞
n=m. Indeed, let j, k ≥ m

be arbitrary. Then
– If j ≥ k, then ℓj ≤ uj ≤ uk.
– If j ≤ k, then ℓj ≤ ℓk ≤ uk.

So in any cases ℓj ≤ uk for any j, k ≥ m and the claim follows. Now using Proposition
5.4 (or equivalently, Exercise 5), we have

L− = sup n(ℓn) ≤ uk for all k ≥ m

and now taking inf k≥m we finally get

L− ≤ L+

as desired. (Remark. In summary, we combined the pairwise estimate ℓn ≤ un and
the monotonicity of (ℓn) and (un) to obtain the stronger estimate ℓj ≤ uk. This
allows us to take infimum and supremum separately for j and k. This kind of trick
will appear again, especially when we learn the Riemann integral.)

(iv) We first focus on c ≤ L+. If L+ = +∞, there is nothing to prove. So we assume
that L+ < +∞. To this end we invoke the standard ’2ε-argument’: Let ε > 0 be
arbitrary. Then

– Since limn→∞ un = L+, there exists N such that |un − L+| < (ε/2) whenever
n ≥ N .

– Since c is a limit point, there exists n ≥ N such that |an − c| < (ε/2).
Then with the choice of n above, we get

c = (c− an) + (an − L+) + L+ <
ε

2
+

ε

2
+ L+ = L+ + ε.

Now the resulting inequality

c < L+ + ε

depends only on ε > 0. Since ε is arbitrary, this implies that c ≤ L+. The proof for
L− ≤ c follows in exactly the same way.

(v) Assume that L+ is finite. This means that (un)
∞
n=m converges to L+. Now let ε > 0

and N ∈ N be arbitrary with N ≥ m. We want to prove that |an −L+| < ε for some
n ≥ N .
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Indeed, choose N ′ ∈ N such that |un − L+| < ε for any n ≥ N ′. Also pick any
m ≥ max{N,N ′}. Then by noticing that

L− − ε < um < L+ + ε and um = sup k≥m(ak),

it follows from Proposition 5.4 (or equivalently, Exercise 5 above) that there exists
n ≥ m satisfying

L+ − ε < an ≤ sup k≥m(ak) = um < L+ + ε.

This inequality shows that |an−L+| < ε. In summary, what we have shown so far is:
for any ε > 0 and N ∈ N with N ≥ m, there exists n ≥ N such that |an − L+| < ε.
This shows that L+ is a limit point of (an)

∞
n=m. The proof for L− also follows in

exactly the same way.
(vi) (⇒): If (an)

∞
n=m converges to c, then by Proposition 6.2 (or equivalently, Exercise

6 above) shows that c is the unique limit point of (an)
∞
n=m. Also, since (an)

∞
n=m is

bounded, both L+ and L− are finite. Then by (v) above, L+ and L− are limit points
of (an)

∞
n=m. Therefore by the uniqueness we get L+ = L− = c. (Of course, a direct

proof is also possible. Try it yourself!)
(⇐): We know that un → L+ = c and ln → L− = c. Now for any ε > 0, choose

N1, N2 ∈ N such that

n ≥ N1 =⇒ |un − c| < ε and n ≥ N2 =⇒ |ln − c| < ε.

Then with N = max{N1, N2}, it follows that
n ≥ N =⇒ c− ε < ln ≤ an ≤ un < c+ ε =⇒ |an − c| < ε.

This proves that an → c as n → ∞.

□

Exercise 6.3. Let (an)
∞
n=m, (bn)

∞
n=m be sequences of real numbers such that lim supn→∞ an

and lim supn→∞ bn are finite. Prove:

lim sup
n→∞

(an + bn) ≤ (lim sup
n→∞

an) + (lim sup
n→∞

bn).

Solution. Let un = sup k≥n(ak) and vn = sup k≥n(bk) be suprema. Then the following relation
follows by the definition of supremum:

ak ≤ un and bk ≤ vn, ∀k ≥ n =⇒ ak + bk ≤ un + vn, ∀k ≥ n

shows that, upon taking the supremum over all k with k ≥ n, we get

sup k≥n(ak + bk) ≤ un + vn.

This shows that for any n ≥ m, we get

inf j:j≥msup k≥j(ak + bk) ≤ sup k≥n(ak + bk) ≤ un + vn.

Since we know that (un)
∞
n=m and (vn)

∞
n=m converge to lim supn→∞ an and lim supn→∞ bn

respectively, taking n → ∞ gives

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

as desired. □
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Exercise 6.4. Let (an)
∞
n=m, (bn)

∞
n=m be sequences of real numbers. Assume that an ≤ bn for

all n ≥ m. Prove:

• sup (an)
∞
n=m ≤ sup (bn)

∞
n=m.

• inf (an)
∞
n=m ≤ inf (bn)

∞
n=m.

• lim supn→∞ an ≤ lim supn→∞ bn.
• lim infn→∞ an ≤ lim infn→∞ bn.

Solution.

• Let k and n be any integer satisfying k ≥ n ≥ m. Then the following obvious
relations

ak ≤ bk and bk ≤ sup j≥n(bj)

shows that ak ≤ sup j≥n(bj) for all k ≥ n. In particular, the supremum sup j≥n(bj) is
an upper bound of the set {an, an+1, . . . } and hence we get

sup j≥n(aj) = sup {an, an+1, . . . } ≤ sup j≥n(bj).

• This follows from exactly the same argument. Indeed, the following proof is just a
duplication of the previous proof:

Let k and n be any integer satisfying k ≥ n ≥ m. Then the following obvious
relations

ak ≤ bk and inf j≥n(aj) ≤ ak
shows that inf j≥n(aj) ≤ bk for all k ≥ n. In particular, the infimum inf j≥n(aj) is a
lower bound of the set {bn, bn+1, . . . } and hence we get

inf j≥n(aj) = inf {bn, bn+1, . . . } ≤ inf j≥n(bj).

• This is a direct consequence of the two former properties. Let un = sup∞
j=n(aj) and

vn = sup∞
j=n(bj). Then we know that un ≤ vn for all n ≥ m. Since both are again

sequences of real numbers, we have

inf n(un) ≤ inf n(vn).

But both quantities are precisely lim sup by definition. Therefore

lim sup
n→∞

an = inf n≥msup j≥n(aj) ≤ inf n≥msup j≥n(bj) = lim sup
n→∞

bn.

• Again, this follows exactly the same line of reasoning as in the previous part.

□

Exercise 6.5. Let (an)
∞
n=m, (bn)

∞
n=m, (cn)

∞
n=m be sequences of real numbers such that there

exists a natural number M such that, for all n ≥ M ,

an ≤ bn ≤ cn.

Assume that (an)
∞
n=m and (cn)

∞
n=m converge to the same limit L. Prove that (bn)

∞
n=m con-

verges to L. (Hint: use the previous exercise.)

Solution. We know from the previous exercise that

L = lim inf
n→∞

an ≤ lim inf
n→∞

bn ≤ lim sup
n→∞

bn ≤ lim sup
n→∞

cn = L.

Thus both limsup and liminf of (bn)
∞
n=m coincide with L and therefore (bn)

∞
n=m converges to

L. □
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Exercise 6.6. Let x, y > 0 be positive real numbers, and let n,m ≥ 1 be positive integers.
Prove:

(i) If y = x1/n, then yn = x.
(ii) If yn = x, then y = x1/n.
(iii) x1/n is a positive real number.
(iv) x > y if and only if x1/n > y1/n.
(v) If x > 1 then x1/n decreases when n increases. If x < 1, then x1/n increases when n

increases. If x = 1, then x1/n = 1 for all positive integers n.
(vi) (xy)1/n = x1/ny1/n.
(vii) (x1/n)1/m = x1/(nm).

Remark. We remark that the exponentiation law (for integer exponents), which was
originally proved for rational numbers, readily extends to that of real number even without
modifying the argument. This is because the proof relies on something we call ’ordered field’
structure (an algebraic system in which all the arithmetic operations work freely and the
order relation is compatible with these operations in a usual way), and thankfully both the
field Q of rationals and the field R of real numbers are ordered fields. Solution. With this
remark, we will use the exponentiation laws in Proposition 4.27 and 4.29 (of the 1st lecture
note) freely even in the context of real numbers instead of rationals.

Let x, y > 0 be positive real numbers, and let m,n ≥ 1 be positive integers. Before the
proof, we introduce the following notation

S(x) := {y ∈ R : y ≥ 0 and yn ≤ x}, x > 0.

Lemma 6.15 shows that x1/n := supS(x) is a non-negative real number.

(i) We prove yn = x for y = x1/n by contradiction. Assume that yn ̸= x. Then either
yn < x or yn > x.

– Assume that yn < x. We claim that (y + ε)n < x for some ε > 0. Once this is
proved, with any choice of such ε > 0, we get y + ε ∈ S(x) and thus

y < y + ε ≤ supS(x) = x1/n = y,

a contradiction. Therefore the relation yn < x is impossible.
To complete the proof, we show the claim. Assuming otherwise, we get (y+ε)n >
x for all ε > 0. In particular, by choosing ε = 1

k
, from Limit Laws we get

(y +
1

k
)n ≥ x =⇒ yn ≥ x

as k → ∞ a contradiction. This proves our claim and thus we are done.
– Assume that yn > x. We claim that (y− ε)n < x for some 0 < ε < y. Assuming
this claim, we have

∀z ∈ R, z ≥ y − ε =⇒ zn ≥ (y − ε)n > x =⇒ z /∈ S(x).

Taking contrapositive, whenever z ∈ S(x) we must have z < y − ε. So y − ε is
an upper bound of S(x) and this leads to the following contradiction:

y = supS(x) ≤ y − ε < y.

Therefore yn > x is also impossible.
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We complete the proof by proving our claim. If this is not the case, then for all
0 < ε < y we must have (y − ε)n ≤ x. Now by the Archimedean property we choose
N such that Ny > 1. Then we plug ε = k−1 with k > N (so that 0 < ε < y) and
take the limit as k → ∞. Then we get

(y − k−1)n ≤ x =⇒ yn ≤ x,

as k → ∞ contradicting our assumption.
(ii) Assume that yn = x. Since y > 0 by the assumption, we have y ∈ S(x). Now this

shows y ≤ x1/n. To prove the equality, assume otherwise. Then we get y < x1/n. This
means that y is not an upper bound of S(x), so by negating the definition of upper
bound we can pick some z ∈ S(x) such that y < z. This gives x = yn < zn ≤ x, a
contradiction! Therefore yn = x as desired.

(iii) We divide into two cases:
– First consider the case 0 < x ≤ 1. By observing that 0 < xn < xn−1 < · · · ≤ x
(or invoke the principle of mathematical induction to check this formally), we
find that x ∈ S(x). Thus we get

0 < x ≤ supS(x) = x1/n.

– Now consider the case x > 1. Then 1n = 1 < x and 1 ∈ S(x). So we get

1 ≤ supS(x) = x1/n.

Therefore in any cases we get x1/n > 0 and we are done.
(iv) (⇒): Assume that x > y. Then

∀z ∈ R, z ∈ S(y) =⇒ z ≥ 0 and zn ≤ y =⇒ z ≥ 0 and zn ≤ x =⇒ z ∈ S(x)

and hence we obtain

x1/n = supS(x) ≥ supS(y) = y1/n.

To exclude the possibility of having equality, assume otherwise so that x1/n = y1/n.
Then the part (i) shows that

x = (x1/n)n = (y1/n)n = y,

which contradicts the assumption. Therefore we must have x1/n > y1/n.
(⇐): From (i), we obtain

x = (x1/n)n > (y1/n)n = y.

(v) In view of (ii), it suffices to prove that (x1/ny1/n)n = xy. Indeed, by utilizing the
exponentiation law (ab)n = anbn, we get

(x1/ny1/n)n = (x1/n)n(y1/n)n = xy

and therefore the assertion follows from (ii).
(vi) As in (v), it suffices to prove that ((x1/n)1/m)mn = x. By utilizing the exponentiation

law amn = (am)n, we get

((x1/n)1/m)mn = (((x1/n)1/m)m)n = (x1/n)n = x

and therefore the assertion follows from (i).

□
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Exercise 6.7. Let x, y > 0 be positive real numbers, and let q, r be rational numbers. Prove:

(i) xq is a positive real number.
(ii) xq+r = xqxr and (xq)r = xqr.
(iii) x−q = 1/xq.
(iv) If q > 0, then x > y if and only if xq > yq.
(v) If x > 1, then xq > xr if and only if q > r. If x < 1, then xq > xr if and only if q < r.

Solution.

(i) We have x1/b > 0 by the previous exercise. Taking power to a, we still have a positive
number. Therefore xq = (x1/b)a > 0.

(ii) Notice that q + r = (ab′ + a′b)/bb′. Thus

xq+r = (x1/bb′)ab
′+a′b

= (x1/bb′)ab
′
(x1/bb′)a

′b

= (x1/b)a(x1/b′)a

= xqxr.

To prove the second assertion, we first show that

(x1/b)a = (xa)1/b. (1)

In view of (ii), it suffices to prove that ((x1/b)a)b = xa. But

((x1/b)a)b = (x1/b)ab = ((x1/b)b)a = xa

and hence (1) follows. Then by noting that qr = aa′/bb′, we have

xqr = (x1/bb′)aa
′

= ((x1/b)1/b
′
)aa

′

= (((x1/b)1/b
′
)a)a

′

= (((x1/b)a)1/b
′
)a

′

= (xq)r

□

Exercise 6.8. Let −1 < x < 1. Show that limn→∞ xn = 0. Using the identity (1/xn)xn = 1
for x > 1, conclude that xn does not converge as n → ∞ for x > 1.

Solution.
In view of the inequality

−|x|n ≤ xn ≤ |x|n

and the Squeezing Theorem, it suffices to prove that |x|n → 0 as n → ∞. Since 0 ≤ |x| < 1,
the sequence an = |x|n is non-increasing and bounded:

0 ≤ an+1 ≤ an < 1.

So (an)
∞
1 must converge to some real number L. But since

L = lim
n→∞

|x|n = lim
n→∞

|x|n+1 = |x| · L,

we have (1− |x|)L = 0 and hence L = 0 as desired.
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Now, in this case, assume that x > 1. Then 0 < x−1 < 1 and hence we have limn→∞ x−n =
0. But if it were true that a := limn→∞ xn exists, then by the Limit Laws,

a · 0 = lim
n→∞

x−n · lim
n→∞

xn = lim
n→∞

(x−nxn) = lim
n→∞

1 = 1

a contradiction! Therefore limn→∞ xn cannot exist. □

7. Homework 7

Exercise 7.1. For any x > 0, show that limn→∞ x1/n = 1. (Hint: first, given any ε > 0, show
that (1 + ε)n has no real upper bound M , as n → ∞. To prove this claim, set x = 1/(1 + ε)
and use Exercise 6.8. Now, with this preliminary claim, show that for any ε > 0 and for any
real M , there exists a positive integer n such that M1/n < 1+ ε. Now, use these two claims,
and consider the cases x > 1 and x < 1 separately.)

Solution.

(i) If x = 1, then the assertion is obvious since 11/n = 1 yields the constant sequence
with value 1.

(ii) Consider the case x > 1. We first prove that for any ε > 0, there exists N such
that x < (1 + ε)n whenever n ≥ N . Indeed, from the previous exercise we have
limn→∞(1 + ε)−n = 0. Since x−1 > 0, there exists N such that

(1 + ε)−n = |(1 + ε)−n − 0| < x−1 whenever n ≥ N.

With this choice of N , we obtain the desired claim. Now for any ε > 0, let N be
chosen as in the claim. Then whenever n ≥ N , we have

1 < x ≤ (1 + ε)n =⇒ 1 < x1/n < 1 + ε =⇒ |x1/n − 1| < ε.

