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1. HOMEWORK 1
Exercise 1.2. Let A, B be subsets of some set X. Define A°:={z € X: x ¢ A}. Prove:
(AN B)° = A°U B“.
Solution. A possible truth table is as follows:
re€A ve€B v€ANB ze€(ANB) z€ A° v € B° xe€ A°UB°
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T
Or using various logical operation you can prove the equivalence as follows:
r€(ANB)° <= not (r € ANB)
<= not (r € A and z € B)
<= (not x € A) or (not z € B)
< (x € A°) or (x € BY)
< z € (A°UB°)
O
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Exercise 1.3. Using the Peano axioms, show that the sum of two natural numbers is a
natural number.

Solution. We prove that n + m is a natural number using mathematical induction on n.
(Base case) When n = 0, we have 0 +m = m € N for all m € N by definition of addition.

(Inductive step) Suppose that n+m € N for all m € N. What we want to prove is that (n++)+m € N
for all m € N. But since n +m € N by the induction hypothesis, (PA2) shows that

(n++)+m=n+m)++ €N
as desired. This proves the inductive step.

Therefore by (PA5), the mathematical induction, it follows that n+m is a natural number
for all n,m € N. O

Exercise 1.4. Using the Peano axioms, show that addition is associative. That is, given
natural numbers z,y, z, we have z + (y + 2) = (x + y) + 2. (Hint: fix two of the variables,
and induct on the third.) (Note: you can use Lemma 2.9 from the notes.)

Solution. Choose arbitrary x,y € N. We show that z + (y + 2) = (v +y) + 2z for any 2 € N
by inducting on z.

(Base case) When z = 0, Lemma 2.7 shows that
r+(y+0)=x+y=(r+y)+0.
This proves the base case.

(Inductive step) Assume that x4+ (y 4+ 2) = (z +y) + 2 holds for z € N. Then what we want to prove
is that z+ (y+ (2 ++)) = (r+y) + (2 ++). Indeed, utilizing Lemma 2.9 shows that

r+y+GE+H)=rv+y+2)++=@+{Yy+2)++
One the other hand, again by Lemma 2.9, we have
(z+y)+(z++)=(z+y) +2)++.

Then the induction hypothesis tells us that they are equal, hence proves the inductive
step.
Therefore the claim follows by the mathematical induction. 0

Exercise 1.5. Let a, b, ¢ be natural numbers. Using the definition of the order on the natural
numbers, prove the following properties.

(1) a > a.

(2) If a>band b > ¢, then a > c.

(3) If a > b and b > a, then a = b.

(4) a > bif and only if a +¢ > b+ c.

(5) a<bifand only if a + ¢ <b+ec.

Solution.

(a) Since a = a + 0 for any a € N, we have a > a by definition.

(b) a > band b > cimply that 3m,n € N satisfying a = b+m and b = c+n, respectively.
Then a = ¢+ (m + n) and hence a > c.

(¢) @ > bandb > aimply that 3m,n € N satisfying a = b+m and b = a+n, respectively.
Then a = a+ (m + n). Applying the cancellation law, we have m + n = 0. Then by
Corollary 2.18 we obtain m = n = 0 and hence b = a.



(d) (= ): Assume a > b. Then a = b+ m for some m € N. Adding ¢ € N to both
sides, we obtain a + ¢ = (b+ ¢) + m. This implies a + ¢ > b+ c.
( < ): Conversely, assume a + ¢ > b+ ¢. Then a + ¢ = (b + ¢) + m for some
m € N. Now appealing to the cancellation law, we obtain @ = b + m and thus a > b
holds.
(e) Constrapositive of the cancellation law shows that a # b if and only if a + ¢ # b+ c.
Thus

a<b <= a<banda#b < a+c<b+canda+c#b+c < a+c<b+ec.
O

Exercise 1.6 (The Euclidean Algorithm). Let n be a natural number and let ¢ be a
positive natural number. Show that there exist natural numbers m,r such that 0 < r < ¢
and such that n = mqg + r. (Hint: fix ¢ and induct on n.)

Solution. Fix ¢ > 0. We want to prove that for any n € N the following statement holds:
dm,r € N such that n =mg+rand 0 <r < q. (1)

To this end we induct on n.

(Base case) 0 =0- ¢+ 0 shows that (1) holds when n = 0 with m = 0 and r = 0.
(Inductive step) Suppose that (1) holds for n € N. What we want to prove is that the following
statement holds: !

Im’,r" € N such that n+1=m/qg+ " and 0 <7’ < q. (2)

Before proving this step, we make an observation that helps us build some intu-
itions. Using the induction hypothesis (1), we find that

n+1l=(mg+r)+1=mqg+ (r+1).

Comparing this with (2), it is tempting to let m’ = m and " = r 4+ 1. It turns out
that this fails to work only when r’ > ¢. This exceptional case happens exactly when
r =q— 1. (The case r > ¢ is automatically excluded by the trichotomy of ordering,
together with (1).)

Now let us return to the original proof. With these observations, we divide into
two cases:

(Case 1) Suppose that 0 < r < ¢ — 1. We claim that the choice m’ = m and
" =1r+ 1 proves (2). Indeed, 0 <1’ < ¢ follows easily. Also, (1) shows that

mq+r =mg+r+1=n+1

Thus (2) follows with our choice of m’ and 1.
(Case 2) Suppose that r = g — 1. In this case, we claim that the choice m' = m+1
and r’ = 0 proves 2. The condition 0 < 7’ < ¢ is clear. Also, by (1) we have

mg+r'=(m+1)g+0=mg+qg=mg+r+l=n+1l.

Thus (2) follows with our choice of m’ and ' in this case as well.
So we have (2) in both cases and the inductive step follows.

IThis is just a restatement of (1) with n replaced by n + 1. It is introduced to avoid confusion by using
different variables.



Therefore by the mathematical induction, (1) holds for any n € N.

O
Exercise 1.7. Prove the principle of infinite descent. Let pg, p1, ps, . . . be an infinite sequence
of natural numbers such that py > p; > ps > -+ -. Prove that no such sequence exists. (Hint:

Assume by contradiction that such a sequence exists. Then prove by induction that for all
natural numbers n, N, we have p, > N. Use this fact to obtain a contradiction.)

Solution.

We prove this by contradiction. Assume that such a sequence py > p; > py > ... exists.
To derive a contradiction, we claim the following:

Claim. For any n, N € N we have p, > N.

To this end, we induct on .

(Base case) Since p,, are natural numbers, we automatically have p, > 0 for all n € N, and the
base case follows (by definition of order, p, > 0 since p,, = p, + 0.)
(Inductive step) Assume that p, > N for all n € N. Then by the assumption,

Pn > Pn+1 Z N

and it follows that p, > N + 1. This proves the inductive step.

So the claim follows. Then plugging n = 0 and N = py+1, it follows that pg > po+1 > po,
contradicting the trichotomy of ordering. Therefore no such sequence exists. 0

Exercise 1.8. Find a set of integers a;; where i, € N such that 3 7=, (3", a;;) = 0, but
such that > 72 (327, a;;) = 1. (Hint: an example exists where most of the numbers are
zero, and the remaining numbers are +1 or —1. It may also help to arrange the numbers in

a matrix.)

Solution.
Choose (a;;) as follows:

1 -1 0 0 O
1,  ifj =i, 01 -1 0 0
a; =4 -1, ifj=i+1, = (a;)=(0 0 1 -1 0
0,  otherwise 00 0 1 -1
On the one hand, for any ¢« = 1,2,3,... we have
> a =04 +0+14(=1)+0+0+---=0.
j=1

In other words, the sum of i-th row is always 0. Thus we have

i=1 \j=1
On the other hand, for each j it follows that

i“”_ 1, if j =1,
YU 0+ 0+ () F 10+ =0, if j > 2.

=1



That is, the sum of the first column is 1 and the sum of any other column is 0. Thus we

have
Z(Zaj> =14+04+0+ =1

j=1 \i=1

Therefore our choice satisfies every requirement. O

2. HOMEWORK 2

Exercise 2.1. By breaking into different cases as necessary, prove the following statements.
Let z,y be rational numbers. Then |z| > 0, and |z| = 0 if and only if x = 0. We also have
the triangle inequality

lz +y| < x| +y],

the bounds
—|z] <z <z
and the equality
|zy| = ||yl
In particular,
|| = |al].

Also, the distance d(z,y) := |x — y| satisfies the following properties. Let x,y, z be rational
numbers. Then d(z,y) = 0 if and only if x = y. Also, d(z,y) = d(y, x). Lastly, we have the
triangle inequality

d(z,z) < d(z,y) + d(y, 2).

Solution. Before the proof, we observe that x < y implies —y < —z. Indeed, this follows by
adding —x — y to both sides. Now we prove each statement by splitting into several cases.

e |z| >0 for all x € Q:
— If x > 0, then by definition of the absolute value |z| =2 >0 .
— If 2 < 0, then by definition of the absolute value 0 < —z = |z| by definition of
the absolute value.
Thus in any cases we have |z| > 0.
e |z| =0 if and only if x = 0:
— If x > 0, then by definition of the absolute value || =2 > 0 and x # 0 .
— If x = 0, then by definition of the absolute value |z| = = 0 and = = 0.
— If < 0, then by definition of the absolute value |z| = —x > 0 and = # 0.
Thus we are done.
o —|z| <z < |z
— If x > 0, then by definition of the absolute value and the definition of order,

|z =2 >0> -z =—|z|.
— If z < 0, , then by definition of the absolute value and the definition of order,
|z] = —2>0>2=—|z|

This completes the proof.
e (Triangle inequality) |z 4+ y| < |z| + |y|:
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— If z+y > 0, then by the previous exercise we have |x+y| = z+y. We now claim
that x + y << |z| + |y|, which would complete the proof. To prove this claim,
note that z < |z| and y < |y| from the previous part of the exercise, so [z|—x > 0
and |y| —y > 0 by definition of order, i.e. |z| — z and |y| — y are nonnegative
rational numbers. So, their sum |z| — z + |y| — y is also a nonnegative rational
number. So by definition of order, |z|+|y|—x—y > 0, i.e. |z|+]|y|—(z+y) >0,
so that |z| + |y| > = + y by definition of order.

— If z+y < 0, then by the previous exercise we have |z +y| = —(z+y) = -z —y.
We now claim that —x — y << |z| + |y|, which would complete the proof. To
prove this claim, note that —z < |z| and —y < |y| from the previous part of the
exercise, so |z| +x > 0 and |y| +y > 0 by definition of order, i.e. |z| + 2 and
ly| + v are nonnegative rational numbers. So, their sum |x| + = + |y| + y is also
a nonnegative rational number, by the definition of the sum of rationals. So by
definition of order, |z| + |y| +  +y > 0, i.e. |z| + |y| — (—z —y) > 0, so that
|z| + |y| > —z — y by definition of order.

Thus the claim follows.
o |zy| = [=[ly|:

— If x > 0 and y > 0, then z is a positive rational number by definition of order,
and y is a nonnegative rational number by definition of order. So the product zy
is a nonnegative rational number by the definition of the product of rationals.
So by the definition of order again zy > 0 and |zy| = zy = |z||y|. (Since z > 0
and y > 0 we have x = |z| and y = |y| by definition of absolute value)

—If 2 > 0 and y < 0, then —y > 0 shows that —zy = z(—y) > 0 (repeating the
justification from the previous part), or equivalently, either zy < 0 or zy = 0.
In any cases, we have |zy| = —zy = z(—y) = |z||y|.

— The case z < 0 and y > 0 is proved in exactly the same way.

—Ifr <0andy <0, then —x > 0, —y > 0 and thus the first part says xy =
(—x)(—y) > 0. This yields |zy| = 2y = (—z)(—y) = |z||ly|]. (Since x < 0 and
y < 0 we have x = — |z| and y = — |y| by definition of absolute value)

Therefore the claim follows in any cases.
e Since —1 < 0, | — 1| = 1 by definition of absolute value and so from the previous part
of the exercise, | — z| = [(=1)z| = | = 1||z| = 1 - |z| = |z|.

Using the above properties we can prove the metric properties of d(x,y) := |z — y|:
e (Non-degeneracy) d(z,y) = 0 if and only if x = y:
dlz,y) =0 <= |z —y|=0 <= z2—y=0 <= x=y.

(Recall we showed above that z € Q satisfies |z| = 0 if and only if z = 0, and we
used z =z —y.)
o (Symmetry) d(z,y) = d(y, z):

dz,y) =lr—y|=|— (v —y)| = |y — 2| = d(y, z).

(We showed above that z € Q satisfies |z| = | — z|, and we used z =z — y.)
o (Triangle inequality) d(z, z) < d(x,y) + d(y, 2):

d(z,z) = lo — 2| = |z —y) + (y = 2)| <[z —y[+ [y — 2[ = d(z,y) + d(y, ).



(We used the triangle inequality in the form |a + b| < |a| + |b] for a,b € Q where
a=z—yand b=y — z.)
This completes the whole proof.
0

Exercise 2.2. Using the usual triangle inequality, prove the reverse triangle inequality:
For any rational numbers x,y, we have |z — y| > ||z| — |y||.

Solution. Note that we both have
=]z —y)+yl <|z—yl+lyl and |yl=|y—2)+z[<|y—z|+|z|
Thus it follows that
2] =y < |z —y| and |y|—|z| <[y — 2| = |z -yl

So regardless of either ||| — |y|| = |z| —|y| or ||z|—|y|| = |y|— |z|, it follows that ||| — |y|| <
|z — y| as desired. O O

Exercise 2.3. Let x be a rational number. Prove that there exists a unique integer n such
that n < x < n + 1. In particular, there exists an integer N such that x < N. (Hint: use
the Euclidean Algorithm.)

Solution. Let x € Q and write it as a quotient x = %’ of two integers p,q € Z with ¢ > 0.

Then by the Euclidean algorithm, there exists m,r € Z with 0 < r < ¢ such that p = mq+r.
This gives
pob_matr o
q q q
But since 0 < g < 1, it follows that m < x < m + 1 and this proves the existence.
To prove the uniqueness, let m,n € Z satisfy m < x < m+1landn < x < n + 1,
respectively. We claim that in fact m = n. By relabeling if required, we may assume that
m < n. Then n = m + a for some a € N. But if a # 0, then a > 1 and this implies

r<m+1l1<mt+a=n<zr = z<u,
a contradiction! Therefore a = 0 and hence m = n. O
Exercise 2.4. Let (a,);2, be a Cauchy sequence of rationals. Prove that (a, )52, is bounded.

Solution. The concept of Cauchy sequence is designed to capture the behavior of terms
getting closer to each other ad infinitum. In particular, (a,) tends to stabilize as n grows,
and it allows to control the size of a tail (a sequence of the form (a,),>n for some N) with
just a single term plus a small error. This motivates us to divide the sequence into two parts,
one consisting of leading terms and the other being a tail.

Solution. Let (a,)y, be a Cauchy sequence. We want to find a constant 0 < M € Q
that bounds this sequence. Indeed, by the definition of Cauchy sequence with ¢ = 2014,
there exists N such that

la; —ay| < e =2014 whenever j, k> N.
Then by the triangle inequality, for n > N
lan| < |a, —an| + |ay| <2014 + |ay|



and this gives a bound for the tail (a,),>n. The remaining N — 1 leading terms are also
bounded by

la,| < max{|ai|,...,|ay—1|} forn=1,...,N—1.
Thus if we put M = max{|a1],..., |an_1],|an]| + 2014}, we always have |a,| < M and the
conclusion follows. U

Exercise 2.5. Let (a,)%, (b,)22, be Cauchy sequences of rationals. Prove that (a,b,)32, is
a Cauchy sequence of rationals. In other words, the multiplication of two real numbers gives
another real number. Now, let (a!,)5°, be a Cauchy sequence of rationals that is equivalent
to (an)%,. Prove that (a,b,)%, is equivalent to (alb,)>,. In other words, multiplication
of real numbers is well-defined.

Solution. For the first part, let Q > ¢ > 0. Invoking the previous exercise, we can choose
My, M, € Q with |a,| < My and |b,| < M, for all n € N. Choose then M := max(M,, M;) €
Q. Then by definition of M, |a,| < M and |b,| < M for all n € N. Also by using
the definition of Cauchy sequence, there exists a positive natural number N, such that
la; —ai| < e/2M for all j,k > Ny and |b; — by| < ¢/2M for all j,k > Nj. Define then N :=
max(Ng, N1) € N. By definition of N, we then have |a; — ax| < ¢/2M and |b; — b| < g/2M
for all 5,k > N. By definition of N we then have
|a;b; — arbi| < laj||b; — bi| + [be|la; — axl

< M(eg/2M)+ M(e/2M)

=¢ forall 5,k > N.

This shows that (a,b,)>2, is also a Cauchy sequence of rationals (noting also that the
product of rational numbers is a rational number).

The second part also follows in a similar manner. Let Q > ¢ > 0 be arbitrary. Using
the previous exercise, choose Q > M > 0 such that |b,| < M for all n € N. Then by the
definition of equivalence of Cauchy sequences, we can pick a N € N such that |a,—al| < /M
whenever n > N. Then

lanby, — a,by| = |a, —al||b,| < (e/M)M =¢ foralln >N

and hence (a,b,)5>, and (alb,)52, are equivalent Cauchy sequences. [ O

3. HOMEWORK 3

Exercise 3.1. Let = be a real number and let € > 0 be any rational number. Show that
there exists a rational number y such that |z — y| < €.

Solution. Choose any sequence (a,)22, of rationals that represents x, or equivalently, = =
LIM,00@y,. Then for any Q > € > 0, there exists N such that |a; — a| < £/2 whenever
j,k > N. This implies that for any n > N,

VEeN)E>N = |ay—ay| <¢/2 <= (VkeN)k>N = a,—¢/2<a;<a,+¢/2
—> LIMjo0(a, —€/2) < LIMgo0ar, < LIMg_00(a, +¢/2) (by Prop 6.30)
— a,—¢/2<x<a,+e/2
— r—c<a,<x+¢€
= |z —a,| <e.
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In particular, |z — a,| < € and the choice y = a,, proves the claim. O

Remark. We remark that the prove above also shows the following statement:

Corollary 1. If x = LIM,,_,sa,, then for any Q > ¢ > 0 there exists N such that
|z —a,| < e foranyn > N. O

Once we learn the notion of convergence in R, you will readily find that this justifies the
notation LIM,,_,.,. Anyway, this will be used to prove Exercise 8.

Exercise 3.2. Let x, z be real numbers with x < z. Show that there exists a rational number
y with z < y < z. (Hint: use the previous exercise, and the Archimedean property.)

Solution. Let ¥ = (z + 2)/2. Then x < y < z. By observing that ¢ = (z — x)/2 > 0,
Archimedean property says that we can choose N € N satisfying % < €. Then by the
previous exercise, we can choose a rational y € Q such that |y’ — y| < . Then

7 / 1 / 1 / o
x—y—€<y—ﬁ<y<y —|—N<y +e=z.

This proves our claim. []

Exercise 3.3. Let x be a real number. Show that there exists a Cauchy sequence of rational
numbers (a,)>, such that © = LIM,,_,«a,, and such that a, > x for all n > 0.

Solution. Using the previous exercise, for each n € N choose a,, € Q such that = < a,, <
T+ n%l Also choose any sequence (b,,)5°, of rationals such that x = LIM,,_,+.b,. We need
to show that x = LIM,,_.a,, or in other words,

(a) (a,)2, is a Cauchy sequence, and

(b) (an)e, and (b,)22, are equivalent.

For (a), let 0 < € € Q be arbitrary and choose N such that NLH < e. Then

. 1 1
j,kZN:>$<aj<$+j+—1 and x<ak<x+k—+1

1
] ap +x < N1

shows that (a,)22, is indeed a Cauchy sequence.
For part (b), let 0 < ¢ € Q be arbitrary. Then by Corollary 1 and the Archimedean

property, we can pick N such that |b, — 2| < £/2 whenever n > N and NLH < ¢/2. Then

<x—a, <0

lan, — by| < lan, — x| + |z — by
< (a, — )+ (g/2)

< +(e/2) < (¢/2) + (¢/2) = e.

N+1
This proves that (a,), and (b,)5°, are equivalent as desired. O

Exercise 3.4. For every real number x, show that exactly one of the following statements
is true: x is positive, x is negative, or x is zero. Show that if x,y are positive real numbers,
then x + y is positive, and xy is positive.

Solution. Before the proof, we first claim the following:
Lemma 2. z is positive if and only if there exist a rational ¢ > 0, a Cauchy sequence
(@)%, and a natural number N such that x = LIM,,_,.(a,) and a,, > ¢ for all n > N.