This proves that x1/n converges to 1 as n → ∞.
(iii) Finally, consider the case 0 < x < 1. Then x−1 > 1 and we know that limn→∞(x−1)1/n =

1. Therefore x1/n = ((x−1)1/n)−1 also converges to 1.

We also present an alternative solution of (ii):
(ii’) If x > 1, then we know that x1/n > 1. So if we write εn = x1/n − 1, then we have

εn > 0. Moreover,

x = (x1/n)n = (1 + εn)
n ≥ 1 + nεn

and we get

0 ≤ εn ≤ x− 1

n
By taking n → ∞, Squeezing Theorem tells us that εn → 0 as n → ∞. This proves that
x1/n = 1 + εn converges to 1. □

Exercise 7.2. Letm ≤ n < p be integers, let (ai)
n
i=m, (bi)

n
i=m be a sequences of real numbers,

let k be an integer, and let c be a real number. Prove:

•
n∑

i=m

ai +

p∑
i=n+1

ai =

p∑
i=m

ai.

•
n∑

i=m

ai =
n+k∑

j=m+k

aj−k.
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•
n∑

i=m

(ai + bi) = (
n∑

i=m

ai) + (
n∑

i=m

bi).

•
n∑

i=m

(cai) = c(
n∑

i=m

ai).

•

∣∣∣∣∣
n∑

i=m

ai

∣∣∣∣∣ ≤
n∑

i=m

|ai| .

• If ai ≤ bi for all m ≤ i ≤ n, then
n∑

i=m

ai ≤
n∑

i=m

bi.

Solution.
Before the proof, we remark that for any integer m and for any sequence (ai)

∞
i=m of real

numbers, we have
m∑

i=m

ai = am = 0 + am = am =
m−1∑
i=m

ai + am.

This is also true for any sequence (ai) of real numbers for which am is defined, since we can
always restrict it to a smaller range.

• Let m ≤ n be integers. We prove the following statement by induction: Claim. For
any l ∈ N and for any sequence (ai)

m+l
i=m of real numbers, we have

n+l∑
i=m

ai =
n∑

i=m

ai +
n+l∑

i=n+1

ai. (2) (1)

Base case) First we consider the base case l = 0. In this case, Definition 7.1 shows
that

n+0∑
i=n+1

ai = 0.

Thus this proves (2) as desired. Induction step) Next, we assume that the claim
holds for l. Then since n+ l + 1 > n+ 1,

n+l+1∑
i=m

ai =

(
n+l∑
i=m

ai

)
+ an+l+1

=

(
n∑

i=m

ai +
n+l∑

i=n+1

ai

)
+ an+l+1

=
n∑

i=m

ai +

(
n+l∑

i=n+1

ai + an+l+1

)

=
n∑

i=m

ai +
n+l+1∑
i=n+1

ai

(by Definition 7.1) (by induction hypothesis) (by Definition 7.1) Therefore the claim
follows by mathematical induction.
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• Let m, k be integers. We prove the following statement by induction: Claim. For
any l ∈ N and for any sequence (ai)

m+l
i=m of real numbers, we have

m+l∑
i=m

ai =
m+k+l∑
j=m+k

aj−k. (3) (2)

Base case) We consider the base case l = 0. Then both sides are given by

m∑
i=m

ai = am = a(m+k)−k =
m+k∑

j=m+k

aj−k

This proves the base case. Induction step) Assume that (3) holds for l. Then

m+l+1∑
i=m

ai =

(
m+l∑
i=m

ai

)
+ am+l+1

=

(
m+k+l∑
j=m+k

aj−k

)
+ a(m+k+l+1)−k

=
m+k+l+1∑
j=m+k

aj−k.

(by Definition 7.1) (by induction hypothesis)
Again, the claim follows from the principle of mathematical induction.

• Let m be an integer. Claim. For any l ∈ N and for any sequences (ai)
m+l
i=m and

(bi)
m+l
i=m of real numbers, we have

m+l∑
i=m

(ai + bi) =
m+l∑
i=m

ai +
m+l∑
i=m

bi. (4) (3)

Base case) When l = 0, we have
m∑

i=m

(ai + bi) = (am + bm) = am + bm =
m∑

i=m

ai +
m∑

i=m

bi.

Induction step) Suppose that (4) is true for l. Then

m+l+1∑
i=m

(ai + bi) =

(
m+l∑
i=m

(ai + bi)

)
+ (am+l+1 + bm+l+1)

=

(
m+l∑
i=m

ai +
m+l∑
i=m

bi

)
+ (am+l+1 + bm+l+1)

=

(
m+l∑
i=m

ai + am+l+1

)
+

(
m+l∑
i=m

bi + bm+l+1

)

=
m+l+1∑
i=m

ai +
m+l+1∑
i=m

bi.
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• Let m be an integer and c be a real number. Claim. For any l ∈ N and for any
sequence (ai)

m+l
i=m of real numbers, we have

m+l∑
i=m

(cai) = c

(
m+l∑
i=m

ai

)
. (5) (4)

Base case) When l = 0, we have

m∑
i=m

(cai) = cam = c

(
m∑

i=m

ai

)
.

Induction step) Suppose that (5) is true for l. Then

m+l+1∑
i=m

(cai) =

(
m+l∑
i=m

(cai)

)
+ cam+l+1

= c

(
m+l∑
i=m

ai

)
+ cam+l+1

= c

(
m+l∑
i=m

ai + am+l+1

)

= c

(
m+l+1∑
i=m

ai

)
.

This proves the claim as desired.
• Let m be an integer. Claim. For any l ∈ N and for any sequence (ai)

m+l
i=m of real

numbers, we have

∣∣∣∣∣
m+l∑
i=m

ai

∣∣∣∣∣ ≤
m+l∑
i=m

|ai|. (6) (5)

Base case) When l = 0, we have

∣∣∣∣∣
m∑

i=m

ai

∣∣∣∣∣ = |am| =
m∑

i=m

|ai|.
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Induction step) Suppose that (6) is true for l. Then by the triangle inequality
together with the induction hypothesis,∣∣∣∣∣

m+l+1∑
i=m

ai

∣∣∣∣∣ =
∣∣∣∣∣
(

m+l∑
i=m

ai

)
+ am+l+1

∣∣∣∣∣
≤

∣∣∣∣∣
m+l∑
i=m

ai

∣∣∣∣∣+ |am+l+1|

≤
m+l∑
i=m

|ai|+ |am+l+1|

=
m+l+1∑
i=m

|ai|.

This proves the claim as desired.
• Let m ≤ n be integers, and let (ai)

n
i=m and (bi)

n
i=m be sequences of real numbers

satisfying ai ≤ bi for m ≤ i ≤ n. What we want to prove is the following relation
n∑

i=m

ai ≤
n∑

i=m

bi. (7) (6)

□

Exercise 7.3. Let
∑∞

n=m an be a formal series of real numbers. Then
∑∞

n=m an converges if
and only if: for every real number ε > 0, there exists an integer N ≥ M such that, for all
p, q ≥ N , ∣∣∣∣∣

q∑
n=p

an

∣∣∣∣∣ < ε.

(Hint: recall that a sequence is convergent if and only if it is a Cauchy sequence.)

Solution.
The series

∑∞
n=m an converges, by definition, exactly when the partial sum SN =

∑N
n=m an

converges as N → ∞. Now using the completeness of R, this happens exactly when (SN)
∞
N=m

is a Cauchy sequence. So it suffices to show that this is equivalent to the condition given
in the exercise. This is almost trivial, but we introduce the proof anyway to please some
meticulous readers.

• Suppose that the condition in the exercise holds. Let ε > 0 be arbitrary and let N
be as in the condition. Then whenever p, q ≥ N , either p ≥ q or p ≤ q. In the former
case,

|Sp − Sq| =

∣∣∣∣∣
p∑

n=q+1

an

∣∣∣∣∣ < ε.

The latter case is treated exactly in the same way. Thus we obtain the following
inequality unconditionally:

|Sp − Sq| < ε whenever p, q ≥ N.

This implies that (SN)
∞
N=m is Cauchy as claimed.
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• Suppose that (SN)
∞
N=m is Cauchy. Then for any ε > 0, there exists N such that

|Sp − Sq| < ε whenever p, q ≥ N − 1. (This N − 1 term is introduced for a very
minute technical detail.)

Now let p, q > N . Then we have either q ≥ p or q < p. In the former case, we get∣∣∣∑q
n=p an

∣∣∣ = |Sq−1 − Sp−1| < ε. In the latter case,
∣∣∣∑q

n=p an

∣∣∣ = 0 < ε by definition of

summation notation. This implies the condition in the exercise.

Therefore the equivalence is proved. □

Exercise 7.4. Let
∑∞

n=m an be a formal series of real numbers. If
∑∞

n=m an converges, then
limn→∞ an = 0. Note that the contrapositive says: if an does not converge to zero as n → ∞,
then

∑∞
n=m an does not converge. (Hint: use Exercise 12.20.)

Solution. Assume that
∑∞

n=m an converges. Using the previous exercise, for arbitrary ε > 0,
there exists N such that ∣∣∣∣∣

q∑
n=p

an

∣∣∣∣∣ < ε for any p, q ≥ N.

Now let n ≥ N . Then by choosing p, q by p = q = n, we get

|an − 0| = |an| =

∣∣∣∣∣
n∑

k=n

ak

∣∣∣∣∣ < ε.

Therefore (an)
∞
n=m converges to 0 as desired. □

Exercise 7.5. Let
∑∞

n=m an be a formal series of real numbers. If this series is absolutely
convergent, then it is convergent. Moreover,∣∣∣∣∣

∞∑
n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| .

Solution. Assume that
∑∞

n=m an converges absolutely. Then by Exercise 1, for any ε > 0
there exists N such that ∣∣∣∣∣

q∑
n=p

|an|

∣∣∣∣∣ < ε whenever p, q ≥ N.

Now by the property of the summation, we get∣∣∣∣∣
q∑

n=p

an

∣∣∣∣∣ ≤
q∑

n=p

|an| < ε whenever p, q ≥ N.

Thus by Exercise 1 again, the series
∑∞

n=m an converges as well. Moreover, since the partial

sum TN =
∑N

n=m |an| is monotone increasing,∣∣∣∣∣
N∑

n=m

an

∣∣∣∣∣ ≤
N∑

n=m

|an| = TN ≤ supTN = lim
N→∞

TN =
∞∑

n=m

|an|.
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This essentially proves the desired inequality. To argue rigorously, let A =
∑∞

n=m |an|. Then
the above inequality tells us that∣∣∣∣∣

N∑
n=m

an

∣∣∣∣∣ ≤ A for all N ≥ m =⇒ −A ≤
∞∑

n=m

an ≤ A =⇒

∣∣∣∣∣
∞∑

n=m

an

∣∣∣∣∣ ≤ A.

This completes the proof. □

Exercise 7.6.

• Let
∑∞

n=m an be a series of real numbers converging to x, and let
∑∞

n=m bn be a series
of real numbers converging to y. Then

∑∞
n=m(an + bn) is a convergent series that

converges to x+ y. That is,
∞∑

n=m

(an + bn) = (
∞∑

n=m

an) + (
∞∑

n=m

bn).

(Deferred)

Exercise 7.7. Let
∑∞

n=m an,
∑∞

n=m bn be formal series of real numbers. Assume that |an| ≤
bn for all n ≥ m. If

∑∞
n=m bn is convergent, then

∑∞
n=m an is absolutely convergent. Moreover,∣∣∣∣∣

∞∑
n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| ≤
∞∑

n=m

bn.

Solution. The proof is essentially an imitation of that of Exercise 3: Assume that
∑∞

n=m bn
converges. By Exercise 1, for any ε > 0 there exists N such that∣∣∣∣∣

q∑
n=p

bn

∣∣∣∣∣ < ε whenever p, q ≥ N.

But since ∣∣∣∣∣
q∑

n=p

an

∣∣∣∣∣ ≤
q∑

n=p

|an| ≤
q∑

n=p

|bn| < ε,

it follows from Exercise 1 that
∑∞

n=m |an| converges as well. Now let TN =
∑N

n=m |bn| be the
partial sum of (|bn|)∞n=m. Then (TN)

∞
N=m is monotone increasing and convergent. So we have∣∣∣∣∣

N∑
n=m

an

∣∣∣∣∣ ≤
N∑

n=m

|an| ≤ TN ≤ supTN = lim
N→∞

TN =
∞∑

n=m

|bn|.

Thus it follows that
∞∑

n=m

|an| ≤
∞∑

n=m

|bn|.

Combining this with Exercise 3, it follows that
∑∞

n=m an converges absolutely and∣∣∣∣∣
∞∑

n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| ≤
∞∑

n=m

|bn|.

□
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Exercise 7.8. For any n ∈ N, define an := (−1)n+1/(n + 1). Find a bijection g : N → N
such that the series

∑∞
n=0 ag(n) diverges.

Solution. We described the solution in class. Here is a sketch of the argument. It is easiest
to describe what to do in words. First, sum up the odd terms only, such that the partial
sum up to a certain index N is at least 10. This is possible to do since

∑∞
k=1 1/(2k) diverges.

Then sum the first negative term (n = 0). Then, sum the next several odd terms so the
partial sum up to another index M is at least 20. Once again, this is possible to do since∑∞

k=1 1/(2k) diverges. Then sum the next negative term (n = 2). Then, sum the next
several odd terms so the partial sum up to another index P is at least 30. Once again, this is
possible to do since

∑∞
k=1 1/(2k) diverges. Then sum the next negative term (n = 4). Repeat

this process. By construction, the partial sums do not converge, since they increase without
bound. Rearranging terms in the sum corresponds to defining a bijection g as specified.

□

Exercise 7.9. Let (bn)
∞
n=m be a sequence of positive numbers. Then

lim inf
n→∞

bn+1

bn
≤ lim inf

n→∞
b1/nn .

Solution. Let L := lim infn→∞
bn+1

bn
. If L = 0 there is nothing to show, so we assume that

L > 0. Assume for now that L < ∞.
Let ε > 0 such that L− ε > 0. From the Proposition characterizing liminf, there exists an

integer N ≥ m such that, for all n ≥ N , we have (bn+1/bn) ≥ L−ε. That is, bn+1 ≥ (L−ε)bn.
By induction, we conclude that, for all n ≥ N ,

bn ≥ (L− ε)n−NbN .

That is, for all n ≥ N ,

b1/nn ≥ (bN(L− ε)−N)1/n(L+ ε). (∗)

Letting n → ∞ on the right side of (∗), and applying the Limit Laws and a Lemma from
the notes stating that limn→∞ z1/n = 1 where z = L− ε > 0,

lim
n→∞

(bN(L− ε)−N)1/n(L− ε) = L− ε.

So, applying the Comparison Principle to (∗),

lim inf
n→∞

b1/nn ≥ L− ε.

Since ε > 0 is arbitrary, we conclude that lim infn→∞ b
1/n
n ≥ L, as desired, in the case L < ∞.

In the case L = ∞, we note that the above argument shows that lim infn→∞ b
1/n
n ≥ L′ for

any L′ > 0. □

Exercise 7.10. Let (an)
∞
n=0, (bn)

∞
n=0, (cn)

∞
n=0 be sequences of real numbers. Then (an)

∞
n=0 is

a subsequence of (an)
∞
n=0. Also, if (bn)

∞
n=0 is a subsequence of (an)

∞
n=0, and if (cn)

∞
n=0 is a

subsequence of (bn)
∞
n=0, then (cn)

∞
n=0 is a subsequence of (an)

∞
n=0.

Exercise 7.11. Give an example of two convergent series of real numbers
∑∞

n=0 an and∑∞
n=0 bn such that the series

∑∞
n=0(anbn) is not convergent.
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Solution. Let an = bn = 1/
√
n for any n ≥ 1 (and let a0 = b0 = 0). Then

∑∞
n=0 an and∑∞

n=0 bn converge by the dyadic criterion (or Corollary 2.6.33) but
∑∞

n=0(anbn) =
∑∞

n=0 1/n
diverges , again from the dyadic criterion (or Corollary 2.6.33). □

Exercise 7.12. Let (an)
∞
n=0 be a sequence of real numbers, and let L be a real number.

• If the sequence (an)
∞
n=0 converges to L, then every subsequence of (an)

∞
n=0 converges

to L.
• Conversely, if every subsequence of (an)

∞
n=0 converges to L, then (an)

∞
n=0 itself con-

verges to L.

8. Homework 8

Preliminary. In this section we deal with some facts that are relevant to our problems but
can be coped with only previous materials.