Remark. Note the difference with the definition: In the lemma, only the existence of a
such Cauchy sequence is required. On the other hand, the definition needs to hold for any
Cauchy sequence that represents x.

Proof of Lemma. The ( =) direction is clear. So it suffices to prove ( <= ) direction.
Let €, (a,)5%, and N be as in the Lemma 2. Let (b,)5°, be any Cauchy sequence with
2 = LIM,1_yo0 (by).

e Since (a,)%, and (b,)5°, are equivalent, there exists Ny such that |a, — b,| < /3
for any n > Ns.
e Since (b,)7, is Cauchy, there exists N3 such that |b; — bx| < ¢/3 for any j,k > Nj.

Then with N’ := max{N, Ny, N3}, we find that

n>N = b, = (b, —bn)+ (bn —an') +an > —(/3) — (¢/3) + £ = ¢/3.

In summary, the definition of positivity for x is satisfied with the positive rational /3 (which
is independent of the choice of (b,)32 ). This completes the proof. ////
Now we return to the original problem.

e (Trichotomy of ordering) Exactly one of the following holds: x is positive, x is neg-
ative, or x = 0: To prove this, we check the following three properties: (a) No real
number is both positive and negative. (b) 0 is neither positive nor negative. (¢) Any
non-zero real number is either positive or negative.

Indeed, if we denote the set of positive reals as P, the set of negative reals as A/, then these
3 properties show that

PAN =0, (PUN)N{0}=0, and R~ {0} =PUN

and thus R is written as the disjoint union of P, A' and {0} as desired. So it suffices to
prove them.

(a) We prove this by contradiction. Assume otherwise that x = LIM,,_,.a, is both positive
and negative. Since —x = LIM,,_,o(—a,), by invoking Definition 6.21, there exists a rational
€ > 0 and a natural number N > 0 such that

a, >¢ and —a, >¢ foranyn > N.

In particular,
ay >e>0>—e>ay

and this contradicts the trichotomy of rationals. With this claim, it suffices to prove that a
real number is non-zero if and only if it is either positive or negative.

(b) Proving that 0 is not positive amounts to showing the negation of Definition 6.21 for
xz=0:

Claim. For any rational ¢ > 0, there exists a Cauchy sequence (a,)3, with 0 =
LIM,, s (an) such that for any natural number N, there exists n > N with a,, < e.

But this is clearly satisfied with the choice (a,)>2, = (0,0,0,...). The claim that 0 is not
negative also follows in the same way.

(c) Choose a rational € > 0 that satisfies the conclusion of Lemma 6.13. So if (a,)52, is
a Cauchy sequence with z = LIM,,_,(a,), then there exist N’ such that |a,| > ¢ whenever
n > N’. Also, choose N” such that |a; — ay| < ¢/3 for all j,k > N”. Then for any
n > max{N’, N"} =: N, it follows that

|an| = |(an — an) — an| > |an| = |an — an] > € — (¢/3) = 2¢/3.
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In particular, |a,| > 2¢/3 > 0 and hence ay is either positive or negative. Now if ay > 0,
then for any n > N
an =ay + (a, —an) > ay — |a, — an| > (2¢/3) — (¢/3) = ¢/3.

and hence x is positive by Lemma 2. If ay < 0 then by applying the similar argument to
—ay shows that —x is positive. Therefore x is either positive or negative as desired.
This completes the proof of trichotomy.

e z and y are positive, then so are x + y and xy.
Suppose that x = LIM,,_,»(a,) and y = LIM,,,+(b,). Using Definition 6.23, choose € > 0
and N > 0 such that a,, > ¢ and b,, > ¢ for all n > N. Then
an+b,>2>0 and apb, >c>>0 foralln>N.

Now by noting that z+y = LIM,, oo (a, +b,) and zy = LIM,,_,(a,b,), positivity of z+y
and zy follow from Lemma 2. []

Exercise 3.5. Let z,y be real numbers. Prove that (2% + 3?)/2 > xy.

Solution. Notice that
(2 +y*)/2> 2y <= (v —y)? =222y +9° >0.
So it suffices to prove that any square of real number is non-negative. Indeed,
e If 2 > 0, then it is clear that z? > 0.
e If 2 <0, then —z > 0 and thus 2? = (—2)? > 0.
Therefore the claim follows with the choice z = x — y. [

Exercise 3.6. Let A be the set of real numbers

A= {1: n>1, neN} = {1,1/2,1/3,1/4,...}.

n

Compute sup (A) and inf (A).

Solution. We have sup (A) = 1 and inf (A) = 0. For the first statement, note that z <1 for
all x € A so 1 is an upper bound for A. Also 1 € A, so any t € R with £ < 1 cannot be an
upper bound for A. Therefore, 1 is the least upper bound of A. For the second statement,
note that 0 < x for all z € A, so 0 is a lower bound of A. Moreover, for any ¢t € R with
t > 0, there exists a positive natural number n such that 0 < 1/n < ¢, by the Archimedean
property. That is, any t > 0 is not a lower bound for A. That is, 0 is the greatest lower
bound of A, so inf (A) = 0. O

4. HOMEWORK 4

Before the solution.

How to prove bijectivity? The following equivalence is useful when establishing the bi-
jectivity of a function:
Proposition. Let f: X — Y be a function. Then the followings are equivalent:
e f is both injective and surjective.
e f has an inverse, i.e., there exists a function ¢ : Y — X such that go f = idx and
fog=idy.
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Here idx denotes for the identity function X — X defined by idx(z) = z, and likewise

for idy. The second criteria is often useful when you can explicitly guess how the inverse
should be defined.

Exercise 4.1. Show that the notion of two sets having equal cardinality is an equivalence
relation. That is, for sets X,Y, Z, show

e X has the same cardinality as X.

e If X has the same cardinality as Y, then Y has the same cardinality as X.

e If X has the same cardinality as Y, and if Y has the same cardinality as Z, then X
has the same cardinality as Z.

Proof. Recall the definition that X and Y have the same cardinality if we can find a bijection
X =Y.

o (reflexivity) The identity function id : X — X (which satisfies id(z) = z for all
x € X) is a bijection from X onto itself. So X has the same cardinality as X, by
definition of cardinality. (To see that the identity function is a bijection, note that
each y € X has exactly one element x € X such that (id)(z) = y. That is, we can
choose = := y so that id(y) = y by definition of the identity function. And any other
r € X with z # y satisfies id(z) =z # y.)

e (symmetry) Suppose there is a bijection f : X — Y. We know that the inverse
function f=!':Y — X is also bijective. Thus Y also have the same cardinality as X,
by definition of cardinality.

e (transitivity) Suppose there is a bijection f: X — Y and g : Y — Z. We claim that
go f: X — Zis also bijective. Indeed, f~*o g™t : Z — X is an inverse of g o f,
which we easily check as follows:

(f_log_l)o(gof):f_log_logof:f_loidyof:f_lof:idx
(gof)o(f_log_l):gofof_log_l:goidyog_lzgog_lzidz.

This proves that go f is bijective and hence X has the same cardinality as X, by definition
of cardinality. 0

Exercise 4.2. Using a proof by contradiction, show that the set N of natural numbers is
infinite.

Proof. We argue by contradiction. Suppose N is finite, i.e., there exists n € N and there
exists a bijection f : {1,...,n} — N. Now take m = max{f(1),..., f(n)}. Then clearly
m+1 € N, but m+ 1 does not lie in the range {f(1),..., f(n)} of f. This is a contradiction
to the surjectivity of f! Having found a contradiction, we are done. OJ

Exercise 4.3. Let X be a subset of the natural numbers N. Prove that X is at most
countable.

Proof. Let X C N. Then either X is finite or infinite. If X is finite, then we are done. So
we assume that X is infinite and prove and X is indeed countable.

Idea. Clearly we are going to use the properties of natural number system extensively.
We know that N is ordered in a very nice way: we can count all the natural numbers starting
from 0 and adding 1 successively. This property is encoded in the principle of mathematical
induction. Consequently, any subset of N also inherits this ordering structure, which allows
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us to enumerate all the elements in increasing order. The precise statement that encrypts
this idea is as follows:

Theorem (Well-Ordering Principle). Any non-empty subset of N has a minimum.

This is intuitive clear, but nevertheless requires a rigorous proof. (Interested readers may
find a proof by referring Homework 1.1.) In this proof we will actually demonstrate a way
of arranging elements of X in increasing order and claim that this arrangement yields a
bijection from N to X.

To this end, we inductively define a sequence (a,)32, of natural numbers and a sequence
(X3)52, of subsets of X as follows:

Xo=0, a,=min(X—-1X,), and X,y ={ao,...,a,} = X, U{a,}.

Then we claim that this yields well-defined sequences with an additional property.
Claim. For every n € N the followings hold:

(a) Both (ax)2, and (X%)2, are well-defined.

(b) (ak)32, is (strictly) increasing: ag < a3 < -+ < ay.

Proof of Claim. We appeal to the principle of mathematical induction.

e (Base case) Clearly X, = () is well-defined. Also, well-ordering principle (WOP)
shows that ap = min X exists, hence is well-defined as well and proves (a) for n = 0.
Part (b) holds trivially.

e (Inductive step) Assume that the claim holds for n > 0. Then X, 11 = X, U {a,} is
also well-defined.

Next, we check that a, is well-defined. By invoking WOP again, this amounts to
prove that X — X,, ;1 is non-empty, or in other words, X # X, ;. Indeed, (b) shows
that the mapping

{1,....n+1} = X, kv ap
is injective with the range X,,.1. Thus if X = X,,,; then this map is also surjective
and hence bijective. This contradicts the assumption that X is infinite. Therefore
X # X, 11 and the well-definedness follows. This proves part (a) for n + 1.
For (b), X — X,,11 € X — X, shows that

a, =min(X — X,,) <min(X — X,,11) = @py1-

But if a,, = a,41, then we have both a, = a,,1 € X — X,,41 and a, € X, 1, a
contradiction! So we must have a,, < a,4+1 and part (b) follows for n + 1.
Therefore by induction the claim follows for alln € N. ////

Now we are ready to prove the countability of X. Define f : N — X by f(n) = a,. Then

e [ isinjective by (b) of the claim. Indeed, if m # n, then by assuming m < n without
losing the generality we have f(m) = a,, < a, = f(n) and hence f(m) # f(n).

e f is surjective. To this end, suppose otherwise. Then X — f(N) is non-empty and we
can pick the minimum m = min(X — f(N)). Then X — f(N) C X — X,, shows that

a, = min(X — X,,) <min(X — f(N)) =m for any n € N.
This shows that the sequence
(m —ag,m —ay,m—asg,...)

is a (strictly) decreasing sequence of natural number, a contradiction by infinite descent.
This proves that f is surjective.
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Therefore f gives a bijection from N to X and hence X is countable. O

Exercise 4.4. Let Y be aset. Let f: N — Y be a function. Then f(N) is at most countable.
(Hint: consider the set A := {n € N: f(n) # f(m)for all0 < m < n}. Prove that f is a
bijection from A onto f(N). Then use the previous exercise.)

Proof. Following the hint, we show that the function f|4 : A — f(N) which is induced from
f by fla(n) = f(n) is bijective.
e f|4 is injective. Indeed, let m,n € A be distinct. We may assume m < n without
losing the generality. Then by definition of A,

fla(m) = f(m) # f(n) = fla(n)
and hence f|4 is injective.
e f|4 is surjective. To this end, pick any y € f(N). Then the set

X={neN: f(n)=y}
is non-empty, and thus by WOP we can pick the minimum
n = min X.

Then for any 0 < m < n we must have f(m) # y = f(n), for otherwise we get a
contradiction to the minimality of n. This shows that n € A and f|a(n) = f(n) =y, hence
fla is surjective.

Therefore f|4 gives a bijection from A to f(N). But since we know that A is at most
countable by the previous exercise, the same is true for f(N) (by the first exercise). O

Exercise 4.5. Let X, Y be countable sets. Show that X UY is a countable set.

Solution. Let f: X — N be a bijection. Let ¢g: Y — N be a bijection. We need to find
a bijection h: X UY — N. We define h as follows. h(z) := 2f(x) for all z € X and
h(y) :=2h(y) +1forally e Y.

Proof of surjectivity. For any n € N, either n is even or odd. If n is even, n/2 € N.
Since f is a bijection, there exists x € X such that f(z) = n/2,i.e. 2f(z) = n, i.e. h(z) = n.
If n is odd, then (n — 1)/2 € N. Since g is a bijection, there exists y € Y such that
g(y) = (n—1)/2,1e. 29(y) + 1 =n, ie. h(y) =n. So, h is surjective.

Proof of injectivity. Let a,b € X UY. Assume h(a) = h(b). If a,b € X, then
h(a) = 2f(a) and h(b) = 2f(b) by definition of h, so that 2f(a) = 2f(b), i.e. f(a) = f(b), so
that a = b by injectivity of f. Similarly, if a,b € Y, then h(a) = 2¢g(a)+1 and h(b) = 2¢(b)+1
by definition of h, so that 2g(a) 4+ 1 = 2¢(b) + 1, i.e. g(a) = g(b), so that a = b by injectivity
of g. In the remaining case that a,b are not both in X or both in Y, we have a € X and
b €Y (without loss of generality), in which case h(a) is even by definition of h, and h(b) is
odd by definition of h, which violates that h(a) = h(b), i.e. this last case cannot occur.

Since we have shown that A is surjective and injective, we conclude that h is a bijection.

O
Exercise 4.6. Let XY be countable sets. Show that X x Y is a countable set.

Solution. This follows from Lemma 2.1.22 in the notes, where we showed that N x N is
countable. Since X and Y are each countable, we can let f: X — N be a bijection and let
g: Y — N be a bijection. We then claim that h: X x Y — N x N defined by h(z,y) =

(f(x),g(y)) is a bijection.
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Proof of surjectivity. Let m,n € N. Since f, g are each bijections, we can find z € X
and y € Y such that f(x) = m and g(y) = n. So, by definition of A we have h(z,y) =
(f(z),g9(y)) = (m,n). So, h is surjective.

Proof of injectivity. Let (x1,y1), (22,y2) € X X Y. Assume h(xy,y1) = h(z2,92). By
definition of A, this means f(z1) = f(x2) and g(y1) = g(y2). Since f, g are each injective
themselves, we conclude that 1 = x5 and y; = yo. That is, (z1,y1) = (22,y2). We have
shown therefore that h is injective.

Since we have shown that h is surjective and injective, we conclude that h is a bijection.

Since h is a bijection from X x Y to N x N, we conclude by definition of cardinality that
X xY and N x N have the same cardinality. Since N x N is countable by Lemma 2.1.22 in
the notes, we conclude that X x Y is also countable. [l

5. HOMEWORK 5

Exercise 5.1. Let (a,)%, be a sequence of real numbers. Then (a,)5°, is convergent if and

only if (a,)5e, is a Cauchy sequence. (Hint: Given a Cauchy sequence (a,)52,, use that the
rationals are dense in the real numbers to replace each real a,, by some rational a,, so that
la, — a!,| is small. Then, ensure that the sequence (a},)?, is a Cauchy sequence of rationals

and that (a,)>°, defines a real number which is the limit of the original sequence (a,)5,.)

Preliminary Before the solution, we remark the following observation (which you may
already know if you have carefully read my solution of 2nd homework):

Observation 1. Let (a,,)>2, be a Cauchy sequence of rational numbers and x = LIM,,_,(a,) €
R its formal limit. Then (a,)5%, actually converges to x as a sequence in R. In other words,

r=LIM, ;(a,) = == lim a,.
n—oo

Proof of Observation 1. Before the proof, we remind that what we want to prove is the
following statement:

VeeR)e>0 = (BNeN)(VneN)n>N = |a, —z| <e).

To this end, choose arbitrary positive real ¢ > 0 and pick a positive rational ¢’ with 0 < &’ < ¢
by utilizing the Archimedean property. Then there exists N (depending on & and hence on
€) such that

j,]{?ZN - |(lj—ak| < ¢
k>N = |a, —ai| < £
Now fix n > N. Then we get In view of Proposition 6.30, taking formal limit LIM;_, .., we
obtain
la, — x| < €.
In summary, for any positive real ¢ > 0 we was able to find N € N such that |a, — x| < ¢
whenever n > N. This proves the desired statement at the beginning of the proof and hence

a, converges to x inR. /////
Solution. With this observation in our hand, the solution is as follows:

e (=): Assume that (a,)2, is convergent with the limit L € R. To prove that (a,)52,
is Cauchy, we invoke the standard '2s-argument’. For any positive real ¢ > 0, there
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exists N € N such that

€
7
Then for any j,k > N, the triangle inequality shows

n>N = la, — L| <

3

228.

£
laj — ax| < laj — LI+ |L —a| < 5 +

Therefore (a,,)5, is Cauchy.

(«<): Assume that (a,)S2, is Cauchy.

Idea. 1f it were the case that (a,)32, consists of only rational numbers, then (a,)5
would have become convergent in view of Observation 1. But here (a,,)52, is assumed
to be any Cauchy sequence of real numbers. To remedy this situation, we approximate
(a,)52, by a sequence of rational numbers, check that this approximation converges,
and finally the original sequence also converges to the same limit.

(Step 1) To realize this idea, we first choose an ”approximating sequence”. Define

a sequence (al))e, of rational numbers by picking a,, € Q satisfying
1
a, —a.| < —

for each n € N. (This is possible by Exercise 6 in Homework 2.) We claim the
followings:
(1) (al,) is a Cauchy sequence in the sense of Definition 5.6.
(2) If we put x = LIM,,_,o(al,), then (a},)°, converges to x.
Note that the statement follows once (1) and (2) are verified.
(Step 2) To prove (1), let € > 0 be any positive rational. We invoke the standard
"3e-argument’ as follows:
— By exploiting the Archimedean property, pick N; € N such that 1/(N; +1) <
(e/3).
— Since (a,)2, is Cauchy, pick No € N such that |a; — ax| < (¢/3) whenever
J, k> Ns.
Then for N = max{Nj, Ny}, it follows from the triangle inequality that

5 k>N = ldj —ay| = |dj —a; + a;j — ay, + a, — ay

<|a} — a;| + |a; — ax| + |a — aj|

€ 1
j+1 3 k+1
<§+E+E—5
3 3 3 7

This proves that (al,)°, is Cauchy in the sense of Definition 5.6. Then by Observation
1, (al)oe, converges to the formal limit x = LIM,,,(a},). (Step 3) To complete the
proof, we prove that (a,)>, also converges to z. This essentially follows from the
squeezing lemma, which is not in our hand yet. So we make a direct proof with the
standard "2e-argument’ as follows: Let € > 0 be an arbitrary positive real. Then

— Choose N; € N such that 1/(N; + 1) < (¢/2) with aid of the Archimedean

property.
— Choose N, such that |a], — x| < (¢/2) whenever n > Nj.
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Then for N = max{N;, Ny}, the triangle inequality says
e €
n>N = |a, — x| < la, —a,| + |a,, — x| <gts;=e
This completes the proof that (a,)5°, is convergent as desired.
O

Exercise 5.2. Let (a,)2%, (bn)5, be real convergent sequences. Let x,y be real numbers
such that x = lim,, o @y, y = lim,,_, by,.

(i) The sequence (a,, + by,)5>, converges to x + y. That is,
lim (a, + b,) = (lim a,)+ (lim b,).
n—00 n—00 n—00
(ii) The sequence (a,b,)>, converges to xy. That is,
lim (a,b,) = (lim a,)( lim b,).
n—00 n—00 n—00
(iii) For any real number ¢, the sequence (ca, )5, converges to cz. That is,

¢ lim a, = lim (ca,).

(iv) The sequence (a,, — b,)32, converges to x — y. That is,
A5, o = be) = (3, 00) = (i 50)
71)00

n n=m

(v) Suppose = # 0 and there exists m such that a, # 0 for all n > m. Then (a
converges to 1. That is,

lim a,' = (lim a,) "

(vi) Suppose x # 0 and there exists m such that a, # 0 for all n > m. Then (b,/a,)>,,
converges to y/x. That is,

A5 e/ an) = (50, )/ (35, 6

(vii) Suppose a,, > b, for all n > 0. Then = > y.
(Hint: you can save time by using some of these statements to prove the others. For example:
(iii) follows from (ii); (iv) follows from (i); and (vi) follows from (v) and (ii).)
Solution.

(i) We invoke the standard '2e-argument’. Let € > 0. Then there exist Ny, Ny € N such
that

€

7

Then for N = max{N;, N»}, we obtain from the triangle inequality that

5
n>N = |an—w|<§ and n> Ny = |b, —y| <

n>N = [(ay+b,) — (x+y)| < lan —z[ + |by — Yy
CSife
2 2 7
This proves that lim,_,(a, + b,) = = + y as expected.
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(ii) We invoke the following variant of the '2e-argument’: From Corollary 3.14, we know
that (a,)22, is bounded. Pick a bound M > 0 of (a,,)2,. Now let € > 0 be arbitrary,
and choose N7, Ny € N such that

S 9

n2N1:>]an—x|<2 and n2N2:>|bn—y|<2M.