Maximum and Minimum of subsets of R. Let E be a non-empty subset of R. If there
is an element M ∈ E such that x ≤ M for any element x ∈ E, we call M the maximum of
E and denote M = maxE. Similarly, if there is an element m ∈ E such that x ≥ m for any
element x ∈ E, we call m the minimum of E and denote m = minE.
This concept is quite close to that of supremum and infimum, but the difference is that

maximum and minimum need not always exist.
Proposition 1.1. Let E ⊆ R. Then

• E have at most one maximum and at most one minimum.
• If maxE exists, then maxE = supE.
• If minE exists, then minE = inf E.

Remark. The first assertion justifies our notation as well as our usage of the definite
article ’the’.

Proof. Suppose that M,M ′ are maximums of E. Since M,M ′ ∈ E, we must have M ′ ≤ M
and M ≤ M ′. This implies M = M ′ and hence there cannot exist two or more maximums.
The same argument applies for the uniqueness of minimum.

Now assume that M = maxE exists. Then M is an upper bound of E. Moreover, M is
also the least upper bound since any x < M cannot be an upper bound of E. Therefore
M = supE.
The third assertion follows in exactly the same manner.

Exercise 8.1. Let (an)
∞
n=m be a sequence of real numbers converging to 0. Show that

(|an|)∞n=m also converges to zero.

Solution. By definition, for any ε > 0 there exists N > m such that whenever n ≥ N we
have |an − 0| ≤ ε. But since |an − 0| = |an| = ||an| − 0|, we also have ||an| − 0| < ε. By
reading out this result using definition again, we have limn→∞ |an| = 0 as desired. □

Exercise 8.2. Let a < b be real numbers. Let I be any of the four intervals (a, b), (a, b],
[a, b) or [a, b]. Then the closure of I is [a, b].

Solution. Let I denote the closure of I. We prove I = [a, b] by showing that a real number
x lies in I exactly when x ∈ [a, b]. To this end, we divide the case according to whether x
lies inside I or not.

• Suppose that x ∈ (a, b). Then x ∈ I and x is an adherent point of I. Thus x ∈ I.
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• Suppose that x is either a or b. Let us first consider the case where x = a. Then for
any ε > 0, there exists y such that a < y < min{a+ε, b}. Then y ∈ I and |a−y| < ε.
This proves that a ∈ I. The proof of b ∈ I is quite the same.

• Suppose that x /∈ [a, b]. That is, either x < a or x > b. Let us examine the case
x < a first. Then for ε = a− x, we find that there is no y ∈ I satisfying |x− y| < ε.
Indeed, for any y ∈ I we have y ≥ a > x and

|y − x| = y − x ≥ a− x = ε.

This shows that x /∈ I. The case x > b can be treated in a similar way, proving that
x /∈ I.

Therefore I = [a, b]. □

Exercise 8.3. Let X be a subset of R, let f : X → R be a function, let E be a subset of
X, let x0 be an adherent point of E, and let L be a real number. Then the following two
statements are equivalent. (That is, one statement is true if and only if the other statement
is true.)

(i) f converges to L at x0 in E.
(ii) For every sequence (an)

∞
n=0 in E, and which converges to x0, the sequence (f(an))

∞
n=0

converges to L.

Solution. (i) ⇒ (ii) : Let (an)
∞
n=0 be any sequence in E that converges to x0. To prove that

limn→∞ f(an) = L, let ε > 0 be arbitrary. Then

• Using Definition 2.14, pick δ = δ(ε) > 0 such that for any x ∈ E with |x − x0| < δ
we have |f(x)− L| < ε.

• Using the definition of convergence of sequence, pick N = N(δ) such that for any
n ≥ N we have |an − x0| < δ.

Combining these two facts, we find that |f(an)− L| < ε holds whenever n ≥ N . Therefore
(f(an))

∞
n=0 converges to L.

(ii) ⇒ (i) : We prove the contrapositive. Assume that f does not converge to L as x → x0

in E. By negating Definition 2.14, we find that

• There exists ε > 0 such that for any δ > 0, there exists x ∈ E such that |x− x0| < δ
but |f(x)− L| ≥ ε.

Now for each particular choice δ = n−1 (where n ∈ N), we utilize this statement to pick
some x = an ∈ E such that |an − x0| < δ = n−1 but |f(an)− L| ≥ ε.
On the one hand, by this construction we clearly have limn→∞ an = x0. (Just apply the

squeezing theorem to x0 − n−1 < an < x0 + n−1.) On the other hand, (f(an))
∞
n=0 cannot

converge to L. Indeed, assume otherwise so that f(an) converges to L. Then there exists
N such that whenever n > N we have |f(an) − L| < 1

2
ε. But since |f(an) − L| ≥ ε always

holds, we must have 0 < ε < 1
2
ε, a contradiction! This completes the proof. □

Exercise 8.4. Let X be a subset of R, let f : X → R be a function, let E be a subset of
X, let x0 be an adherent point of E, let L be a real number, and let δ be a positive real
number. Then the following two statements are equivalent:

(i) limx→x0;x∈E f(x) = L.
(ii) limx→x0;x∈E∩(x0−δ,x0+δ) f(x) = L.

Solution. For the simplicity of notation, let us denote Eδ = E ∩ (x0 − δ, x0 + δ).
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(i) ⇒ (ii) : This direction is almost trivial. Assume that limx→x0;x∈E f(x) = L. Let ε > 0 be
arbitrary. Then there exists η > 0 such that, for any x ∈ E with |x − x0| < η we
have |f(x) − L| < ε. So if x ∈ Eδ and |x − x0| < η, then we have x ∈ E and hence
|f(x)− L| < ε. From this we read out that limx→x0;x∈Eδ

f(x) = L.
(ii) ⇒ (i) : Assume that limx→x0;x∈Eδ

f(x) = L. That is, for any ε > 0, there exists η > 0
such that whenever x ∈ Eδ and |x − x0| < η, we have |f(x) − L| < ε. To complete
the proof, let η′ = min{η, δ}. Then whenever x ∈ E and |x − x0| < η′, we have
both x ∈ Eδ and |x − x0| < η. Then |f(x) − L| < ε. From this we read out that
limx→x0;x∈E f(x) = L.

□

Exercise 8.5. Let X be a subset of R, let f : X → R be a function, and let x0 ∈ X. Then
the following three statements are equivalent.

(i) f is continuous at x0.
(ii) For every sequence (an)

∞
n=0 in X such that limn→∞ an = x0, we have limn→∞ f(an) =

f(x0).
(iii) For every ε > 0, there exists a δ = δ(ε) > 0 such that, for all x ∈ X with |x−x0| < δ,

we have |f(x)− f(x0)| < ε.

Solution. (i) ⇔ (ii) : f is continuous at x0 if and only if limx→x0;x∈X f(x) = f(x0). By
Exercise 3, this is true if and only if (ii) is true.

(i) ⇔ (iii) : The statement (iii), together with the choice E = X in Definition 2.14, exactly
tells us that limx→x0;x∈X f(x) = f(x0), which is the definition of the continuity of f at x0.

□

Exercise 8.6. Let X, Y be subsets of R. Let f : X → Y and let g : Y → R be functions.
Let x0 ∈ X. If f is continuous at x0, and if g is continuous at f(x0), then g ◦ f is continuous
at x0.

Solution. We have limx→x0;x∈X f(x) = f(x0) and limy→f(x0);y∈Y g(y) = g(f(x0)). Let ε > 0
be arbitrary. Using Definition 2.14,

• We can pick η = η(ε) > 0 such that whenever y ∈ Y and |y − f(x0)| < η we have
|g(y)− g(f(x0))| < ε.

• We can pick δ = δ(η) > 0 such that whenever x ∈ X and |x − x0| < δ we have
|f(x)− f(x0)| < η.

Combining these two statements, we find that whenever |x − x0| < δ, we have f(x) ∈
Y and |f(x) − f(x0)| < η, hence |g(f(x)) − g(f(x0))| < ε. From this we read out that
limx→x0;x∈X g(f(x)) = g(f(x0)). □

Exercise 8.7. Let a < b be real numbers. Let f : [a, b] → R be a continuous function on
[a, b]. LetM := sup x∈[a,b]f(x) be the maximum value of f on [a, b], and letm := inf x∈[a,b]f(x)
be the minimum value of f on [a, b]. Let y be a real number such that m ≤ y ≤ M . Then
there exists c ∈ [a, b] such that f(c) = y. Moreover, f([a, b]) = [m,M ].

Solution. By the Maximum Principle, both the valuesM andm are achieved at some different
points in [a, b]. That is, there exists a′ < b′ in [a, b] such that {m,M} = {f(a′), f(b′)}.2 Now

2This tricky demonstration is a technical, brief way of saying that ‘one of a′ and b′ is a maximum point
and the other is a minimum point’.
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note that f is continuous on [a′, b′] as well. Thus if m ≤ y ≤ M , then by the Intermediate
Value Theorem, there exists c ∈ [a′, b′] such that f(c) = y. Since c ∈ [a, b] as well, the first
assertion follows.

For the second assertion, we prove that [m,M ] ⊆ f([a, b]) and f([a, b]) ⊆ [m,M ] are
subsets of each other. To this end, just observe that

• For any y ∈ [m,M ] we have f(c) = y for some c ∈ [a, b] by the first assertion. So we
have y ∈ f([a, b]).

• If y ∈ f([a, b]), then y = f(c) for some c ∈ [a, b]. Then

m = inf x∈[a,b]f(x) ≤ f(c) ≤ sup x∈[a,b]f(x) = M

and hence y ∈ [m,M ].

This shows that [m,M ] ⊆ f([a, b]) and f([a, b]) ⊆ [m,M ]. Therefore they are equal to each
other. □

Exercise 8.8. Let (an)
∞
n=m, (bn)

∞
n=m be two sequences of real numbers. Then (an)

∞
n=m and

(bn)
∞
n=m are equivalent if and only if limn→∞(an − bn) = 0.

Solution. Carefully read out the definition of equivalent sequences to convince yourself that
the observation |an − bn| = ||an − bn| − 0| suffices to complete the proof. □

Exercise 8.9. Let a < b be real numbers, and let f : [a, b] → R be a function. Assume that
there exists a real number L > 0 such that, for all x, y ∈ [a, b], we have |f(x)−f(y)| ≤ L|x−y|.
Such an f is called Lipschitz continuous. Prove that f is continuous. Then, find a continuous
function that is not Lipschitz continuous.

Solution. For any ε > 0, pick δ = ε/(L+ 1). Then whenever x, y ∈ [a, b] and |x− y| < δ, we
have

|f(x)− f(y)| ≤ L|x− y| ≤ L · ε

L+ 1
< ε.

This proves that f is continuous at any point. (And also proves that f is uniformly contin-
uous.)

An example of a function which is continuous but not Lipschitz continuous is f : [0, 1] → R
given by f(x) =

√
x. To check this, notice that for any n ∈ N,

|f(1/n)− f(0)| = 1√
n
=

1√
n
·
√
n√
n
=

√
n

n
=

√
1

n
=

√
| 1
n
− 0|.

Thus no number L ≥ 0 cannot satisfy |f(x)−f(y)| ≤ L|x−y| for all x, y ∈ [0, 1]. (Otherwise
we must be able to find some L ≥ 0 satisfying L ≥

√
n for all n, which is impossible.) □

Exercise 8.10. Let X be a subset of R and let f : X → R be a function. Then the following
two statements are equivalent.

(i) f is uniformly continuous on X.
(ii) For any two equivalent sequences (an)

∞
n=m, (bn)

∞
n=m in X, the sequences (f(an))

∞
n=m,

(f(bn))
∞
n=m are also equivalent sequences.

Solution. (i) ⇒ (ii): Let (an)
∞
n=m, (bn)

∞
n=m be sequences in X which are equivalent. Then

for any ε > 0,

• By the uniform convergence of f , there exists δ > 0 such that whenever x, y ∈ X and
|x− y| < δ we have |f(x)− f(y)| < ε.
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• By the equivalence, there exists N ∈ N such that whenever n ≥ N we have |an−bn| <
δ.

Combining two statements, it follows that whenever n ≥ N we have |f(an) − f(bn)| < ε.
This proves that (f(an))

∞
n=m, (f(bn))

∞
n=m are also equivalent sequences.

(ii) ⇒ (i): We prove contrapositive. Let us assume that f is not uniformly continuous.
By negating Definition 3.31,

• There exists ε > 0 such that for any δ > 0 there exists x, y ∈ X such that |x− y| < δ
but |f(x)− f(y)| ≥ ε.

Now for each particular choice δ = n−1 (where n ∈ {1, 2, . . . }) pick such two elements
x = an, y = bn ∈ X (that is, |an − bn| < δ = n−1 but |f(an) − f(bn)| ≥ ε). Then (an)

∞
n=1,

(bn)
∞
n=1 are equivalent but (f(an))

∞
n=m, (f(bn))

∞
n=m cannot be equivalent. This proves the

contrapositive as desired. □

Exercise 8.11. Give an example of a continuous function f : R → (0,∞) such that, for any
real number 0 < ε < 1, there exists x ∈ R such that f(x) = ε.

Remark. In view of the Maximum Principle, a continuous function f : R → (0,∞) must
attain positive minimum on any finite closed interval [a, b] ⊆ R. Consequently, if ε > 0
is small, any solution of f(x) = ε have large size. This in particular suggests that any
continuous function f : R → (0,∞) satisfying limx→∞ f(x) = 0 serves an example.

• 1st Solution. Let f(x) = 2−x. Then clearly f is a continuous function with range
(0,∞). Moreover, for any 0 < ε < 1 we have f(log2

1
ε
) = ε. Therefore f satisfies all

the desired properties.

If you raise an objection by claiming that we have never learned both exponential function
and logarithm in this course, here is another solution:

• 2nd Solution. Let f : R → (0,∞) by

f(x) =
1

1 + x2
.

9. Homework 9

Exercise 9.1. Let X be a subset of R, let x0 be a limit point of X, and let f : X → R be
a function. If f is differentiable at x0, then f is also continuous at x0.

Solution. We have

lim
x→x0;x∈X\{x0}

(f(x)− f(x0)) = lim
x→x0;x∈X\{x0}

f(x)− f(x0)

x− x0

(x− x0) = f ′(x0) · 0 = 0.

Therefore, by adding f(x0) to both sides, it follows that f is continuous at x0. □

Exercise 9.2. Let X be a subset of R, let x0 be a limit point of X, let f : X → R be a
function, and let L be a real number. Then the following two statements are equivalent.

(i) f is differentiable at x0 on X with derivative L.
(ii) For every ε > 0, there exists a δ = δ(ε) > 0 such that, if x ∈ X satisfies |x− x0| < δ,

then
|f(x)− [f(x0) + L(x− x0)]| ≤ ε|x− x0|.

Solution. The proof is almost a tautology. Nevertheless we spell out every detail.
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(i) ⇒ (ii) : By definition, for every ε > 0, there exists δ = δ(ε) > 0 such that, if x ∈ X\{x0}
satisfies |x− x0| < δ, then ∣∣∣∣f(x)− f(x0)

x− x0

− L

∣∣∣∣ < ε.

Now multiply both sides by |x− x0|. Then we have

|f(x)− [f(x0) + L(x− x0)]| ≤ ε|x− x0|.
Since this continues to hold when x = x0, we get (ii).

(ii) ⇒ (i) : For every ε > 0, pick δ = δ(ε/2) > 0 as in (ii). Then whenever x ∈ X\{x0} and
|x− x0| < δ, we have

|f(x)− [f(x0) + L(x− x0)]| ≤
ε

2
|x− x0|

=⇒
∣∣∣∣f(x)− f(x0)

x− x0

− L

∣∣∣∣ ≤ ε

2
< ε.

□

Exercise 9.3. Let X be a subset of R, let x0 be a limit point of X, and let f : X → R and
g : X → R be functions.

(i) If f is constant, so that there exists c ∈ R such that f(x) = c, then f is differentiable
at x0 and f ′(x0) = 0.

(ii) If f is the identity function, so that f(x) = x, then f is differentiable at x0 and
f ′(x0) = 1.

(iii) If f, g are differentiable at x0, then f + g is differentiable at x0, and (f + g)′(x0) =
f ′(x0) + g′(x0). (Sum Rule)

(iv) If f, g are differentiable at x0, then fg is differentiable at x0, and (fg)′(x0) =
f ′(x0)g(x0) + g′(x0)f(x0). (Product Rule)

(v) If f is differentiable at x0, and if c ∈ R, then cf is differentiable at x0, and (cf)′(x0) =
cf ′(x0).