(ly| +2014)
Then for N = max{N;, N2}, we obtain from the triangle inequality that
n>N = |a,b, — xy| = |anb, — any + any — Y|
< lanl[bn = y| + lan — zlly|

£ g
< . —  —
Moy W sqr0ma
—E+E—€
202 7

(Notice here how we circumvented the technical issues of possible division by zero.) This
completes the proof.

(iii) Notice that the constant sequence (b,)>2, = (¢, ¢,c,...) converges to c. (For any
e > 0, just pick N = 0 for the definition of convergence.) Plug this to (ii).

(iv) Utilize (iii) with the choice ¢ = —1 to derive that lim,, . (—b,) = —y. Then apply
(i) to (an)iey and (—by) .

(v) The key ingredient is to find a lower bound of (a,)S2,,. Indeed, with the choice
e = |z|/2 there exists N € N such that |a, — 2| < ¢ = |z|/2 whenever n > N. Then
by the reverse triangle inequality,

n>N = ]an|:|x+(an—x)|Z|x|—|an—x|>|x|—%:|§—l.
Thus if we put § = min{|am|, |@m+1l,---,|av—1|, |z|/2} then we have § > 0 by the

assumption and
(VneN) n>m = |a,| > 4. (1)

This lower bound is necessary for the actual proof as we will see.
Returning to the actual proof, pick any ¢ > 0. (Forget the choice of ¢ above!)
Then choose N € N such that

n>N = |a, — x| < d¢|z|.
Then it follows from (1) that
1 1

B la, — x|  delx| B

n>N = |a,| >0 and |a, — x| < delz| =

a x| laallz] ol

This proves that (a; 1) converges to x .

(vi) Apply (v) to deduce that (b;1)° ~ converges to y~!. Then apply (ii) to (a,)°, and
(b )2Zm:

(vii) Assume otherwise so that x < y. Then for the choice ¢ = (y — x)/3, we can find
N1, Ny € N such that

n>N = |a,—z|<e and n>Ny = |b, —y| <e.
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Choose any n > max{Ny, No}. Then
r—e<a, and b, <y+e¢

and hence we get
y—x

ygx:€<bn—y and r—e¢<a, = T:8<25

a contradiction! Therefore x > y as desired.

O

Exercise 5.3. For each natural number n, let a,, be a real number such that |a,| < 27"
Define b, := a; + as + - - - + a,,. Prove that the sequence (b,,)5°, is convergent.

Solution. This is a special case of Proposition 7.15. The idea is that, since it is almost
impossible to find an expression for a possible limit of (b,,), we appeal to an indirect argument.
That is, we show that (b,) is Cauchy. Once this is established, the completeness of R
guarantees the existence of a limit.

For € > 0, choose N € N such that 27" < e. (Indeed, using the Archimedean property
choose N € N such that Ne > 1. Now check that k < 2* for any k& € N either from
mathematical induction or from any appropriate theorem you like. This gives 1 < 2¥¢ and
hence 27V < £.) Also let j,k > N be arbitrary. Without loss of generality we assume that
jJ > k. Then

[bj = bi| = lak1 + - -+ + ay
< lapri] 4+ + ag|
<27 42
= 2*’“(2*1 oot 2*(]’*16))

1 —92-0G=Fk)
= z—kT <27 F <oV <o
This shows that (b,) is Cauchy, hence convergent. This completes the proof. 0

Exercise 5.4. Let E be a subset of R*. Then the following statements hold.

e For every x € E, we have v < sup (E) and = > inf (£).

e Let M € R* be an upper bound for E, so that x+ < M for all x € E. Then
sup (£) < M.

e Let M € R* be a lower bound for £, so that x > M for all x € E. Then inf (E) > M.

(Hint: it may be helpful to break into cases concerning whether or not E contains +oo or
—00.)

Solution.

e For every z € E, we have z < sup (E) and = > inf (E):
The proof is just a typical application of the divide-and-conquer method. We first
prove that = < sup (F).
— (Case 1) Suppose that ) # E C R and is bounded above. Then sup (E) € R is
the least upper bound of E and thus x < sup (F) for all z € E by the definition
of upper bound.
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— (Case 2) Suppose that ) # E C R but is not bounded above. Then sup (E)
is defined as +oo, and by the definition of ordering on R* we always have x <
+oo =sup (E) for all x € E.

— (Case 3) Suppose that E = (). Then the statement (Vo € F) r € E = 1z <
sup (E) is vacuously true.

— (Case 4) Suppose that +00 € E. Then sup (F) is defined as +o00, and the claim
follows exactly by the same argument as above.

— (Case 5) Suppose that +oo ¢ E and —oco € E. Then sup (£) := sup (E\{—o0}).
So if x € E, then either x € E\{—o00} or x = —oo. In the former case,
z < sup (F) follows from one of Case 1-3. (Note that any of Case 1-3 is possible.)
And in the latter case, z < sup (E) follows from the definition of ordering on
R*.

These five cases exhaust all the possible cases for E C R*. The proof for x > inf (F)
follows mutatis mutandis.

e Let M € R* be an upper bound for E, so that x+ < M for all x € E. Then
sup (F) < M. Again, we prove this by dividing cases:

— (Case 1) If either M = +o00 or sup (F) = —o0, then in view of the definition of
ordering on R*, there is nothing to prove.

— (Case 2) If M = —o0, then whenever x € E we must have —co <z < M = —c0
and thus x = —oo. This shows that either E = () or F = {—occ}. In any cases,
we have sup (£) = —oo and hence sup (F) < M.

— (Case 3) So it suffices to show the claim when M € R and sup (E) > —oco. An
immediate observation is that +0o ¢ E and E\{—oo} C R is non-empty.

x If —oo ¢ E, then F C R is non-empty and M is an upper bound of E. So
sup (E) < M is clear.
x If —oo € E, then E\{—oc0} C R is non-empty and M is an upper bound
of E\{—o00}. So sup (F) = sup (E\{—o0}) < M.
This proves the desired claim.
e This follows from the same argument as in the previous part.

O

Exercise 5.5. Let (a,)>,, be a sequence of real numbers. Let = be the extended real
number z := sup (a,)5>,,. Then a, < z for all n > m. Also, for any M € R* which is an
upper bound for (a,)? . (so that a, < M for all n > m), we have z < M. Finally, for any

y € R* such that y < x, there exists at least one integer n with n > m such that y < a,, < x.
(Hint: use the previous exercise.)

Solution.

e For any n > m, x = sup{a, : n > m,n € N} is an upper bound of the set
{a, : n>m,n € N} in which a,, is contained. So we have a,, < x.

e If M is an upper bound of (a,)S2, ., then it is also an upper bound of the set {a,, : n >
m,n € N}. So by the previous exercise we get © = sup{a, : n > m,n € N} < M.

e Finally, assume otherwise. Then for any n > m we have either y > a, or a, > z.
Since the latter is impossible, we always have y > a, for all n > m. Then y is
an upper bound of (a,)? ~ and hence y > x, contradicting the assumption. This

completes the proof. -
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Exercise 5.6. Let (a,);°,, be a bounded sequence of real numbers. Assume also that
(ap)$e,, is monotone increasing. That is, a,+1 > a, for all n > m. Then the sequence

(an)Se,, is convergent. In fact,

lim a, = sup (a,)

o0
n=m-
n—oo

(Hint: use the previous exercise.)

Solution. Let € > 0 be an arbitrary positive real number. Denote z = sup (a,)52,,. Since
(@), is bounded, we have x € R. Then = — ¢ < z and thus we can choose an integer

N > m such that x — e < ay < x. Then for any n > N, we have
r—e<ay<anp1 < <a, fzr<x+¢

and hence |a, — x| < e. This proves that (a,)S2,, converges to z. O

6. HOMEWORK 6

Exercise 6.1. Let (a,)>2,. be a sequence of real numbers that converges to a real number
x. Then z is a limit point of (a,)S2, . Moreover, z is the only limit point of (a,)%., .

Solution.

e The first part is essentially follows by the definition: Let ¢ > 0 and N > m be
arbitrary. We have to show that |a, — x| < € holds for some n > N.

Indeed, from the convergence of (a,)r2, ., there exists N’ € N such that we have
la, — x| < € for any n > N’. Then by picking any n € N that satisfies n >
max{ N, N'}, the definition of limit point is satisfied.

e It amounts to proving that (a,)>,, has a unique limit point, which is z. Assume
that y € R is any limit point of (a,)>2,,. To show that y = x, we assume otherwise
and derive a contradiction. To this end, for € = |y — z|/3 > 0,

— Pick Ny, from the convergence of (a,)S%,., such that |a, — x| < ¢ whenever

n Z Nl.

— Pick n > Ny, from the definition of limit point for y, such that |a, — y| < €.

Then it follows that

3e=ly—al =y —an) + (an —2)| < |y — an| + |an — 2] <e+e = 2e,

a contradiction! Therefore y = = as desired and the claim follows.
O

Exercise 6.2. Let (a,)2,, be a sequence of real numbers. Let L™ be the limit superior of
this sequence, and let L™ be the limit inferior of this sequence. (Note that L™, L~ € R*.)
(i) inf (a,)22,, < L™ < LT <sup (a,)2,,.
(iv) If ¢ is any limit point of (a,)22, , then L~ < c¢ < L.
(v) If LT is finite, then it is a limit point of (a,)32,,. If L™ is finite, then it is a limit
point of (a,)2,,.
(vi) Let ¢ be a real number. If (a,)S2, converges to ¢, then LT = L~ = ¢. Conversely, if
LT =L~ =¢, then (a,)22,, converges to c.
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Solution. Before the proof, define sequences (£,)°, and (u,)22, in R* by
l, =infy>p(ag) and  w, =supgs,(ag) forn>m,

respectively. This will save our ink and space. We also remark that (¢,)32 . is monotone
increasing and (u,)%, is monotone decreasing in R*, which we have already checked in

Definition 6.4 and 6.5.
(iii) It is clear that

inf jom(ag) = b <y < ap < Uy < Uy, = SUP >m(ag)  for all n > m.
Now the first inequality and the third inequality are immediate:
b <sup,(l,) =L~ and LT =inf,(u,) < up.