(vi) If f, g are differentiable at x0, then f − g is differentiable at x0, and (f − g)′(x0) =
f ′(x0)− g′(x0).

(vii) If g is differentiable at x0, and if g(x) ̸= 0 for all x ∈ X, then 1/g is differentiable at
x0, and (1/g)′(x0) = −g′(x0)/(g(x0))

2.
(viii) If f, g are differentiable at x0, and if g(x) ̸= 0 for all x ∈ X, then f/g is differentiable

at x0, and

(f/g)′(x0) =
g(x0)f

′(x0)− f(x0)g
′(x0)

(g(x0))2
.

(Quotient Rule)

Solution.

(i) Notice that
f(x)− f(x0)

x− x0

= 0, x ∈ X\{x0}.

Taking limit as x → x0 for x ∈ X\{x0}, it follows that f is differentiable at x0 and
f ′(x0) = 0.
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(ii) Notice that
f(x)− f(x0)

x− x0

= 1, x ∈ X\{x0}.

Taking limit as x → x0 for x ∈ X\{x0}, it follows that f is differentiable at x0 and
f ′(x0) = 1.

(iii) Notice that

[f(x) + g(x)]− [f(x0) + g(x0)]

x− x0

=
f(x)− f(x0)

x− x0

+
g(x)− g(x0)

x− x0

, x ∈ X\{x0}.

Taking limit as x → x0 for x ∈ X\{x0}, we know from both the assumption and the
Limit Laws that the right-hand side converges to f ′(x0) + g′(x0). This proves the
Sum Rule.

(iv) Notice that

f(x)g(x)− f(x0)g(x0)

x− x0

=
f(x)− f(x0)

x− x0

· g(x0) +
g(x)− g(x0)

x− x0

· f(x), x ∈ X\{x0}.

Taking limit as x → x0 for x ∈ X\{x0}, we know from both the assumption and
the Limit Laws that the right-hand side converges to f ′(x0)g(x0)+ g′(x0)f(x0). This
proves the Product Rule.

(v) This follows by (i) and (iv).
(vi) This follows by (iii) and (v), with the choice c = −1.
(vii) Let ϕg be as in (1.1) for g. Then

[1/g(x)]− [1/g(x0)]

x− x0

= −g(x)− g(x0)

x− x0

1

g(x)g(x0)
, x ∈ X\{x0}.

Taking limit as x → x0 for x ∈ X\{x0}, we know from both the assumption and the
Limit Laws that the right-hand side converges to −g′(x0)/(g(x0))

2. This proves (vii).
(viii) This follows from (iv) and (vii).

□

Exercise 9.4. Let X, Y be subsets of R, let x0 ∈ X be a limit point of X, and let y0 ∈ Y
be a limit point of Y . Let f : X → Y be a function such that f(x0) = y0 and such that f
is differentiable at x0. Let g : Y → R be a function that is differentiable at y0. Then the
function g ◦ f : X → R is differentiable at x0, and

(g ◦ f)′(x0) = g′(y0)f
′(x0).

Remark. This would have followed easily if it were true that

g(f(x))− g(f(x0))

x− x0

=
g(f(x))− g(f(x0))

f(x)− f(x0)
· f(x)− f(x0)

x− x0

.

Unfortunately, this is not always true as f(x)− f(x0) may vanish infinitely many times near
x0. We need to circumvent this technical issue.

Let (an)
∞
n=0 be any sequence in X ∖ {x0} which converges to x0. Then we deduce from

Exercise 8.5 that (f(an))
∞
n=0 converges to f(x0). Now we divide into two cases:

• Case 1) Assume that f ′(x0) ̸= 0. Then for the choice ε = 1
2
|f ′(x0)| > 0, there exists

δ > 0 such that, whenever x ∈ X and |x− x0| < δ we have

|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ ε|x− x0|.
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Then it follows from the reverse triangle inequality that

|f(x)− f(x0)| ≥ |f ′(x0)(x− x0)| − |f(x)− f(x0)− f ′(x0)(x− x0)|

≥ |f ′(x0)||x− x0| −
1

2
|f ′(x0)||x− x0| =

1

2
|f ′(x0)||x− x0|.

since |f ′(x0)| = 2ε. In particular, since |x−x0| ≠ 0, this implies that |f(x)−f(x0)| > 0
whenever |x−x0| < δ. Next, we pickN sufficiently large so that |an−x0| < δ whenever
n ≥ N . Since an ∈ X\{x0}, it follows that |f(an) − f(x0)| > 0. Then our intuitive
idea works and we have

lim
n→∞

g(f(an))− g(f(x0))

an − x0

= lim
n→∞

g(f(an))− g(f(x0))

f(an)− f(x0)

f(an)− f(x0)

an − x0

= g′(y0)f
′(x0).

• Case 2) Now assume that f ′(x0) = 0. For ε =
√
2
4
, pick δ > 0 such that, if y ∈ Y and

|y − y0| < δ then

|g(y)− g(y0)− g′(y0)(y − y0)| ≤
ε

2
|y − y0|.

Then by the triangle inequality, we have

|g(y)− g(y0)| ≤ |g′(y0)||y − y0|+ |g(y)− g(y0)− g′(y0)(y − y0)|

≤ (|g′(y0)|+
ε

2
)|y − y0|.

Also, choose N sufficiently large so that whenever n ≥ N , we have |f(an)−f(x0)| < δ.
Then by noting that∣∣∣∣g(f(an))− g(f(x0))

an − x0

∣∣∣∣ ≤ (|g′(y0)|+ ε

2

) |f(an)− f(x0)|
|an − x0|

it follows from the squeezing theorem, together with limn→∞
f(an)−f(x0)

an−x0
= f ′(x0) = 0,

we have

lim
n→∞

g(f(an))− g(f(x0))

an − x0

= 0 = g′(y0)f
′(x0).

Therefore, in any cases the Chain Rule follows.

Exercise 9.5. Let a < b be real numbers, and let f : (a, b) → R be a function. If x0 ∈ (a, b),
if f is differentiable at x0, and if f attains a local maximum or minimum at x0, then
f ′(x0) = 0.

Solution. We first consider local maximum case. Since x0 is a local maximum point of f , there
exists a sufficiently small δ > 0 such that f attains a maximum on (x0 − δ, x0 + δ) ⊆ (a, b).
Then we have

f(x)− f(x0)

x− x0

{
≥ 0 x0 − δ < x < x0

≤ 0 x0 < x < x0 + δ.

Thus taking right-limit and left-limit, we find that

f ′(x0) = lim
x→x+

0

f(x)− f(x0)

x− x0

≤ 0 and f ′(x0) = lim
x→x−

0

f(x)− f(x0)

x− x0

≥ 0.

This proves that f ′(x0) = 0. Local minimum case can be tackled in the same way. □
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Exercise 9.6. Let a < b be real numbers, and let f : [a, b] → R be a continuous function
which is differentiable on (a, b). Assume that f(a) = f(b). Then there exists x ∈ (a, b) such
that f ′(x) = 0.

Solution. Utilizing the Maximum Principle, pick two points x0, x1 ∈ [a, b] such that f attains
a global maximum at x0 and a global minimum at x1. If f(x0) = f(x1), then f must reduce to
a constant function and hence the claim follows from Exercise 8.7.(i). (In this case, you can
pick any point x ∈ (a, b).) In view of the previous observation, we may ssume f(x0) ̸= f(x1).
This implies that either f(x0) ̸= f(a) or f(x1) ̸= f(a). In either cases, there exists a global
extremum x of f , which is neither a nor b. Thus x is also a global extremum of f |(a,b). Then
x is a local extremum of f |(a,b) and by the previous exercise, we have f ′(x) = 0. □

Exercise 9.7. Let X be a subset of R, let x0 be a limit point of X, and let f : X → R be
a function.

• If f is monotone increasing and if f is differentiable at x0, then f ′(x0) ≥ 0.
• If f is monotone decreasing and if f is differentiable at x0, then f ′(x0) ≤ 0.

Solution. We first assume that f is monotone. If x ∈ X\{x0}, then by dividing the cases
based on whether x > x0 or x < x0, we find that

f(x)− f(x0)

x− x0

≥ 0

always holds. Now assume further that f is differentiable at x0. Taking x → x0 in X\{x0},
the inequality is preserved and hence we have

f ′(x0) = lim
x→x0;x∈X\{x0}

f(x)− f(x0)

x− x0

≥ 0.

For ...
□

Exercise 9.8. Let a < b be real numbers, and let f : [a, b] → R be a differentiable function.
If f ′(x) > 0 for all x ∈ [a, b], then f is strictly monotone increasing. If f ′(x) < 0 for all
x ∈ [a, b], then f is strictly monotone decreasing. If f ′(x) = 0 for all x ∈ [a, b], then f is a
constant function.

10. Homework 10

10.1. Properties of supremum infimum combined with arithmetic operations.

Lemma 1. Let A ⊆ R be a non-empty subset and c ∈ R. Define c + A = {c + a : a ∈ A}.
Then sup (c+ A) = c+ (supA) and inf (c+ A) = c+ (inf A).

Lemma 2. Let E ⊆ R be a non-empty subset and c ∈ R. Define cA = {ca : a ∈ A}. Then
• If c > 0, then sup (cA) = c(supA) and inf (cA) = c(inf A).
• If c < 0, then sup (cA) = c(inf A) and inf (cA) = c(supA).
• If c = 0, then sup (cA) = inf (cA) = 0.

Proof. Let us first assume that c > 0. To prove that sup (cA) = c(supA), we claim that

sup (cA) ≤ c(supA) and sup (cA) ≥ c(supA).
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For the first inequality, let a′ ∈ cA be arbitrary. Then a′ = ca for some a ∈ A. But since
a ≤ supA, we have a′ = ca ≤ c(supA). This shows that c(supA) is an upper bound of cA,
hence we have sup (cA) ≤ c(supA). The reverse inequality also follows in a similar manner.
(Or notice that csupA = csup (c−1cA) ≤ cc−1sup (cA) = sup (cA).) Then inf (cA) = c(inf A)
also follows in the same way.

When c < 0, the proof goes in almost the same way, but what changes now is that
multiplying c to an inequality reverses the order. I leave the detail of the proof to you. □

10.2. Refinement of partition. Suppose that a closed bounded interval [a, b] is given. If
P, P ′ ⊆ [a, b] are partitions such that P ⊆ P ′, then we call P ′ a refinement of P . Thus any
refinement of P is obtained by adding finitely many points of [a, b]. The next lemma shows
why this concept is useful in the context of Riemann sum.

Lemma 3. Let P, P ′ be partitions of [a, b] and f : [a, b] → R be a bounded function. Then

• If P ′ is a refinement of P , then U(f, P ′) ≤ U(f, P ),
• If P ′ is a refinement of P , then L(f, P ′) ≥ L(f, P ).

In other words, refining a partition makes the upper sum to become smaller and the lower
sum to become bigger.

Proof. We only prove the first part, since the second part follows mutatis mutandis. Also
let us first consider a very simple case where P = {a, b} consists of only two endpoints and
P ′ = {a = t0 < · · · < tm = b}. Then it is easy to observe that, for 1 ≤ i ≤ m,

Mi := sup x∈[ti−1,ti]f(x) ≤ sup x∈[a,b]f(x) =: M.

Indeed, this follows since f(x) ≤ M for any a ≤ x ≤ b. Then it follows that

U(f, P ′) =
m∑
i=1

Mi(ti − ti−1) ≤
m∑
i=1

M(ti − ti−1) = M(b− a) = U(f, P ).

This observation readily generalizes to arbitrary partition P and its refinement P ′, but a
direct proof may require huge burden of notations. Instead we give a concise demonstration.
Let us write P = {a = x0 < · · · < xn = b}. Also we write Ii = [xi−1, xi] for simplicity.
Then it is easy to observe that P ′ ∩ Ii is a partition in Ii which is a refinement of {xi−1, xi}.
Consequently,

U(f, P ′) =
n∑

i=1

U(f |Ii , P ′ ∩ Ii) ≤
n∑

i=1

U(f |Ii , {xi−1, xi}) = U(f, P )

and the proof is done. □

10.3. Riemann integrability condition.

Lemma 4. Let f : [a, b] → R be bounded. Then the followings are equivalent:

(i) f is Riemann integrable.
(ii) For any ε > 0, there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

Proof. (i) =⇒ (ii) : Let ε > 0 be arbitrary. Using property of infimum and supremum, pick
partitions P1 and P2 such that

U(f, P1) <

∫ b

a

f +
ε

2
and L(f, P2) >

∫ b

a

f − ε

2
.
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Let P = P1 ∪ P2 be the common refinement. Then by Lemma 1.3, we also have

U(f, P ) ≤ U(f, P1) <

∫ b

a

f +
ε

2
and L(f, P ) ≥ L(f, P2) >

∫ b

a

f − ε

2
.

But since f is Riemann integrable, both the upper Riemann integral and the lower Riemann

integral coincide, let
∫ b

a
f =

∫ b

a
f =

∫ b

a
f , and hence

U(f, P )− L(f, P ) <

(∫ b

a

f +
ε

2

)
−
(∫ b

a

f − ε

2

)
= ε.

(ii) =⇒ (i) : For each ε > 0, pick a partition P satisfying the condition of (ii). Then we
have

0 ≤
∫ b

a

f −
∫ b

a

f ≤ U(f, P )− L(f, P ) < ε.

Now since ε is arbitrary, taking ε → 0+ shows that
∫ b

a
f −

∫ b

a
f = 0, which implies (i) as

desired. □

Exercise 10.1. Let a < b be real numbers, and let f, g : [a, b] → R be Riemann integrable
functions on [a, b]. Then

(i) The function f + g is Riemann integrable on [a, b], and
∫ b

a
(f + g) = (

∫ b

a
f) + (

∫ b

a
g).

(iv) If f(x) ≥ 0 for all x ∈ [a, b], then
∫ b

a
f ≥ 0.

(v) If f(x) ≥ g(x) for all x ∈ [a, b], then
∫ b

a
f ≥

∫ b

a
g.

(vi) If there exists a real number c such that f(x) = c for x ∈ [a, b], then
∫ b

a
f = c(b− a).

(viii) Let c be a real number such that a < c < b. Then f |[a,c] and f |[c,b] are Riemann
integrable on [a, c] and [c, b] respectively, and∫ b

a

f =

∫ c

a

f |[a,c] +
∫ b

c

f |[c,b].

Remark 1. Our general strategy is as follows: suppose that f : [a, b] → R is bounded
functions. If we can somehow figure out that there exists I ∈ R satisfying

I ≤
∫ b

a

f and

∫ b

a

f ≤ I,

then it follows that

I ≤
∫ b

a

f ≤
∫ b

a

f ≤ I.

Thus all these inequalities boil down to equalities, and we find that (1) f is Riemann in-

tegrable and (2)
∫ b

a
f = I. In our actual proofs, our goal is to identify suitable number

I.

Solution. (i) To this end, we show that∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) and

∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g. (7)
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In fact, this holds for any bounded function f, g : [a, b] → R as we will see from our proof.
Once this is proved, then for Riemann integrable functions f, g : [a, b] → R, we obtain∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) and

∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g.

Therefore the conclusion follows by the remark.
So it remains to prove (7). Let P,Q be any partitions of [a, b]. Then P ∪ Q is also a

partition of [a, b], and thus we can write P ∪Q = {a = x0 < · · · < xn = b}. Then we have

sup x∈[xi−1,xi](f(x) + g(x)) ≤
(
sup x∈[xi−1,xi]f(x)

)
+
(
sup x∈[xi−1,xi]g(x)

)
.

This is a direct consequence of the following fact: for all x ∈ [xi−1, xi],

f(x) + g(x) ≤
(
sup y∈[xi−1,xi]f(y)

)
+
(
sup z∈[xi−1,xi]g(z)

)
.

With this, we readily observe that∫ b

a

(f + g) ≤ U(f + g, P ∪Q)

=
n∑

i=1

(
sup x∈[xi−1,xi](f(x) + g(x))

)
(xi − xi−1)

≤
n∑

i=1

(
sup x∈[xi−1,xi]f(x) + sup x∈[xi−1,xi]g(x)

)
(xi − xi−1)

=
n∑

i=1

(
sup x∈[xi−1,xi]f(x)

)
(xi − xi−1) +

n∑
i=1

(
sup x∈[xi−1,xi]g(x)

)
(xi − xi−1)

= U(f, P ∪Q) + U(g, P ∪Q)

≤ U(f, P ) + U(g,Q),

where at the last inequality we exploited Lemma 1.3.3 By taking infimum for all P and for
all Q separately we obtain∫ b

a

(f + g) ≤ inf PU(f, P ) + inf QU(g,Q) =

∫ b

a

f +

∫ b

a

g.

Then the second inequality of (7) follows from this. The first inequality follows exactly in
the same way. (All you have to do is to replace suprema by infima, upper sums by lower
sums, upper integrals by lower integrals and reverse the order of every inequality.) Therefore
the proof if (i) is finished.

(iv) If f ≥ 0, then for any partition P = {x0, . . . , xn}, inf x∈[xi−1,xi]f(x) ≥ 0. So L(f, P ) =∑
(inf f)∆xi ≥ 0. Since f is integrable,

∫ b

a
f = sup PL(f, P ) ≥ L(f, {a, b}) ≥ 0.

3Now the reason why we introduced two partitions is clear. We want to take infimum of U(f, P ) and
U(g,Q) separately. But if P and Q are somehow related, then it is not easy to tell whether the corresponding
infimum becomes the sum of infima. Thankfully, our observations show that we can indeed decouple U(f, P )
and U(g,Q).
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(v) Apply (iv) to f − g ≥ 0 instead. Then by (i) and (iii), we have∫ b

a

(f − g) ≥ 0 =⇒
∫ b

a

f −
∫ b

a

g ≥ 0 =⇒
∫ b

a

f ≥
∫ b

a

g.

(vi) If f is a constant function with the common value c, then for any partition P =
{x0, . . . , xn}, sup [xi−1,xi]f = c and inf [xi−1,xi]f = c. Thus U(f, P ) =

∑
c(xi−xi−1) = c(b−a)

and L(f, P ) =
∑

c(xi − xi−1) = c(b− a). Upon taking infimum and supremum respectively,
it follows that ∫ b

a

f = c(b− a) and

∫ b

a

f = c(b− a).

Since they are equal, f is integrable and
∫ b

a
f = c(b− a), and hence the claim follows.

(vii) Let F (x) = f(x) for x ∈ [a, b] and F (x) = 0 for x ∈ [c, d] ∖ [a, b]. Assume c ≤
a < b ≤ d. Let P ′ be a partition of [c, d]. Let P = P ′ ∪ {a, b}. P is a refinement
of P ′. Let P = {c = x0 < · · · < xp = a < · · · < xq = b < · · · < xn = d}. Then
U(F, P ) =

∑p
i=1(sup [xi−1,xi]F )∆xi +

∑q
i=p+1(sup [xi−1,xi]F )∆xi +

∑n
i=q+1(sup [xi−1,xi]F )∆xi.

Since F = 0 on [c, a] and [b, d], the first and third sums are 0. The middle sum is U(f,Q)
where Q = P ∩ [a, b] is a partition of [a, b]. Thus U(F, P ) = U(f,Q). Since P is a refinement

of P ′, U(F, P ) ≤ U(F, P ′). Also
∫ d

c
F = inf P ′U(F, P ′) ≤ U(F, P ′). For the specific partition

P constructed from P ′,
∫ d

c
F ≤ U(F, P ) = U(f,Q). This holds for the partition Q of [a, b]

derived from P ′. Can we take infimum over Q? Let Q0 be any partition of [a, b]. Let
P ′ = Q0 ∪ {c, d}. Then P = P ′ ∪ {a, b} = Q0 ∪ {c, d} is a partition of [c, d]. P ∩ [a, b] = Q0.

So U(F, P ) = U(f,Q0). Then
∫ d

c
F = inf P ′′U(F, P ′′) ≤ U(F, P ) = U(f,Q0). Since this

holds for any Q0,
∫ d

c
F ≤ inf Q0U(f,Q0) =

∫ b

a
f . Similarly, L(F, P ) = L(f,Q).

∫ d

c
F =

sup P ′L(F, P ′) ≥ L(F, P ) = L(f,Q). So
∫ d

c
F ≥ supQL(f,Q) =

∫ b

a
f . If f is integrable on

[a, b],
∫ b

a
f =

∫ b

a
f =

∫ b

a
f . Then

∫ d

c
F ≥

∫ b

a
f ≥

∫ d

c
F . Since

∫ d

c
F ≤

∫ d

c
F always holds, we

must have equality. Thus F is integrable on [c, d] and
∫ d

c
F =

∫ b

a
f .

(viii) For this problem, we utilize the equivalent formulation as in Lemma 1.4. Let ε > 0
be arbitrary. Then there exists a partition P on [a, b] such that U(f, P )− L(f, P ) < ε. We
may assume that P contains c, otherwise we can replace P by the refinement P ∪ {c} which
preserves the inequality U(f, P ∪ {c})− L(f, P ∪ {c}) ≤ U(f, P )− L(f, P ) < ε. Now write
P = {a = x0 < · · · < xm = c < xm+1 < · · · < xn = b}. Using this we can define P1 = {a =
x0 < · · · < xm = c} as a partition of [a, c] and likewise P2 = {c = xm < · · · < xn = b} as a
partition of [c, b]. Then it follows that

U(f |[a,c], P1)− L(f |[a,c], P1) =
m∑
i=1

(
sup [xi−1,xi]f − inf [xi−1,xi]f

)
(xi − xi−1)

≤
n∑

i=1

(
sup [xi−1,xi]f − inf [xi−1,xi]f

)
(xi − xi−1)

= U(f, P )− L(f, P ) < ε.
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Similarly U(f |[c,b], P2)−L(f |[c,b], P2) < ε. Therefore by Lemma 1.4, both f |[a,c] and f |[c,b] are
integrable. Also, using the same setting as before, we find that∫ c

a

f +

∫ b

c

f ≤ U(f |[a,c], P1) + U(f |[c,b], P2) = U(f, P ).

Since f is integrable on [a, b],
∫ b

a
f = inf PU(f, P ). Thus

∫ c

a
f+
∫ b

c
f ≤

∫ b

a
f . Similar argument

shows that ∫ c

a

f +

∫ b

c

f ≥ L(f |[a,c], P1) + L(f |[c,b], P2) = L(f, P ).

Taking supremum over P ,
∫ c

a
f +

∫ b

c
f ≥ sup PL(f, P ) =

∫ b

a
f . Thus by taking ε → 0+ we

obtain the equality
∫ b

a
f =

∫ c

a
f +

∫ b

c
f as desired. □

Exercise 10.2. Let a < b be real numbers. Let f : [a, b] → R be a bounded function. Let
c ∈ [a, b]. Assume that, for each δ > 0, we know that f is Riemann integrable on the set
{x ∈ [a, b] : |x− c| ≥ δ}. Then f is Riemann integrable on [a, b].

Proof. For the simplicity of our proof, let us assume that a < c < b. For the exceptional
cases c = a and c = b, only a minor modification is needed, so we only focus on the case
a < c < b. We use Lemma 1.4 for the proof. Choose a bound M > 0 such that |f(x)| ≤ M
for all x ∈ [a, b]. Let ε > 0 be arbitrary. Now we pick δ as follows:

δ = min

{
ε

4M + 1
,
c− a

2
,
b− c

2

}
.

Note δ > 0. By the assumption, we know that f is Riemann integrable on the set {x ∈
[a, b] : |x− c| ≥ δ}. Note that we can write

{x ∈ [a, b] : |x− c| ≥ δ} = [a, c− δ] ∪ [c+ δ, b] = I1 ∪ I2,

where I1 = [a, c−δ] and I2 = [c+δ, b] are disjoint closed intervals. Then by invoking Exercise
1 (viii), f is integrable on I1 and I2. By Lemma 1.4, for each i = 1, 2 we can find a partition
Pi of Ii such that

U(f |Ii , Pi)− L(f |Ii , Pi) <
ε

3
.

Now let P = P1 ∪P2. This forms a partition of [a, b] if we add the points c− δ, c+ δ (if they
are not already endpoints) and consider the interval [c− δ, c+ δ]. More precisely, let P ∗ be
the partition of [a, b] given by the union of the points in P1 and P2. P

∗ partitions [a, b] into
subintervals from P1, subintervals from P2, and the interval [c− δ, c+ δ]. We have

U(f, P ∗)− L(f, P ∗) = (U(f |I1 , P1)− L(f |I1 , P1)) + (U(f |I2 , P2)− L(f |I2 , P2))

+
(
sup [c−δ,c+δ]f − inf [c−δ,c+δ]f

)
((c+ δ)− (c− δ))

<
ε

3
+

ε

3
+ (M − (−M))(2δ)

=
2ε

3
+ 4Mδ

≤ 2ε

3
+ 4M

(
ε

4M + 1

)
<

2ε

3
+ ε =

5ε

3
.
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Let’s re-evaluate the choice of δ. Choose δ = ε
4M+1

is small enough? Let’s try δ = ε
6M

. If

M = 0, f = 0, integrable. Assume M > 0. Then δ = min( ε
6M

, c−a
2
, b−c

2
).

U(f, P ∗)− L(f, P ∗) <
ε

3
+

ε

3
+ 4Mδ ≤ 2ε

3
+ 4M

ε

6M
=

2ε

3
+

2ε

3
=

4ε

3
.

Still not quite < ε. Let’s use the text’s value δ = min( ε
2014M

, . . . ). Use ε/3 instead of ε/2014.

Let partitions P1, P2 satisfy U − L < ε/3 on I1, I2. Choose δ = min( ε
6M

, c−a
2
, b−c

2
). Then

U(f, P ∗)− L(f, P ∗) <
ε

3
+

ε

3
+ 4Mδ ≤ 2ε

3
+ 4M

ε

6M
=

2ε

3
+

2ε

3
=

4ε

3
.

This argument shows it’s O(ε). To get exactly < ε, choose U − L < ε/3 on I1, I2, and δ =
min( ε

7M
, c−a

2
, b−c

2
). Then U −L < ε/3+ ε/3+4M(ε/(7M)) = 2ε/3+4ε/7 = (14+12)ε/21 =

26ε/21. Still > ε. Maybe δ = ε/(12M)? U − L < 2ε/3 + 4M(ε/(12M)) = 2ε/3 + ε/3 = ε.
Yes, choosing δ = min( ε

12M
, c−a

2
, b−c

2
) (assuming M > 0) works. Let P1, P2 be partitions for

I1, I2 such that U(f |Ii , Pi)−L(f |Ii , Pi) < ε/3. Let P ∗ = P1∪P2. Then U(f, P ∗)−L(f, P ∗) <
ε/3 + ε/3 + 2M(2δ) = 2ε/3 + 4Mδ ≤ 2ε/3 + 4M(ε/(12M)) = 2ε/3 + ε/3 = ε. Therefore f
is integrable by Lemma 1.4. □

Exercise 10.3. Find a function f : [0, 1] → R such that f is not Riemann integrable on
[0, 1], but such that |f | is Riemann integrable on [0, 1].

Proof. Define f by

f(x) =

{
1, x ∈ Q ∩ [0, 1]

−1, x ∈ [0, 1]∖Q

Since any interval of positive length contains both rational numbers and irrational numbers,
for any partition P = {a = x0, . . . , xn = b} we have

sup x∈[xi−1,xi]f(x) = 1 and inf x∈[xi−1,xi]f(x) = −1.

Consequently it follows that U(f, P ) =
∑

1 · (xi − xi−1) = b − a = 1 and L(f, P ) =∑
(−1) · (xi − xi−1) = −(b− a) = −1 for any partition P of [0, 1]. Hence we have∫ 1

0

f = 1 ̸= −1 =

∫ 1

0

f.

So f is not Riemann integrable on [0, 1]. On the other hand, |f(x)| = 1 for all x ∈ [0, 1].
Since |f | is a constant function, it is Riemann integrable on [0, 1] by Exercise 1(vi), and∫ 1

0
|f |dx = 1(1− 0) = 1. □

Exercise 10.4. Let a < b be real numbers. Let f : [a, b] → R be a bounded function. So,
there exists a real number M such that |f(x)| ≤ M for all x ∈ [a, b]. Let P be a partition of
[a, b].

• Using the identity α2 − β2 = (α + β)(α− β), where α, β ∈ R, show that

U(f 2, P )− L(f 2, P ) ≤ 2M(U(f, P )− L(f, P )).

• Show that if f is Riemann integrable on [a, b], then f 2 is also Riemann integrable on
[a, b].
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• Let f, g : [a, b] → R be Riemann integrable functions on [a, b]. Using the identity
4αβ = (α + β)2 − (α − β)2, where α, β ∈ R, show that fg is Riemann integrable on
[a, b].

Proof. (i) Let P = {a = x0 < · · · < xn = b}. Let ωi(h) = sup x∈[xi−1,xi]h(x)−inf x∈[xi−1,xi]h(x)
denote the oscillation of a function h on the i-th subinterval. Then U(h, P ) − L(h, P ) =∑n

i=1 ωi(h)(xi − xi−1). We need to show ωi(f
2) ≤ 2Mωi(f) for each i. Let x, y ∈ [xi−1, xi].

Then

|f(y)2 − f(x)2| = |(f(y)− f(x))(f(y) + f(x))| = |f(y)− f(x)||f(y) + f(x)|.
Since |f(x)| ≤ M for all x, |f(y) + f(x)| ≤ |f(y)| + |f(x)| ≤ M + M = 2M . Also,
f(y) − f(x) ≤ sup f − inf f = ωi(f) and f(x) − f(y) ≤ sup f − inf f = ωi(f). So |f(y) −
f(x)| ≤ ωi(f). Combining these, we get |f(y)2 − f(x)2| ≤ ωi(f)(2M) = 2Mωi(f). Since
this holds for all x, y ∈ [xi−1, xi], we have ωi(f

2) = sup x,y|f(y)2 − f(x)2| ≤ 2Mωi(f). (Note:
ωi(h) = sup x,y∈Ii|h(y)− h(x)|). Now, multiply by (xi − xi−1) and sum over i:

U(f 2, P )−L(f 2, P ) =
n∑

i=1

ωi(f
2)∆xi ≤

n∑
i=1

2Mωi(f)∆xi = 2M
n∑

i=1

ωi(f)∆xi = 2M(U(f, P )−L(f, P )).

(ii) Assume f is Riemann integrable. By Lemma 1.4, for any ε > 0, there exists a partition
P such that U(f, P )−L(f, P ) < ε

2M+1
(if M = 0, f = 0, f 2 = 0, integrable; assume M > 0).

Then by (i),

U(f 2, P )− L(f 2, P ) ≤ 2M(U(f, P )− L(f, P )) < 2M

(
ε

2M + 1

)
< ε.

By Lemma 1.4, f 2 is also Riemann integrable on [a, b].
(iii) Let f, g be Riemann integrable. By Exercise 1(i), f + g is Riemann integrable.

By Exercise 1(iii), f − g is Riemann integrable. By part (ii), (f + g)2 and (f − g)2 are
Riemann integrable. Using Exercise 1(iii) again, the difference (f+g)2−(f−g)2 is Riemann
integrable. Using Exercise 1(ii), the function 1

4
((f + g)2 − (f − g)2) is Riemann integrable.

But 4fg = (f + g)2 − (f − g)2. So fg = 1
4
((f + g)2 − (f − g)2) is Riemann integrable. □

Exercise 10.5. Let f : [0, 1] → [0,∞) be a continuous function such that
∫ 1

0
f = 0. Prove

that f(x) = 0 for all x ∈ [0, 1].

Proof. Assume otherwise. Then there exists c ∈ [0, 1] such that f(c) > 0. Since f is
continuous, for ε = f(c)/2 > 0, there exists δ > 0 such that if x ∈ [0, 1] and |x− c| < δ, then
|f(x) − f(c)| < ε = f(c)/2. This implies f(x) > f(c) − ε = f(c) − f(c)/2 = f(c)/2 for all
x ∈ (c− δ, c+ δ)∩ [0, 1]. Let [p, q] be a closed interval contained in (c− δ, c+ δ)∩ [0, 1] with
p < q. For instance, let p = max(0, c − δ/2) and q = min(1, c + δ/2). Then q − p > 0. On
[p, q], we have f(x) ≥ f(c)/2 > 0. Since f(x) ≥ 0 for all x ∈ [0, 1], we have∫ 1

0

fdx =

∫ p

0

fdx+

∫ q

p

fdx+

∫ 1

q

fdx.