To prove the intermediate inequality, notice that every wu, is an upper bound of
(0y)22,, and likewise that every ¢; is a lower bound of (u,)S>,,. Indeed, let j,k > m
be arbitrary. Then

—If j >k, then ¢; < u; <.

—If 7 <k, then ¢; < ¢, < .
So in any cases ¢; < uy, for any j, k > m and the claim follows. Now using Proposition
5.4 (or equivalently, Exercise 5), we have

L™ =sup,({,) <wu, forallk>m
and now taking inf >, we finally get
L= <L*

as desired. (Remark. In summary, we combined the pairwise estimate ¢, < u, and
the monotonicity of (¢,) and (u,) to obtain the stronger estimate ¢; < wy. This
allows us to take infimum and supremum separately for j and k. This kind of trick
will appear again, especially when we learn the Riemann integral.)

(iv) We first focus on ¢ < LT. If LT = 400, there is nothing to prove. So we assume
that L™ < +o0o. To this end we invoke the standard ’2e-argument’: Let € > 0 be
arbitrary. Then

— Since lim,, o u, = LT, there exists N such that |u, — LT| < (¢/2) whenever
n > N.
— Since ¢ is a limit point, there exists n > N such that |a, — c| < (¢/2).
Then with the choice of n above, we get

c:(c—an)+(an—L+)+L+<g+%—|—L+:L+—|—5.

Now the resulting inequality
c< Lt +¢

depends only on £ > 0. Since ¢ is arbitrary, this implies that ¢ < L*. The proof for
L~ < ¢ follows in exactly the same way.

(v) Assume that LT is finite. This means that (u,)>, converges to L. Now let € > 0
and N € N be arbitrary with N > m. We want to prove that |a,, — LT| < & for some
n > N.
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Indeed, choose N’ € N such that |u, — LT| < € for any n > N’. Also pick any
m > max{N, N'}. Then by noticing that

L™ —e<u, <L"+e and u, = suppsmla),

it follows from Proposition 5.4 (or equivalently, Exercise 5 above) that there exists
n > m satistying

Lt —e <a, <suppsmlag) =u, < LT + &

This inequality shows that |a, — LT| < €. In summary, what we have shown so far is:
for any ¢ > 0 and N € N with N > m, there exists n > N such that |a, — LT| < ¢.
This shows that LT is a limit point of (a,)32,,. The proof for L~ also follows in
exactly the same way.

(vi) (=) If (a,)22,, converges to ¢, then by Proposition 6.2 (or equivalently, Exercise
6 above) shows that ¢ is the unique limit point of (a,)32,,. Also, since (a,)32,, is
bounded, both L™ and L~ are finite. Then by (v) above, L™ and L~ are limit points
of (a,)%%,,. Therefore by the uniqueness we get L™ = L~ = ¢. (Of course, a direct
proof is also possible. Try it yourself!)

(<): We know that u,, - Lt = c and [,, - L~ = ¢. Now for any £ > 0, choose

N1, Ny € N such that

n>N = |u,—c|<e and n>Ny = |l, —c| <e.
Then with N = max{Ny, Ny}, it follows that

n>N —= c—e<l,<a,<u,<c+e = |a,—¢| <e.

This proves that a,, — ¢ as n — oo.
O]

Exercise 6.3. Let (a,)%%,., (b,)>2 . be sequences of real numbers such that limsup,,_,. a,

n=m?

and lim sup,,_,, b, are finite. Prove:

lim sup(a,, + b,) < (limsupa,,) + (limsupb,,).

n—oo n—oo n—oo

Solution. Let u,, = sup g>n(ax) and v, = sup x>, (bx) be suprema. Then the following relation
follows by the definition of supremum:

ap <u, and bpr<wv, VeE>n = ap+b<u,+v, Vk>n
shows that, upon taking the supremum over all £ with & > n, we get
SUp g>n(ar + o) < uy + vy
This shows that for any n > m, we get
inf j.j>msup k> (ar + b)) < sup psnlag + o) < uy + vy,

Since we know that (u,)2,, and (v,)

n=m

respectively, taking n — oo gives

converge to limsup,,_,. a, and limsup,_, . b,

o0
n=m

lim sup(a,, + b,) < limsup a,, + limsup b,

n—o0 n—oo n—oo

as desired. 0
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Exercise 6.4. Let (a,)2,., (b,)32,, be sequences of real numbers. Assume that a,, < b, for
all n > m. Prove:
® Sup (an)?zo:m S sup (bn)%o:m
e inf (a,)e, <inf(b,)2, .
e limsup,,_,. a, < limsup,,_, . by.
e liminf, ,. a, <liminf,_, b,.

Solution.
e Let k£ and n be any integer satisfying & > n > m. Then the following obvious
relations
ap < b, and by <supj>n(b))
shows that a; < sup ;j>,(b;) for all £ > n. In particular, the supremum sup ;>,(b;) is
an upper bound of the set {a,,a,11,...} and hence we get

SUp j>n(a;) = sup {an, ans1, ... } < sup j>n(by).
e This follows from exactly the same argument. Indeed, the following proof is just a
duplication of the previous proof:
Let k£ and n be any integer satisfying & > n > m. Then the following obvious
relations
ap < b, and inf;>,(a;) < ag
shows that inf ;>,(a;) < by for all £ > n. In particular, the infimum inf ;>,(a;) is a
lower bound of the set {b,, b,+1,...} and hence we get

inijn(aj) = inf {bn, bn+17 Ce } S inijn(bj).
e This is a direct consequence of the two former properties. Let u, = sup ;?‘;n(aj) and

v, = sup 32, (b;). Then we know that u, < v, for all n > m. Since both are again
sequences of real numbers, we have

inf ,, (u,) <inf,(v,).
But both quantities are precisely limsup by definition. Therefore

lim sup a,, = inf ,>,8up j>n(a;) < inf,>m,sup j>,(b;) = limsup b,.
n—o00 - n - - n—o00

e Again, this follows exactly the same line of reasoning as in the previous part.

U
Exercise 6.5. Let (ay,);,,, (0,)52,,, (cn)o,, be sequences of real numbers such that there
exists a natural number M such that, for all n > M,

an < by, < cp.

Assume that (a,)5,, and (c¢,)52 . converge to the same limit L. Prove that (b,)°, con-

n=m n=m

verges to L. (Hint: use the previous exercise.)

Solution. We know from the previous exercise that

L = liminfa, <liminfb, <limsupb, <limsupc, = L.
n—00 n—00 n—»00 n—»00

Thus both limsup and liminf of (b,)72,, coincide with L and therefore (b,,)52,, converges to

n=m

L. U

24



Exercise 6.6. Let x,y > 0 be positive real numbers, and let n,m > 1 be positive integers.
Prove:
(i) If y = 2/, then y" = z.
(ii) If y» = x, then y = x1/™.
(iii) #'/™ is a positive real number.
(iv) o > y if and only if 21/" > y/.
(v) If 2 > 1 then x'/™ decreases when n increases. If < 1, then z'/" increases when n

increases. If x = 1, then z'/

(Vl) (xy)l/n — xl/nyl/n‘
(Vll) (xl/n)l/m — xl/(nm).

=1 for all positive integers n.

Remark. We remark that the exponentiation law (for integer exponents), which was
originally proved for rational numbers, readily extends to that of real number even without
modifying the argument. This is because the proof relies on something we call "ordered field’
structure (an algebraic system in which all the arithmetic operations work freely and the
order relation is compatible with these operations in a usual way), and thankfully both the
field Q of rationals and the field R of real numbers are ordered fields. Solution. With this
remark, we will use the exponentiation laws in Proposition 4.27 and 4.29 (of the 1st lecture
note) freely even in the context of real numbers instead of rationals.

Let x,y > 0 be positive real numbers, and let m,n > 1 be positive integers. Before the
proof, we introduce the following notation

S(x):={yeR:y>0and y" <z}, x>0.
Lemma 6.15 shows that z'/™ := sup S(z) is a non-negative real number.

1/n

(i) We prove y" = x for y = x'/™ by contradiction. Assume that y" # x. Then either

y" < xory" >z
— Assume that y" < x. We claim that (y + ¢)" < z for some ¢ > 0. Once this is
proved, with any choice of such € > 0, we get y + ¢ € S(z) and thus

y<y+e<supS(z)=z"" =y,
a contradiction. Therefore the relation y" < x is impossible.
To complete the proof, we show the claim. Assuming otherwise, we get (y+¢)" >
x for all € > 0. In particular, by choosing ¢ = %, from Limit Laws we get

17’1 n
(?H‘E) Zr =y 2=

as k — oo a contradiction. This proves our claim and thus we are done.
— Assume that y" > x. We claim that (y — &)™ < x for some 0 < £ < y. Assuming
this claim, we have

VzeR, z2>2y—e = "> y—¢e)" > = 2z ¢ S(x).

Taking contrapositive, whenever z € S(z) we must have z < y —e. Soy — ¢ is
an upper bound of S(x) and this leads to the following contradiction:

y=supS(z) <y—e<uy.

Therefore y™ > x is also impossible.
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We complete the proof by proving our claim. If this is not the case, then for all
0 < e <y we must have (y — )" < z. Now by the Archimedean property we choose
N such that Ny > 1. Then we plug e = k! with &k > N (so that 0 < & < y) and
take the limit as k — oo. Then we get

(y—k <z = y" <z,

as k — oo contradicting our assumption.

(ii) Assume that y™ = x. Since y > 0 by the assumption, we have y € S(x). Now this
shows y < x'/". To prove the equality, assume otherwise. Then we get y < x'/". This
means that y is not an upper bound of S(z), so by negating the definition of upper
bound we can pick some z € S(x) such that y < z. This gives x = y" < z" < z, a
contradiction! Therefore y” = = as desired.

(ili) We divide into two cases:

— First consider the case 0 < x < 1. By observing that 0 < 2" < 2" ' < ... < x
(or invoke the principle of mathematical induction to check this formally), we
find that x € S(z). Thus we get

0 <z <supS(z)=z'/"
— Now consider the case x > 1. Then 1" =1 < z and 1 € S(z). So we get
1 <supS(z) =z

1/n

Therefore in any cases we get /™ > 0 and we are done.

(iv) (=): Assume that z > y. Then
VzeR, z€S(y) = z2>0and 2" <y = z>0and " <z = z € S(x)
and hence we obtain
2" = sup S(z) > sup S(y) = y*/™.