Since f ≥ 0,
∫ p

0
fdx ≥ 0 and

∫ 1

q
fdx ≥ 0. For the middle integral,

∫ q

p
fdx ≥

∫ q

p
(f(c)/2)dx =

(f(c)/2)(q − p) > 0. Thus,
∫ 1

0
fdx ≥ (f(c)/2)(q − p) > 0. This contradicts the given

condition
∫ 1

0
f = 0. Therefore, our assumption must be false, and f(x) = 0 for all x ∈ [0, 1].
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Another proof. Here is another proof which is in some sense a sledgehammer method. Since
f is continuous, F (x) =

∫ x

0
f(t)dt defines a differentiable function such that F ′(x) = f(x) on

[0, 1] by the Fundamental Theorem of Calculus. Moreover, since f is non-negative (f(x) ≥ 0),
for 0 ≤ x ≤ y ≤ 1, F (y) − F (x) =

∫ y

x
f(t)dt ≥ 0. Thus F (x) is non-decreasing. We

have F (0) =
∫ 0

0
f = 0. We are given F (1) =

∫ 1

0
f = 0. Since F is non-decreasing and

F (0) = F (1) = 0, it must be that F (x) = 0 for all x ∈ [0, 1]. This shows that F is identically
zero, hence F ′(x) = f(x) = 0 for all x ∈ [0, 1] as well. □

Exercise 10.6. The following exercise deals with metric properties of the space of Riemann
integrable functions.

• Let α, β be real numbers. Prove that αβ ≤ (α2 + β2)/2. Now, let a < b be real
numbers, and let f, g : [a, b] → R be two Riemann integrable functions. Assume that∫ b

a
f 2 = 1 and

∫ b

a
g2 = 1. (Recall that since f, g are Riemann integrable, we know

that f 2, g2 and fg are also Riemann integrable by Exercise 10.4.) Prove that∫ b

a

fg ≤ 1.

• Let a < b be real numbers, and let f, g : [a, b] → R be two Riemann integrable
functions. Prove the Cauchy-Schwarz inequality:∣∣∣∣∫ b

a

fg

∣∣∣∣ ≤ (∫ b

a

f 2

)1/2(∫ b

a

g2
)1/2

• Let a < b be real numbers, and let f, g, h : [a, b] → R be Riemann integrable functions.
Define

d(f, g) :=

(∫ b

a

(f − g)2
)1/2

.

Prove the triangle inequality for d. That is, show that

d(f, g) ≤ d(f, h) + d(h, g).

Proof. (i) By expanding the trivial inequality (α−β)2 ≥ 0, we get α2− 2αβ+β2 ≥ 0, which
implies α2 + β2 ≥ 2αβ, or αβ ≤ (α2 + β2)/2. Applying this pointwise for f(x) and g(x), we
have f(x)g(x) ≤ (f(x)2 + g(x)2)/2 for all x ∈ [a, b]. Since f, g are integrable, f 2, g2, fg are
integrable. By linearity and monotonicity of the integral (Exercise 1(ii, v)):∫ b

a

fgdx ≤
∫ b

a

f(x)2 + g(x)2

2
dx =

1

2

(∫ b

a

f 2dx+

∫ b

a

g2dx

)
.

Given
∫ b

a
f 2 = 1 and

∫ b

a
g2 = 1, we get∫ b

a

fg ≤ 1

2
(1 + 1) = 1.

(ii) Let A =
∫ b

a
f 2 and B =

∫ b

a
g2. Case 1: A > 0 and B > 0. Define f̃(x) = f(x)/

√
A and

g̃(x) = g(x)/
√
B. Then

∫ b

a
f̃ 2 =

∫ b

a
(f 2/A) = (1/A)

∫ b

a
f 2 = A/A = 1. Similarly

∫ b

a
g̃2 = 1.

By part (i),
∫ b

a
f̃ g̃ ≤ 1. Substituting back:∫ b

a

f(x)√
A

g(x)√
B
dx ≤ 1 =⇒ 1√

A
√
B

∫ b

a

fgdx ≤ 1 =⇒
∫ b

a

fgdx ≤
√
A
√
B.
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This is
∫ b

a
fg ≤ (

∫ b

a
f 2)1/2(

∫ b

a
g2)1/2. Now apply this result to −f and g. Since

∫
(−f)2 =∫

f 2 = A, we get
∫ b

a
(−f)g ≤

√
A
√
B, which means −

∫ b

a
fg ≤

√
A
√
B. Combining the two

inequalities gives |
∫ b

a
fg| ≤

√
A
√
B.

Case 2: A =
∫ b

a
f 2 = 0 or B =

∫ b

a
g2 = 0. Suppose A = 0. Since f 2(x) ≥ 0 and f 2

is integrable (by Exercise 4ii),
∫ b

a
f 2 = 0 implies f(x)2 = 0 ”almost everywhere”. If f is

continuous, this implies f(x) = 0 for all x (by Exercise 5 logic). Then fg = 0, so
∫
fg = 0.

The right hand side is A1/2B1/2 = 01/2B1/2 = 0. So 0 ≤ 0 holds. For integrable functions,
does

∫
f 2 = 0 imply

∫
fg = 0? We can show this using the inequality |fg| ≤ 1

2
(εf 2 + 1

ε
g2).

Then |
∫
fg| ≤

∫
|fg| ≤ 1

2
(ε
∫
f 2 + 1

ε

∫
g2) = 1

2
(0 + 1

ε
B). This holds for all ε > 0. Letting

ε → ∞, this suggests |
∫
fg| ≤ 0, so

∫
fg = 0. Thus the inequality holds 0 ≤ 0.

(iii) We want to show d(f, g) ≤ d(f, h) + d(h, g). This is equivalent to showing d(f, g)2 ≤
(d(f, h) + d(h, g))2 since distances are non-negative.

d(f, g)2 =

∫ b

a

(f − g)2dx =

∫ b

a

((f − h) + (h− g))2dx

=

∫ b

a

[(f − h)2 + 2(f − h)(h− g) + (h− g)2]dx

=

∫ b

a

(f − h)2dx+ 2

∫ b

a

(f − h)(h− g)dx+

∫ b

a

(h− g)2dx (by linearity)

= d(f, h)2 + 2

∫ b

a

(f − h)(h− g)dx+ d(h, g)2

Now apply the Cauchy-Schwarz inequality (part ii) to the middle term with functions F =
f − h and G = h− g:∣∣∣∣∫ b

a

(f − h)(h− g)dx

∣∣∣∣ ≤ (∫ b

a

(f − h)2dx

)1/2(∫ b

a

(h− g)2dx

)1/2

= d(f, h)d(h, g).

So,
∫ b

a
(f−h)(h−g)dx ≤ d(f, h)d(h, g). Substituting this back into the expression for d(f, g)2:

d(f, g)2 ≤ d(f, h)2 + 2d(f, h)d(h, g) + d(h, g)2

= (d(f, h) + d(h, g))2.

Taking the square root of both sides (which preserves the inequality since both sides are
non-negative) gives the desired triangle inequality:

d(f, g) ≤ d(f, h) + d(h, g).

□

11. Homework 11

Exercise 11.1. Let (X, ∥·∥) be a normed linear space. Define d : X ×X → R by d(x, y) :=
∥x− y∥. Show that (X, d) is a metric space.

Solution. Proof. It’s clear that d ≥ 0. If d(x, y) = 0, then since || · || is a norm it follows that
x− y = 0 or, equivalently, that x = y. Now, d is symmetric insofar as

d(x, y) = ||x− y|| = || − 1 · (y − x)|| = | − 1| · ||y − x|| = d(y, x).
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Lastly, the triangle inequality for d follows from the triangle inequality for the norm:

d(x, y) = ||x− y|| = ||x− z + z − y|| ≤ ||x− z||+ ||z − y|| = d(x, z) + d(z, y).

□

Exercise 11.2. Let n be a positive integer and let x ∈ Rn. Show that ∥x∥ℓ∞ = limp→∞ ∥x∥ℓp .

Solution. Proof. Fix x = (x1, . . . , xn) ∈ Rn. Find j ∈ {1, . . . , n} with

||x||ℓ∞(Rn) = |xj| = ||x||ℓ∞(Rn).

Then for p ≥ 0 we see that

||x||ℓ∞(Rn) = |xj| ≤

(
n∑

i=1

|xi|p
)1/p

≤

(
n∑

i=1

||x||pℓ∞(Rn)

)1/p

= (n||x||pℓ∞(Rn))
1/p = n1/p||x||ℓ∞(Rn).

By the squeeze theorem, limp→∞ ||x||p exists and equals ||x||ℓ∞(Rn). □

Exercise 11.3. Let (X, ⟨·, ·⟩) be a real inner product space. Define ∥·∥ : X → [0,∞) by

∥x∥ :=
√

⟨x, x⟩. Show that (X, ∥·∥) is a normed linear space. Consequently, from Exercise

12.20, if we define d : X × X → [0,∞) by d(x, y) :=
√

⟨(x− y), (x− y)⟩, then (X, d) is a
metric space.

Solution. We verify the norm properties. Let α ∈ F (where F is the scalar field, R or C) and
x, y ∈ X.

(1) Non-negativity: ⟨x, x⟩ ≥ 0 by definition of inner product, so ∥x∥ =
√

⟨x, x⟩ ≥ 0.

(2) Definiteness: ∥x∥ = 0 ⇐⇒
√

⟨x, x⟩ = 0 ⇐⇒ ⟨x, x⟩ = 0 ⇐⇒ x = 0.
(3) Homogeneity:

∥αx∥ =
√
⟨αx, αx⟩ =

√
αα⟨x, x⟩ =

√
|α|2⟨x, x⟩ =

√
|α|2
√
⟨x, x⟩ = |α|∥x∥.

(4) Triangle Inequality: We need to show ∥x + y∥ ≤ ∥x∥ + ∥y∥. This is equivalent to
showing ∥x+ y∥2 ≤ (∥x∥+ ∥y∥)2.

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

= ∥x∥2 + ⟨x, y⟩+ ⟨x, y⟩+ ∥y∥2

= ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2

By the Cauchy-Schwarz inequality (|⟨x, y⟩| ≤ ∥x∥∥y∥), we know Re⟨x, y⟩ ≤ |⟨x, y⟩| ≤
∥x∥∥y∥. Therefore,

∥x+ y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2.

Taking the square root of both sides yields ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
All norm properties are satisfied. □
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Exercise 11.4. Consider the set A of all (x, y) in the plane R2 such that x > 0. Find the
set of all adherent points of A, then find whether or not A is open or closed (or both, or
neither).

Solution. We’ll show that A = {(x, y) ∈ R2 : x ≥ 0}. Let (x, y) ∈ R2. If x > 0, then
(x, y) ∈ A and so (x, y) is an adherent point of A vacuously. Suppose then that x = 0. If
ε > 0, then (ε/2, y) ∈ A and

||(x, y)− (ε/2, y)|| = ||(−ε/2, 0)|| = ε

2
< ε

and so (x, y) is an adherent point of A. If x < 0, then choosing ε = −x/2, we see that the
ball of radius ε about (x, y) does not intersect A, and so (x, y) is not an adherent point of
A. □

Exercise 11.5. Let n be a positive integer. Let x ∈ Rn. Let (x(j))∞j=k be a sequence of

elements of Rn. We write x(j) = (x
(j)
1 , . . . , x

(j)
n ), so that for each 1 ≤ i ≤ n, we have x

(j)
i ∈ R,

that is, x
(j)
i is the ith coordinate of x(j). Prove that the following three statements are

equivalent.

• (x(j))∞j=k converges to x with respect to dℓ1 .

• (x(j))∞j=k converges to x with respect to dℓ2 .

• (x(j))∞j=k converges to x with respect to dℓ∞ .

Solution. Proof. We’ll prove a more general result. From the proof in Exercise 11.2, we see
that if 1 ≤ p, q ≤ ∞, then

n−1/q||x||ℓp(Rn) ≤ ||x||ℓq(Rn) ≤ n1/p||x||ℓp(Rn) ≤ n1+1/p||x||ℓ∞(Rn) ≤ n1+1/p+1/q||x||ℓq(Rn)

or, in short,

n−1||x||ℓp(Rn) ≤ ||x||ℓq(Rn) ≤ na||x||ℓp(Rn)

with the convention that 1/∞ = 0. Now, say {xj}∞j=1 is a sequence in Rn and x0 ∈ Rn with

xj converging to x0 with respect to dp. Then dℓp(Rn)(x0, x
j) → 0 as j → ∞, and so

dℓq(Rn)(x
j, x0) = ||xj − x0||ℓq(Rn) ≤ n1/p||xj − x0||ℓp(Rn) = n1/pdℓp(Rn)(x

j, x0) → 0

as j → ∞, and so xj → x0 with respect to dq as j → ∞. □

Exercise 11.6. Let (X, d) be a metric space, let E be a subset of X, and let x0 be a point
in X. Prove that the following statements are equivalent.

• x0 is an adherent point of E.
• x0 is either an interior point of E or a boundary point of E.
• There exists a sequence (xn)

∞
n=1 of elements of E which converges to x0 with respect

to the metric d.

Solution. Proof.

(i) Suppose x0 is an interior point of X. Then ∃r > 0 such that B(x0, r) ⊆ X. If x0 is an
exterior point, then B(x0, r)∩X = ∅ and so B(x0, r) ⊆ Xc which is a contradiction.
Therefore x0 is not an exterior point. If x0 is not a boundary point, then x0 is an
exterior point or interior point. Since x0 is not an exterior point, then x0 is an interior
point.
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(ii) Suppose x0 is not an interior point. Then for all r > 0 we have B(x0, r) ̸⊆ X which
implies that B(x0, r) ∩Xc ̸= ∅. But also since x0 is not a an interior point we have
B(x0, r) ∩X ̸= ∅ for any r > 0 and so x0 is a boundary point.

□

Exercise 11.7. Prove the following statements.

• Let (X, d) be a metric space, and let Y be a subset of X, so that (Y, d|Y×Y ) is a
metric space. If (Y, d|Y×Y ) is complete, then Y is closed in (X, d).

• Conversely, assume that (X, d) is a complete metric space and that Y is a closed
subset of X. Then (Y, d|Y×Y ) is complete.

Solution. (i) Say (Y, dY×Y ) is complete. Suppose xn is a sequence in Y converging to x0 ∈ X
with respect to d. Then {xn}∞n=1 is a Cauchy sequence with respect to dY×Y . Since (Y, d|Y×Y )
is complete, there exists some y0 ∈ Y with xn → y0 with respect to dY×Y . Now,

0 ≤ d(x0, y0) ≤ d(x0, xn) + d(xn, y0) = d(x0, xn) + dY×Y (xn, y0) → 0

and so by the squeeze theorem d(x0, y0) = 0. So x0 = y0 ∈ Y . So Y contains its limit points,
and hence Y is closed. □

Exercise 11.8. Let X be a subset of the real line R and let I be a set. The set X is said
to be open if and only if there exists a (possibly uncountable) collection of open intervals
{(aα, bα)}α∈I where aα < bα are real numbers for all α ∈ I, so that X = ∪α∈I(aα, bα).
Assume that X is open. Conclude that there exists a set J which is either finite or countable,
and there exists a disjoint collection of open intervals {(cα, dα)}α∈J which is either finite or
countable, where cα < dα are real numbers for all α ∈ J , so that X = ∪α∈J(cα, dα). (Hint:
given any x ∈ X, consider the largest open interval that contains x and that is contained in
X. Consider then the set of all such intervals, for all x ∈ X.)

Remark 2. The analogous statement for R2 is not true.

Solution. Let X be an open subset of R. Define an equivalence relation on X by declaring
that x ∼ y if the closed interval

[min{x, y},max{x, y}] ⊆ X.