To exclude the possibility of having equality, assume otherwise so that z!'/™ = y/".
Then the part (i) shows that

T = (xl/n)n _ (yl/n)n =y,
which contradicts the assumption. Therefore we must have x'/™ > '/
(<): From (i), we obtain

T = (xl/n)n > <y1/n)n _

(v) In view of (ii), it suffices to prove that (z'/"y'/™)" = zy. Indeed, by utilizing the
exponentiation law (ab)” = a"b", we get

(xl/nyl/ny@ — (l,l/n)n(yl/n>n = 2y
and therefore the assertion follows from (ii).

(vi) Asin (v), it suffices to prove that ((z'/")/™)™" = z. By utilizing the exponentiation
law a™ = (a™)", we get

(Gt /mymyme = () = (i =

and therefore the assertion follows from (i).
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Exercise 6.7. Let x,y > 0 be positive real numbers, and let ¢, r be rational numbers. Prove:

(i) x? is a positive real number.
(i) 27" = 2%" and (z79)" = z7".
(ili) 279 = 1/a".
(iv) If ¢ > 0, then x > y if and only if 27 > y.
(v) If > 1, then 27 > 2" if and only if ¢ > r. If x < 1, then 2% > 2" if and only if ¢ < 7.

Solution.
(i) We have 2'/® > 0 by the previous exercise. Taking power to a, we still have a positive
number. Therefore 77 = (z!/%)* > 0.
ii) Notice that ¢ +r = (ab' + a’b)/bb’. Thus
(i) q (
20T — (xl/bb/)ab/+a’b
_ (:El/bb’)ab’(xl/bb’)a’b
— ($l/b)a($l/b’)a
= xlx".
To prove the second assertion, we first show that
(le/b)a _ (l’a)l/b. (1)
In view of (ii), it suffices to prove that ((x'/*)*)* = 2. But
((wl/b)a)b _ ($1/b)ab _ ((xl/b)b)a — g0
and hence (1) follows. Then by noting that ¢r = aa’/bb’, we have
20— (xl/bb’>aa’
_ xl/b)l/b’)aa’

xl/b)l/b’)a)a'

(
((
((xl/b)a)l/b’)a’

(
= (
(
(

U

Exercise 6.8. Let —1 < x < 1. Show that lim,_,,, 2" = 0. Using the identity (1/2")z" =1
for z > 1, conclude that ™ does not converge as n — oo for = > 1.

Solution.
In view of the inequality
—la" < 2" <l
and the Squeezing Theorem, it suffices to prove that |z|™ — 0 as n — oo. Since 0 < |z| < 1,
the sequence a, = |z|™ is non-increasing and bounded:

Ogan+1§an<1'
So (a,)$° must converge to some real number L. But since
L = lim |z|" = lim |z|"*" = |z|- L,
n—oo n—oo

we have (1 — |z|)L = 0 and hence L = 0 as desired.
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Now, in this case, assume that z > 1. Then 0 < 2! < 1 and hence we have lim,,_,,, 27" =

0. But if it were true that a := lim,,_.,, 2" exists, then by the Limit Laws,
a-0=lim ™" lim 2" = lim (z7"2") = lim 1 =1
n—ro0 n—oo n—oo n—oo

a contradiction! Therefore lim,,_,., 2" cannot exist. O

7. HOMEWORK 7

Exercise 7.1. For any z > 0, show that lim,,_,., /™ = 1. (Hint: first, given any £ > 0, show
that (1+ €)™ has no real upper bound M, as n — oo. To prove this claim, set z = 1/(1 + ¢)
and use Exercise 6.8. Now, with this preliminary claim, show that for any € > 0 and for any
real M, there exists a positive integer n such that M'/" < 14 &. Now, use these two claims,
and consider the cases > 1 and = < 1 separately.)

Solution.

(i) If # = 1, then the assertion is obvious since 1/ = 1 yields the constant sequence
with value 1.

(ii) Consider the case > 1. We first prove that for any € > 0, there exists N such
that © < (1 + &)™ whenever n > N. Indeed, from the previous exercise we have
lim,, 00(1 +¢€)™™ = 0. Since 71 > 0, there exists N such that

(14+¢e)™=|(1+¢)™—0| < 2! whenever n > N.

With this choice of N, we obtain the desired claim. Now for any £ > 0, let N be
chosen as in the claim. Then whenever n > N, we have

1/n 1/n

l<z<(l+e)" = 1</ <1l4+e = [z/" -1 <=

This proves that '/ converges to 1 as n — oo.
(iii) Finally, consider the case 0 < 2 < 1. Then ™! > 1 and we know that lim,,_,..(z~1)"/" =
1. Therefore z'/™ = ((z=')"/")~! also converges to 1.
We also present an alternative solution of (ii):
(ii’) If > 1, then we know that 2'/™ > 1. So if we write ¢, = /™ — 1, then we have
g, > 0. Moreover,
r= @)= (1+¢e,)" > 14 ne,

and we get
r—1
0<e, <
n
By taking n — oo, Squeezing Theorem tells us that ¢, — 0 as n — oco. This proves that
/" =1+ ¢, converges to 1. U
Exercise 7.2. Let m < n < p be integers, let (a;),,, (b;)i,, be a sequences of real numbers,
let k£ be an integer, and let ¢ be a real number. Prove:
n p p
: Sat Y w- Y
i=m 1=n+1 =m
n n+k
- Su= S o
i=m Jj=m+k
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i=m i=m i=m
n n
. Z(ca,) =c() a)
i=m i=m
n n
. Sal < o
=m =m
n n
° IfaigbiforallmgiSn,thenZai§Zbi.
i=m i=m
Solution.

Before the proof, we remark that for any integer m and for any sequence (a;):2,, of real
numbers, we have

m m—1
E ai:am:0+am:am:§ a; + Q.
=m =m

This is also true for any sequence (a;) of real numbers for which a,, is defined, since we can
always restrict it to a smaller range.

e Let m < n be integers. We prove the following statement by induction: Claim. For
any | € N and for any sequence (a;)™" of real numbers, we have

n+l n n+l
dai=) at+ Y a (2 (1)
i=m i=m i=n+1
Base case) First we consider the base case [ = 0. In this case, Definition 7.1 shows
that
n+0
Z a; = 0.
1=n-+1

Thus this proves (2) as desired. Induction step) Next, we assume that the claim
holds for [. Then sincen+1{+1>n+1,

n+i+1 n+l
E a; = E a; | + Gy
i=m i=m
n n+l
= E a; + E a; | + Gntit1
=m

1=n+1
n n—+l
= E a; + g @i + Qi1
=m 1=n+1
n n+l+1
= E a; + E a;
i=m i=n+1

(by Definition 7.1) (by induction hypothesis) (by Definition 7.1) Therefore the claim
follows by mathematical induction.
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e Let m, k be integers. We prove the following statement by induction: Claim. For
any | € N and for any sequence (Clz), o of real numbers, we have
m-+l m4k+1
ai= > ai (3) (2)
i=m j=m+k
Base case) We consider the base case [ = 0. Then both sides are given by
m m—+k
Zai = Qm = A(m+k)—k — Z Qj—f
i=m j=m+k
This proves the base case. Induction step) Assume that (3) holds for . Then
m+I+1 m+l
Z a; = (Z ai) + Qi1
m—+k+1
= < Z ajk) T A(mtkti+1)—k
j=m+k
m+k+I1+1
Jj=m+k
(by Definition 7.1) (by induction hypothesis)
Again, the claim follows from the principle of mathematical induction.
e Let m be an integer. Claim. For any | € N and for any sequences (a;)!+ and

(bo)

=m

m+1

Zaz+b Zaz—l—Zb

of real numbers, we have

m+1 m+1

(4) (3)

Base case) When [ = 0, we have

m

i=m

(@m + b)) = @ + by

Induction step) Suppose that (4) is true for [. Then

m-+I4+1

i=m

m-+l

Z(Cbz’ + bz)) + (@141 + bimtisr)

m+l m+l

Sat S ) ot i)

m-+l m-+l

Z a; + Clm+l+1> + (Z b + bm+l+1)
m+;+1 mAi41 -

+Zbi'
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e Let m be an integer and ¢ be a real number. Claim. For any ! € N and for any
sequence (a;)™ 4 of real numbers, we have

i=m

Z(cai) =c (Z ai> : (5) (4)

i=m

Base case) When [ = 0, we have

Z(cai) = cl,, = C (Z ai> .

i=m

Induction step) Suppose that (5) is true for I. Then

Z (ca;) = (Z(caﬂ) + Clmti+1

i=m i=m

m+1

=c E ai) + Clmti41
i=m
m+l

=c g @i + Qi1

=m

m—+Il41
=cC E a; | .

i=m

This proves the claim as desired.
e Let m be an integer. Claim. For any | € N and for any sequence (a;)
numbers, we have

m~+l

i=m

of real

m+l

< Z jail.  (6) ()

m—+l

>
i=m

Base case) When [ = 0, we have

m

D
m

i=

m

= lam| = > _ lail.
i=m

31




Induction step) Suppose that (6) is true for . Then by the triangle inequality
together with the induction hypothesis,

m-+I+1 m-+l
E a;| = g a; | + amai
i=m i=m
m+l
< E a; +|a’m+l+1’
i=m
m-+l1
< E |ai] + [@my141]
i=m
m+I+1

= 2 lail
i=m

This proves the claim as desired.
e Let m < n be integers, and let (a;)",, and (b;)’,, be sequences of real numbers
satisfying a; < b; for m < i <n. What we want to prove is the following relation

doai<y b (1) (6)

i=m

0

Exercise 7.3. Let >~ a, be a formal series of real numbers. Then ) >° a, converges if
and only if: for every real number € > 0, there exists an integer N > M such that, for all

p,q =N,
q
> an
n=p

(Hint: recall that a sequence is convergent if and only if it is a Cauchy sequence.)

< e

Solution.

The series Y - a, converges, by definition, exactly when the partial sum Sy = Zg:m an,
converges as N — co. Now using the completeness of R, this happens exactly when (Sy)%_,,
is a Cauchy sequence. So it suffices to show that this is equivalent to the condition given
in the exercise. This is almost trivial, but we introduce the proof anyway to please some

meticulous readers.

e Suppose that the condition in the exercise holds. Let € > 0 be arbitrary and let N
be as in the condition. Then whenever p,q > N, either p > g or p < ¢. In the former

case,
p

> an
n=q+1
The latter case is treated exactly in the same way. Thus we obtain the following
inequality unconditionally:

1Sy — S| = <e.

|S, — 54| < e whenever p,qg > N.