Fix x ∈ X. I claim that the equivalence class [x] = {y ∈ X : y ∼ x} is an open interval.
Let’s first prove it is open. Say y ∈ [x]. Since y ∈ X, there exists some ε > 0 so that
B(y, ε) ⊆ X. But then

[min{y, y + r},max{y, y + r}], [min{y, y − r},max{y, y − r}] ⊆ X

for every 0 < r < ε/2. So y+r ∼ y−r ∼ y ∼ x for every 0 < r < ε/2. Hence B(y, ε/2) ⊆ [x],
and so [x] is open. Now, let

ax = inf {y ∈ X : [y, x] ⊆ X} and bx = inf {y ∈ X : [x, y] ⊆ X}
It’s not difficult to prove that (ax, bx) ⊆ [x]. If y ∈ [x] and x < y. Then

[x, y] ⊆ X

Since X is open, there exists some ε > 0 so that

(x, y + ε) ⊆ X
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But then ax < x < y < y + ε < bx. So y ∈ (ax, bx). This holds similarly if y ≤ x, which
proves the reverse conclusion. Since equivalence classes are disjoint, and partition X, this
proves that X is a disjoint union of open intervals. To see why there must be a countable
number of intervals, define a map Φ : Q ∩X → {[x] : x ∈ X} by

Φ(q) = [q].

I claim this map is surjective. Indeed, say that x ∈ X. Then [x] is an interval. Since Q is
dense in R, there exists some q ∈ [x] ⊆ X. So q ∈ X∩Q and Φ(q) = [x]. Since Q is countable
and Φ is surjective, we know that {[x] : x ∈ X} is at most countable, i.e. countable infinite
or finite. □

12. Homework 12

Exercise 12.1. Let (X, d) be a compact metric space. Show that (X, d) is both complete
and bounded. (Hint: prove each property separately, and use argument by contradiction.)

Solution. We first prove that X is bounded. Suppose for the sake of a contradiction that
(X, d) is not bounded. I claim there exists a sequence {xn}∞n=1 with the property that

d(xi, xj) ≥ 1 for all i ̸= j.

Choose x1 ∈ X. Since X is not bounded we know that

X ̸⊆ B(x1, 1)

and so we may choose x2 ∈ X ∖ B(x1, 1). Note that x2 /∈ B(x1, 1) and so we see that
d(x2, x1) ≥ 1. Since X is not bounded we know that X cannot be contained in the union of
two balls

X ̸⊆ B(x1, 1) ∪B(x2, 1)

since otherwise we would have it contained in one large ball X ⊆ B(x1, 1 + d(x1, x2)) (draw
a picture). So there exists some x3 ∈ X ∖ (B(x1, 1) ∪B(x2, 1)). Note that

d(x3, xj) ≥ 1 for j = 1, 2

since x3 /∈ B(x1, 1) ∪B(x2, 1). Continue in this way, as

X ̸⊆ B(x1, 1) ∪ · · · ∪B(xn−1, 1)

we may find xn /∈ B(x1, 1) ∪ · · · ∪B(xn−1, 1) and note that

d(xn, xj) ≥ 1 for 1 ≤ j ≤ n− 1

which completes our claim. Now, since (X, d) is compact the sequence {xn}∞n=1 has a con-
vergent and hence Cauchy subsequence {xnk

}∞k=1. But

d(xnk
, xnj

) ≥ 1 for i ̸= j

and so {xnk
}∞k=1 cannot be Cauchy, a contradiction. We now prove that X is complete.

Suppose {xn}∞n=1 is an arbitrary Cauchy sequence in X. Since X is compact, there exists
a convergent subsequence {xnk

}∞k=1 and a point x0 ∈ X with xnk
→ x0. We’ll show that

{xn}∞n=1 converges to x0, which will complete the proof. Let ε > 0. Since {xn}∞n=1 is Cauchy
there exists some N1 ∈ N so that

d(xn, xm) <
ε

2
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for n,m ≥ N1. Since {xnk
}∞k=1 converges to x0 there exists some N2 ∈ N so that

d(xnk
, x0) <

ε

2

for all k ≥ N2. So if we let N = max{N1, N2}, then for all k ≥ N we see that

d(xk, x0) ≤ d(xk, xnk
) + d(xnk

, x0) <
ε

2
+

ε

2
= ε

and so {xn}∞n=1 converges to x0, as desired. □

Exercise 12.2. Let n be a positive integer. Let (Rn, d) denote Euclidean space with the
metric d = dℓ2 or d = dℓ1 . Let E be a subset of Rn. Show that E is compact if and only if
E is both closed and bounded. (Hint: use Bolzano-Weierstrass in Rn.)

Solution. If E is compact, then from Exercise 1 we know that (E, dE × E) is bounded and
complete. By Proposition 4.8, we see that E is closed in Rn. So E is closed and bounded,
as desired. Suppose that E is closed and bounded. Let {xj}∞j=1 be a sequence in E. Since
E is bounded, the sequence {xj}∞j=1 is bounded. By Bolzano-Weierstrass, there exists a
subsequence {xjk}∞k=1 and x0 ∈ Rn with xjk → x0. But E is closed, so x0 ∈ E. Hence every
sequence in E has a subsequence which converges to an element of E, whence it follows that
E is compact, as desired. □

Exercise 12.3. Let (X, d) be a metric space, and let K1, K2, . . . be a sequence of nonempty
compact subsets of X such that

K1 ⊇ K2 ⊇ K3 ⊇ · · · .
Show that the intersection ∩∞

j=1Kj is nonempty. (Hint: first, work in the compact metric
space (K1, d|K1×K1). Then, consider the sets K1 ∖ Kj which are open in K1. Assume for
the sake of contradiction that ∩∞

j=1Kj = ∅. Then apply the Open Cover Characterization of
compactness.)

Solution. Suppose for the sake of a contradiction that
⋂∞

j=1 Kj = ∅. Then

K1 ⊆ X = X ∖ ∅ = X ∖ (
∞⋂
j=1

Kj) =
∞⋃
j=1

X ∖Kj = X ∖K1 ∪ (
∞⋃
j=2

X ∖Kj)

and so

K1 ⊆
∞⋃
j=2

X ∖Kj.

Since each Kj is compact and hence closed, it follows that X ∖Kj is open. So {X ∖Kj}∞j=2

is an open cover of K1. Since K1 is compact, there exists a finite sub-cover {X ∖Kjm}nm=1

so that

K1 ⊆
n⋃

m=1

X ∖Kjm = X ∖ (
n⋂

m=1

X ∖Kjm) = X ∖Kjm

So Kjm is contained in its complement, and so Kjm = ∅. But every Kj is non-empty, and so
we have a contradiction. □

Exercise 12.4. Let (X, dX) and let (Y, dY ) be metric spaces. Let f : X → Y be a function.
Show that the following two statements are equivalent.
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• f is continuous at x0.
• If we have a sequence (x(j))∞j=1 in X which converges to x0 with respect to dX , then

the sequence (f(x(j)))∞j=1 converges to f(x0) with respect to the metric dY .

The proof of this exercise is contained in the next one.

Exercise 12.5. Let (X, dX) and let (Y, dY ) be metric spaces. Let f : X → Y be a function.
Show that the following four statements are equivalent.

• f is continuous at x0, for all x0 ∈ X.
• For all x0 ∈ X, if we have a sequence (x(j))∞j=1 in X which converges to x0 with

respect to dX , then the sequence (f(x(j)))∞j=1 converges to f(x0) with respect to the
metric dY .

• For all open sets W in Y , the set f−1(W ) = {x ∈ X : f(x) ∈ W} is an open set in
X.

• For all closed sets V in Y , the set f−1(V ) is a closed set in X.

Solution.

(1) Assume (a). Say {xn}∞n=1 is a sequence in X which converges to x0. We want to show
that {f(xn)}∞n=1 converges to f(x0). To this end, let ε > 0. Since f is continuous
there exists δ > 0 so that

d(f(x0), f(y)) < ε

for all y ∈ X with d(y, x0) < δ. Since xn → x0 there exists N ∈ N so that d(xn, x0) <
δ for all n > N . But then for all n > N we have

d(f(xn), f(x0)) < ε.

So {f(xn)}∞n=1 converges to f(x0), as desired.

(2) Assume (b). Say x0 ∈ f−1(W ) so that f(x0) ∈ W . Suppose that x0 is not an interior
point of f−1(W ). Then for every n ∈ N we know that

B(x0, 2
−n) ̸⊆ f−1(W )

So there exists xn in X with d(xn, x0) < 2−n but f(xn) ∈ X ∖ W . So {xn}∞n=1

converges to x0. By (b), we know that {f(xn)}∞n=1 converges to f(x0). But {f(xn)}∞n=1

is a sequence in X ∖W , which is a closed set since W is open. So this tells us that
f(x0) ∈ X ∖W . So x0 /∈ f−1(W ), a contradiction.

(3) Assume (c). Let V be closed. Then Y ∖ V is open, and

f−1(Y ∖ V ) = X ∖ f−1(V )

is open by (c) which implies that f−1(V ) is closed.
(4) Assume (d). Let x0 ∈ X and ε > 0 be arbitrary. Since B(f(x0), ε) is open, its

complement Y ∖B(f(x0), ε) is closed. So

f−1(Y ∖B(f(x0), ε)) = X ∖ f−1(B(f(x0), ε))

is closed, which implies that f−1(B(f(x0), ε)) is open. Since x0 ∈ f−1(B(f(x0), ε)),
there exists δ > 0 so that

B(x0, δ) ⊆ f−1(B(f(x0), ε))
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or, equivalently,
f(B(x0, δ)) ⊆ B(f(x0), ε).

Now, if y ∈ X and d(x0, y) < δ then y ∈ B(x0, δ) and so f(y) ∈ B(f(x0), ε) or,
equivalently, d(f(x0), f(y)) < ε. Thus, for every ε > 0 there exists δ > 0 so that
if d(x0, y) < δ we have d(f(x0), f(y)) < ε which, by definition, means that f is
continuous.

□

Exercise 12.6. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. Let f : (X, dX) → (Y, dY )
be a continuous function and let g : (Y, dY ) → (Z, dZ) be a continuous function. Show that
g ◦ f : (X, dX) → (Z, dZ) is a continuous function.

Solution. Let W ⊆ Z be open. From Exercise 5, we know that g−1(W ) is an open subset of
Y since g is continuous. From Exercise 5 again, we know that f−1(g−1(W )) is open. So for
every open W ⊆ Z we have

(g ◦ f)−1(W ) = f−1(g−1(W ))

is open, and so g ◦ f is continuous by Exercise 5. □

Exercise 12.7. Give an example of a continuous function f : R → R and of an open set W
such that f(W ) is not open.

Solution. Take the function f : R → R given by f(x) = π. Then W = (0, 1) is an open
subset of R, but f(W ) = {π} is not. □

Exercise 12.8. Give an example of a continuous function f : R → R and of a closed set W
such that f(W ) is not closed.

Solution. Take the function f : R → R given by f(x) = 1
x2+1

and take W = R. Then W is
closed, but f(W ) = (0, 1] is not closed.

□

Exercise 12.9. Let (X, dX) and (Y, dY ) be metric spaces. Let f : (X, dX) → (Y, dY ) be a
continuous function. Suppose K ⊆ X is a compact set. Show that f(K) = {f(x) : x ∈ K}
is also a compact set.

Solution. Let {yn}∞n=1 be a sequence in f(K). For each n > 1 find xn ∈ K with f(xn) = yn.
Now {xn}∞n=1 is a sequence in the compact set K, so there exists a subsequence {xnk

}∞k=1 and
x0 ∈ K with xnk

→ x0. Since f is continuous, we see that f(xnk
) = ynk

→ f(x0) ∈ f(K).
So every sequence in f(K) has a convergent subsequence in f(K) converging to an element
in f(K). So f(K) is compact. □

Exercise 12.10. Using the previous exercise, prove the Maximum Principle: Let K be a
closed and bounded subset of Rn, and let f : K → R be a continuous function. Then there
exist points a, b ∈ K such that f attains its maximum at a and f attains its minimum at b.
(Hint: consider the numbers sup x∈Kf(x) and inf x∈Kf(x).)

Solution. For each n ∈ N
sup {f(x) : x ∈ K} − 2−n

is not an upper bound on the set {f(x) : x ∈ K} and so there exists xn ∈ K with

f(xn) ≥ sup {f(x) : x ∈ K} − 2−n.
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The sequence {xn}∞n=1 belongs to the compact set K, and so there exists x0 ∈ K and a
convergent subsequence {xnk

}∞k=1 with xnk
→ x0. Since f is continuous we see that

sup {f(x) : x ∈ K} ≥ f(x0) = f( lim
k→∞

xnk
)

= lim
k→∞

f(xnk
)

≥ lim
k→∞

sup {f(x) : x ∈ K} − 2−nk

= sup {f(x) : x ∈ K}

So

f(x0) = sup {f(x) : x ∈ K}
and so f attains its maximum at x0. The proof for the minimum is similar. □

THE EXERCISES BELOW WERE OPTIONAL

Exercise 12.11 (Optional). Let n be a positive integer. Let ∥·∥ and let ∥·∥′ be two norms
on Rn. Prove that these norms are equivalent. That is, there exist constants C, c > 0 such
that, for all x ∈ Rn, we have c ∥x∥′ ≤ ∥x∥ ≤ C ∥x∥′. Consequently, any two norms on Rn

are equivalent. (Hint: there are a few ways to solve this problem, but it is difficult to avoid
circular reasoning. Here is one way to solve the problem.

• Note that it suffices to assume that ∥x∥′ = ∥x∥ℓ∞ .
• Let (e1, . . . , en) denote the standard basis of Rn, and prove that

∥x∥ ≤ (
n∑

i=1

∥ei∥) ∥x∥ℓ∞ .

• Consider f : Rn → R defined by f(x) := ∥x∥. From the previous item, f is a
continuous function from (Rn, dℓ∞) into R. Let S denote the unit cube S := {x ∈
Rn : ∥x∥ℓ∞ = 1}. Using that S is compact with respect to dℓ∞ , now apply the
maximum principle to f on the set S.

Remark 3. There exist infinite dimensional vector spaces with norms that are not equiva-
lent.

Solution. Let (e1, . . . , en) denote the standard basis of Rn, so that for any x ∈ Rn we may
write

x =
n∑

i=1

xiei

for xi ∈ R. It follows by the triangle inequality that

∥x∥ =

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ ≤
n∑

i=1

|xi| · ∥ei∥ ≤

(
n∑

i=1

∥ei∥

)
∥x∥ℓ∞(Rn)
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Let

C =
n∑

i=1

∥ei∥.

4

Consider the map f : Rn → R given by f(x) = ∥x∥. I claim that f is continuous on
(Rn, ℓ∞(Rn)). Indeed, if ε > 0 then provided ∥x− y∥ℓ∞(Rn) < ε/C we have that

|f(x)− f(y)| = |∥x∥ − ∥y∥| ≤ ∥x− y∥ ≤ C∥x− y∥ℓ∞(Rn) < Cε/C = ε.

So f is continuous on (Rn, ℓ∞(Rn)). Consider the restriction of f to the set K = {x ∈ Rn :
∥x∥ℓ∞ = 1}. Note that K is compact by Bolzano-Weierstrass. So there exists a minimum
nonzero value on K, call it c, i.e.

sup x∈Kf(x) ≥ c > 0.

Now, if x ∈ Rn, then

∥x∥ =
∥x∥

∥x∥ℓ∞(Rn)

∥x∥ℓ∞(Rn) = ∥ x

∥x∥ℓ∞(Rn)

∥∥x∥ℓ∞(Rn) ≥ c∥x∥ℓ∞(Rn)

which completes the claim. □

Exercise 12.12 (Optional). Determine which of the following subsets of R2 are compact.
Justify your answers. (As usual, if we do not specify a metric on R2, we mean R2 with the
standard Euclidean metric dℓ2 .)

• {(x, y) ∈ R2 : x2 + y2 = 3}.
• {(x, y) ∈ R2 : 0 ≤ xy ≤ 1}.
• {(1, 1/n) ∈ R2 : n ∈ N}.
• {(x, y) ∈ R2 : x2 + y2 < 3}.
• {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

Solution.

(1) It is compact. Define the function f : R2 → R by f(x, y) = x2 + y2. Then f is
continuous since for every ε > 0 we have that

|f(x0, y0)− f(x, y)| = |x2 − x2
0 + y2 − y20|

< |x− x0||x+ x0|+ |y − y0||y + y0|
≤ ||(x− x0, y − y0)||ℓ2(R2)(|x+ x0|+ |y + y0|)
< dℓ2((x, y), (x0, y0))(1 + 2|x0|+ 1 + 2|y0|)
< ε

provided

dℓ2((x, y), (x0, y0)) < δ < min

{
1,

ε

1 + 2|x0|+ 1 + 2|y0|

}
.

Since f is continuous and the set {3} is a closed subset of R we know that

f−1({3}) = {(x, y) ∈ R2 : f(x, y) = 3} = {(x, y) ∈ R2 : x2 + y2 = 3}
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is a closed subset of R2. If (x, y) ∈ f−1({3}), then

d((0, 0), (x, y)) =
√

x2 + y2 =
√
3

and so f−1({3}) ⊆ B((0, 0),
√
3 + 1). So f−1({3}) is bounded. Since it is a closed

and bounded subset of R2, we know it is compact.
(2) It is not compact since it is not bounded. (You’d still need to prove it’s unbounded).
(3) It is not compact since it is not closed. (The sequence (1, 1/n) converges to (1, 0) /∈

{(1, 1/n) ∈ R2 : n ∈ N}).
(4) It is not compact since it is not closed. The sequence {(0, 3− 1/n)}∞n=1 is a sequence

in {(x, y) : x2 + y2 < 3} that converges to (0, 3) /∈ {(x, y) : x2 + y2 < 3}. So
{(x, y) : x2 + y2 < 3} is not closed, and cannot be compact.

(5) Let f : R2 → R and g(x, y) : R2 → R be given by f(x, y) = x and g(x, y) = y2. Since
f and g are continuous,

f−1([0, 1]) and g−1([1,∞))

are closed sets, being the pre-image of a closed set under a continuous function. But
then

{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2} = {(x, y) : 0 ≤ x ≤ 1} ∩ {(x, y) : 0 ≤ y ≤ x2}
= f−1([0, 1]) ∩ g−1([0,∞))

is closed, being an intersection of two closed sets. It suffices to show this set is
bounded. If (x, y) ∈ {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}, then

d((0, 0), (x, y)) =
√

x2 + y2 <
√
1 + x4 ≤

√
1 + 1 =

√
2

and so it is bounded as well.

□

Exercise 12.13 (Optional). Let (X, dX) and (Y, dY ) be vector spaces. Let f : X → Y be a
continuous function. Let E be a connected subset of X. Show that f(E) is connected.

Solution. We proceed by contradiction. Suppose E is connected but f(E) is disconnected.
Then there exists nonempty A,B relatively open subsets of f(E) with A ∩ B = ∅ and
A ∪ B = E. Since f is continuous and both A and B are open, we see that f−1(A) and
f−1(B) are relatively open subsets of E with

E = f−1(f(E)) = f−1(A ∪B) = f−1(A) ∪ f−1(B)

and

∅ = f−1(A ∩B) = f−1(A) ∩ f−1(B).

So E is disconnected, a contradiction. □

Exercise 12.14 (Optional). Using the previous exercise, prove the Intermediate Value The-
orem: Let (X, d) be a metric space. Let f : X → R be a continuous function. Let E be a
connected subset of X and let a, b be any two elements of E. Let y be a real number between
f(a) and f(b), so that either f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). Then there exists c ∈ E
such that f(c) = y.
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Solution. Let f : X → R be a continuous function and E a connected subset of E. Say
a, b ∈ E and without loss of generality y ∈ [f(a), f(b)]. We know from the previous exercise
that f(E) is connected. By Theorem 8.4 this implies since f(a) ∈ f(E) and f(b) ∈ f(E)
that [f(a), f(b)] ⊆ f(E). In particular, y ∈ f(E). So there exists at least one x ∈ E with
f(x) = y, as desired. □

Exercise 12.15 (Optional). Let (X, dX) and (Y, dY ) be metric spaces, let E be a subset of
X, let f : X → Y be a function, let x0 ∈ X be an adherent point of E, and let L ∈ Y . Show
that the following statements are equivalent.

• limx→x0;x∈E f(x) = L.
• For any sequence (x(j))∞j=1 in E which converges to x0 with respect to the metric dX ,

the sequence (f(x(j)))∞j=1 converges to L with respect to the metric dY .

Solution.

(1) Assume (i). Say {x(i)}∞i=1 is a sequence in E which converges to x0 with respect to
the metric dX . Let ε > 0. Since (i) holds there exists δ > 0 so that

dY (f(x), L) < ε

for every x ∈ E with dX(x, x0) < δ. Now since {x(i)}∞i=1 converges to x0 there exists
N sufficiently large so that dX(x

(j), x0) < δ for all j > N . But then

dY (f(x
(j)), L) < ε

for all j > N , as desired.

2

(2) Assume (ii). Say that (i) fails, so that

lim
x→x0
x∈E

f(x) ̸= L.

Then there exists ε > 0 so that for every δ > 0 there exists x ∈ E with dX(x, x0) < δ
yet dY (f(x), L) > ε. Taking δ = 1/n for each n ∈ N this produces, for every n ∈ N, an
xn ∈ E with dX(xn, x0) < 1/n with dY (f(xn), L) > ε. But then xn → x0 with respect
to xn. So by (ii), there exists N ∈ N so that for all n > N we have dY (f(xn), L) < ε,
a contradiction.

□

Exercise 12.16 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a

sequence of functions from X to Y . Let f : X → Y be another function. Let x0 ∈ X.
Suppose fj converges uniformly to f on X. Suppose that, for each j ≥ 1, we know that fj
is continuous at x0. Show that f is also continuous at x0. Hint: it is probably easiest to use
the ε− δ definition of continuity. Once you do this, you may require the triangle inequality
in the form

dY (f(x), f(x0)) ≤ dY (f(x), fj(x)) + dY (fj(x), fj(x0)) + dY (fj(x0), f(x0)).

Solution. Let x0 ∈ X. Let ε > 0. Since fj converges uniformly to f(x), there exists N ∈ N
so that

d(fj(x), f(x)) <
ε

3
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for all j > N and x ∈ X. Since fN is continuous, there exists δ > 0 so that

dY (fN(x0), fN(x)) <
ε

3

for all x ∈ X with dX(x, x0) < δ. Now, by the triangle inequality it follows that for all x ∈ X
with dX(x, x0) < δ we have

dY (f(x), f(x0)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(x0)) + dY (fN(x0), f(x0)) <
ε

3
+

ε

3
+

ε

3
= ε.

So f is continuous at x0, as desired. □

Exercise 12.17 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a

sequence of functions from X to Y . Let f : X → Y be another function. Suppose (fj)
∞
j=1

converges uniformly to f on X. Suppose also that, for each j ≥ 1, we know that fj is
bounded. Show that f is also bounded.

Solution. As (fj)
∞
j=1 converges uniformly to f , there exists some N so that

sup x∈XdY (fj(x), f(x)) < 1

for every n > N . Fix x0 ∈ X. Since fN is bounded, there exists some C so that

sup x∈XdY (fN(x0), fN(x)) < C.

By the triangle inequality and the fact that fN is bounded, we see that

sup x∈XdY (fN(x0), f(x)) ≤ sup x∈XdY (fN(x0), fN(x)) + sup x∈XdY (fN(x), f(x))

< sup x∈XdY (fN(x0), fN(x)) + 1

< C + 1

So

{f(x) : x ∈ X} ⊆ B(fN(x0), 1)

which, by definition, means that {f(x) : x ∈ X} is a bounded subset of Y , and hence f is a
bounded function. □

Exercise 12.18 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let B(X;Y ) denote
the set of functions f : X → Y that are bounded. Let f, g ∈ B(X;Y ). We define the metric
d∞ : B(X;Y )×B(X;Y ) → [0,∞) by

d∞(f, g) := sup x∈XdY (f(x), g(x)).

Show that the space (B(X;Y ), d∞) is a metric space.

Solution. It’s clear that for any f, g ∈ B(X;Y ) that d∞(f, g) ≥ 0, d∞(f, f) = 0, and
d∞(f, g) = d∞(g, f). The triangle inequality for d∞ follows from the triangle inequality for
dY and the subadditivity of the supremum:

d∞(f, g) ≤ sup x∈XdY (f(x), h(x)) + dY (h(x), g(x)) ≤ d∞(f, h) + d∞(h, g)

□

Exercise 12.19 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a

sequence of functions in B(X;Y ). Let f ∈ B(X;Y ). Show that (fj)
∞
j=1 converges uniformly

to f on X if and only if (fj)
∞
j=1 converges to f in the metric dB(X;Y ).
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Solution. Say (fj)
∞
j=1 converges uniformly to f . Let ε > 0. Then there exists N sufficiently

large so that dY (fN(x), f(x)) < ε for every x ∈ X. That is,

dY (fN(x), f(x)) = sup x∈XdY (fN(x), f(x)) < ε.

So fN converges to f in the d∞ metric. The reverse direction is similar. □

Exercise 12.20 (Optional). Let (X, dX) be a metric space, and let (Y, dY ) be a complete
metric space. Then the space (C(X;Y ), dB(X;Y )|C(X;Y )×C(X;Y )) is a complete subspace of
B(X;Y ). That is, every Cauchy sequence of functions in C(X;Y ) converges to a function
in C(X;Y ).

Solution. It suffices to show that a Cauchy sequence of continuous functions in the d∞
metric converges uniformly to a continuous function. Towards this end, let (fj)

∞
j=1 be a

Cauchy sequence in the d∞ metric. For a fixed x0 ∈ X, we see that

dY (fn(x0), fm(x0)) < d∞(fn, fm)

and so we see that the sequence (fn(x0))
∞
m=1 is a Cauchy sequence in Y . Since Y is complete,

this sequence converges, and

lim
n→∞

fn(x0)

exists for each x0 ∈ X. This permits us to define a function f : X → Y by

f(x) = lim
n→∞

fn(x).

We need to prove that f is continuous and that fn converges uniformly to f . Towards proving
the second point, note that for any ε > 0 that

dY (f(x), fn(x)) = lim
m→∞

dY (fm(x), fn(x)) < ε

provided n is sufficiently large. Now, if x0 ∈ X is fixed we see that

dY (f(x0), f(x)) ≤ dY (f(x0), fn(x0)) + dY (fn(x0), fn(x)) + dY (fn(x), f(x))

< 2d∞(fn, f) + dY (fn(x0), fn(x))

Find N sufficiently large so that d∞(fN , f) < ε/3. Since fN is continuous, there exists δ > 0
so that dY (fN(x0), f(x)) < ε/3 provided dX(x0, x) < δ. But then

dY (f(x0), f(x)) < ε

provided dX(x0, x) < δ. So f is continuous at x0. Since x0 was arbitrarily chosen, it follows
that f is continuous. □

Exercise 12.21 (Optional). Let x ∈ (−1, 1). For each integer j ≥ 1, define fj(x) := xj.
Show that the series

∑∞
j=1 fj converges pointwise, but not uniformly, on (−1, 1) to the

function f(x) = x/(1− x). Also, for any 0 < t < 1, show that the series
∑∞

j=1 fj converges

uniformly to f on [−t, t].

Solution. The pointwise convergence follows from summing the geometric series. Since
n∑

j=1

|fj|∞ ≤
∞∑
j=1

|fj|∞ ≤ n,
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we see that {
∑n

j=1 fi}∞n=1 is a bounded sequence of functions. Suppose, for a contradiction

that it converges uniformly to 1
1−x

. By exercise one, this implies that 1
1−x

is a bounded

function on (−1, 1). But 1
1−x

is unbounded on (−1, 1), a contradiction. □

Exercise 12.22 (Optional). LetX be a set. Show that ∥·∥∞ is a norm on the space B(X;R).

Solution. This is very similar to a previous exercise. □

Exercise 12.23 (Optional; Weierstrass M-test). Let (X, d) be a metric space and let
(fj)

∞
j=1 be a sequence of bounded real-valued continuous functions on X such that the se-

ries (of real numbers)
∑∞

j=1 ∥fj∥∞ is absolutely convergent. Show that the series
∑∞

j=1 fj
converges uniformly to some continuous function f : X → R. (Hint: first, show that the

partial sums
∑J

j=1 fj form a Cauchy sequence in C(X;R). Then, use Exercise 12.20 and the

completeness of the real line R.)

Solution. It suffices to prove that the partial sums form a Cauchy sequence in C(X;R), since
exercise 4 will imply the remaining conclusions. Indeed, suppose

∑∞
j=1 ||fj||∞ is absolutely

convergent. To this end, let ε > 0. Since
∑∞

j=1 ||fj||∞ converges, there exists N ∈ N so that

n∑
j=m

||fj||∞ < ε

for every n ≥ m > N . But then∥∥∥∥∥
n∑

j=1

fj −
m∑
j=1

fj

∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

j=m

fj

∥∥∥∥∥
∞

≤
n∑

j=m

||fj||∞ < ε,

as desired □

Exercise 12.24 (Optional). Let a < b be real numbers. For each integer j ≥ 1, let
fj : [a, b] → R be a Riemann integrable function on [a, b]. Suppose

∑∞
j=1 fj converges uni-

formly on [a, b]. Then
∑∞

j=1 fj is also Riemann integrable, and

∞∑
j=1

∫ b

a

fj =

∫ b

a

∞∑
j=1

fj.

Solution. Apply Theorem 5.1 to the sequence

{
n∑

j=1

fi}∞n=1

Indeed, by hypothesis they converge uniformly to
∑∞

j=1 fj, and so by Theorem 5.1 this
function is Riemann integrable and∫ b

a

∞∑
j=1

fjdx = lim
n→∞

∫ b

a

n∑
j=1

fjdx = lim
n→∞

n∑
j=1

∫ b

a

fjdx =
∞∑
j=1

∫ b

a

fjdx.

□
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Exercise 12.25 (Optional). Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be a
differentiable function whose derivative (fj)

′ : [a, b] → R is continuous. Assume that the
derivatives (fj)

′ converge uniformly to a function g : [a, b] → R as j → ∞. Assume also that
there exists a point x0 ∈ [a, b] such that limj→∞ fj(x0) exists. Then the functions fj converge
uniformly to a differentiable function f as j → ∞, and f ′ = g.

Solution. Let x0 ∈ [a, b] be such that limj→∞ fj(x0) exists. By the fundamental theorem of
calculus, we know that

fj(x) = fj(x0) +

∫ x

x0

f ′
j(t)dt.

Since {f ′
j}∞j=1 converges uniformly to g, we know from Theorem 5.1 that

lim
j→∞

fj(x) = lim
j→∞

fj(x0) +

∫ x

x0

g(t)dt.

Denote the right hand side by h(x), so that the sequence {fj(x)}∞j=1 converges pointwise to
h(x). By the fundamental theorem of calculus, we know that h(x) is differentiable and that
h′(x) = g(x). We need only show that fj converges uniformly to h. Indeed,

||h− fj||∞ = |fj(x0)− lim
j→∞

fj(x0)|+ |
∫ x

x0

g(t)− f ′
j(t)dt|

< |fj(x0)− lim
j→∞

fj(x0)|+ ||g − f ′
j||∞(b− a).

Since N sufficiently large so that

|fj(x0)− lim
j→∞

fj(x0)| < ε/2

and so that ||g − f ′
j||∞ < ε

2(b−a)
for all j > N . But then ||h − fj||∞ < ε for all j > N , and

so fj converge uniformly to h, as desired. □

Exercise 12.26 (Optional). Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be
a differentiable function whose derivative f ′

j : [a, b] → R is continuous. Assume that the
series of real numbers

∑∞
j=1 ∥f ′

j∥∞ is absolutely convergent. Assume also that there exists

x0 ∈ [a, b] such that the series of real numbers
∑∞

j=1 fj(x0) converges. Then the series∑∞
j=1 fj converges uniformly on [a, b] to a differentiable function. Moreover, for all x ∈ [a, b],

d

dx

∞∑
j=1

fj(x) =
∞∑
j=1

d

dx
fj(x)

Solution. Apply the previous exercise to the sequence

{
n∑

j=1

fi}∞n=1

□
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