This implies that (Sy)%,, is Cauchy as claimed.
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e Suppose that (Sy)¥,, is Cauchy. Then for any ¢ > 0, there exists N such that
|Sp — Sy| < € whenever p,g > N — 1. (This N — 1 term is introduced for a very
minute technical detail.)

Now let p,q > N. Then we have either ¢ > p or ¢ < p. In the former case, we get

‘Zizp an| = |Sq-1 = Sp-1| < & In the latter case, |33 _ a,| =0 < & by definition of

summation notation. This implies the condition in the exercise.

Therefore the equivalence is proved. U

Exercise 7.4. Let )" a, be a formal series of real numbers. If > a, converges, then
lim,, .o, a, = 0. Note that the contrapositive says: if a,, does not converge to zero as n — oo,
then Y ° a, does not converge. (Hint: use Exercise 12.20.)

Solution. Assume that > >~ a, converges. Using the previous exercise, for arbitrary ¢ > 0,
there exists /N such that
q
> an

n=p

< e for any p,q > N.

Now let n > N. Then by choosing p,q by p = ¢ = n, we get
>
k=n

Therefore (a,,)2,, converges to 0 as desired. O

’an_0| = ‘an‘ = < E.

Exercise 7.5. Let > > a, be a formal series of real numbers. If this series is absolutely
convergent, then it is convergent. Moreover,

oo oo
D <D laal.
n=m n=m

Solution. Assume that Y ° a, converges absolutely. Then by Exercise 1, for any ¢ > 0
there exists NV such that

q
2 o]

n=p

< e whenever p,qg > N.

Now by the property of the summation, we get

q

>

n=p

q
< Z la,| < e whenever p,q > N.
n=p

Thus by Exercise 1 again, the series >~ a, converges as well. Moreover, since the partial
N . . .
sum Ty = > |a,| is monotone increasing,

N N [e]
Z an| < Z lan| =Ty <supTy = Nli_{HOOTN = Z |-
n=m n=m n=m
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This essentially proves the desired inequality. To argue rigorously, let A =35> |a,|. Then
the above inequality tells us that

N [e] 00
ZangAforallNZm:—ASZangAﬁ Z%SA
This completes the proof. 0

Exercise 7.6.

e Let > > a, be a series of real numbers converging to z, and let > b, be a series
of real numbers converging to y. Then Y > (a, + b,) is a convergent series that
converges to z +y. That is,

D an+b2) = (O an) + (D b).

(Deferred)

Exercise 7.7. Let Y _>° a,,> . - b, be formal series of real numbers. Assume that |a,| <
by foralln > m. If Y "> b, is convergent, then > °  a, is absolutely convergent. Moreover,

%s) 00 00
D | S D lanl £ D bn
n=m n=m n=m

Solution. The proof is essentially an imitation of that of Exercise 3: Assume that Y > b,
converges. By Exercise 1, for any € > 0 there exists NV such that

q
an < ¢ whenever p,q > N.
=P

But since
q

q q
D an| < anl <D |bal <
n=p n=p

n=p

it follows from Exercise 1 that 32°° |a,| converges as well. Now let Ty = 32 |b,| be the
partial sum of (|b,])5%,,,. Then (Tn)%_,, is monotone increasing and convergent. So we have

N
D
n=m

Thus it follows that

N 00
< Z jaa] < Ty < supTiy = lim Ty = Z [bal.

00 [e's)
> lanl < > 1bl
n=m n=m

Combining this with Exercise 3, it follows that >~ a, converges absolutely and

oo oo oo
D an| <) an] < bl
n=m n=m n=m
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Exercise 7.8. For any n € N, define a,, := (=1)""/(n + 1). Find a bijection g: N — N
such that the series ) > ay(,) diverges.

Solution. We described the solution in class. Here is a sketch of the argument. It is easiest
to describe what to do in words. First, sum up the odd terms only, such that the partial
sum up to a certain index N is at least 10. This is possible to do since Y -, 1/(2k) diverges.
Then sum the first negative term (n = 0). Then, sum the next several odd terms so the
partial sum up to another index M is at least 20. Once again, this is possible to do since
> ore i 1/(2k) diverges. Then sum the next negative term (n = 2). Then, sum the next
several odd terms so the partial sum up to another index P is at least 30. Once again, this is
possible to do since Y - | 1/(2k) diverges. Then sum the next negative term (n = 4). Repeat
this process. By construction, the partial sums do not converge, since they increase without

bound. Rearranging terms in the sum corresponds to defining a bijection g as specified.
OJ

Exercise 7.9. Let (b,)%,, be a sequence of positive numbers. Then

lim inf 2 < Jim inf b/,

n—o0 n n—o0

Solution. Let L := liminf,,_, b’l;# If L = 0 there is nothing to show, so we assume that
L > 0. Assume for now that L < oo.

Let € > 0 such that L —e > 0. From the Proposition characterizing liminf, there exists an
integer N > m such that, for alln > N, we have (b,11/b,) > L—e. That is, b,.1 > (L—¢)b,.
By induction, we conclude that, for all n > NV,

by > (L — )" Nby.
That is, for all n > N,
b/ > (bn(L—e)™™M)"(L+e). (%)

Letting n — oo on the right side of (x), and applying the Limit Laws and a Lemma from
the notes stating that lim,_,. 2'/™ = 1 where 2 = L — ¢ > 0,

lim (by(L — ) ™)Y™"(L —¢) =L —e.
n—oo
So, applying the Comparison Principle to (x),

lim inf bX/™ > L — ¢.

n—o0

Since € > 0 is arbitrary, we conclude that lim inf,, . bi/ " > L, as desired, in the case L < oo.

In the case L = oo, we note that the above argument shows that liminf, . b}/ "> [ for
any L' > 0. O

Exercise 7.10. Let (a,)%, (bn)22, (cn)2, be sequences of real numbers. Then (a,)2, is
a subsequence of (a,)5%,. Also, if (b,)5%, is a subsequence of (a,)%,, and if (¢,)%%, is a

subsequence of (b)), then (¢,)32, is a subsequence of (a,)%,.

Exercise 7.11. Give an example of two convergent series of real numbers >~ a, and
> > o bn such that the series Y > ((ayby,) is not convergent.
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Solution. Let a, = b, = 1/y/n for any n > 1 (and let ag = by = 0). Then >~ a, and

> o o bn converge by the dyadic criterion (or Corollary 2.6.33) but > 2 (anbn) = > -, 1/n
diverges , again from the dyadic criterion (or Corollary 2.6.33). U

Exercise 7.12. Let (a,)%, be a sequence of real numbers, and let L be a real number.

e If the sequence (a,)?, converges to L, then every subsequence of (a,)>, converges
to L.

e Conversely, if every subsequence of (a,)5, converges to L, then (a,)32, itself con-
verges to L.

8. HOMEWORK 8

Preliminary. In this section we deal with some facts that are relevant to our problems but
can be coped with only previous materials.

Maximum and Minimum of subsets of R. Let F be a non-empty subset of R. If there
is an element M € E such that x < M for any element z € E, we call M the maximum of
E and denote M = max E. Similarly, if there is an element m € FE such that x > m for any
element x € F, we call m the minimum of £ and denote m = min F.

This concept is quite close to that of supremum and infimum, but the difference is that
maximum and minimum need not always exist.

Proposition 1.1. Let E C R. Then

e F have at most one mazimum and at most one minimum.
e [fmax E exists, then max F = sup F.
e [fmin F exists, then min F = inf F.

Remark. The first assertion justifies our notation as well as our usage of the definite
article 'the’.

Proof. Suppose that M, M’ are maximums of E. Since M, M’ € E, we must have M’ < M
and M < M’. This implies M = M’ and hence there cannot exist two or more maximums.
The same argument applies for the uniqueness of minimum.

Now assume that M = max E exists. Then M is an upper bound of £. Moreover, M is
also the least upper bound since any # < M cannot be an upper bound of E. Therefore
M =sup E.

The third assertion follows in exactly the same manner.

Exercise 8.1. Let (a,);2,, be a sequence of real numbers converging to 0. Show that
(lan|)se,, also converges to zero.

Solution. By definition, for any € > 0 there exists N > m such that whenever n > N we
have |a, — 0| < e. But since |a, — 0| = |a,| = ||a,| — 0], we also have ||a,| — 0] < e. By
reading out this result using definition again, we have lim,,_,, |a,| = 0 as desired. ]

Exercise 8.2. Let a < b be real numbers. Let I be any of the four intervals (a,b), (a,b],
la,b) or [a,b]. Then the closure of I is [a, b].

Solution. Let I denote the closure of I. We prove I = [a,b] by showing that a real number
x lies in I exactly when z € [a,b]. To this end, we divide the case according to whether x
lies inside I or not.

e Suppose that x € (a,b). Then x € I and z is an adherent point of I. Thus = € 1.
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e Suppose that x is either a or b. Let us first consider the case where x = a. Then for
any € > 0, there exists y such that a« < y < min{a+¢,b}. Theny € I and |[a—y| < ¢.
This proves that a € I. The proof of b € I is quite the same.

e Suppose that x ¢ [a,b]. That is, either x < a or z > b. Let us examine the case
x < a first. Then for ¢ = a — x, we find that there is no y € I satisfying |z — y| < e.
Indeed, for any y € I we have y > a > x and

ly—z|=y—x>a—x=c.

This shows that = ¢ 1. The case & > b can be treated in a similar way, proving that
ré¢l.
Therefore I = [a, b]. O

Exercise 8.3. Let X be a subset of R, let f : X — R be a function, let E be a subset of
X, let xyp be an adherent point of F, and let L be a real number. Then the following two
statements are equivalent. (That is, one statement is true if and only if the other statement
is true.)
(i) f converges to L at zg in E.
(ii) For every sequence (a,)>2, in E, and which converges to zy, the sequence (f(a,))22,
converges to L.

Solution. (1) = (ii) : Let (a,)32, be any sequence in F that converges to xy. To prove that
lim, . f(a,) = L, let ¢ > 0 be arbitrary. Then

e Using Definition 2.14, pick 6 = §(¢) > 0 such that for any = € E with |z — x¢| < 6
we have |f(x) — L| < e.
e Using the definition of convergence of sequence, pick N = N(4) such that for any
n > N we have |a, — x| < 9.
Combining these two facts, we find that |f(a,) — L| < € holds whenever n > N. Therefore
(f(an))se,, converges to L.
(ii) = (i) : We prove the contrapositive. Assume that f does not converge to L as v —
in . By negating Definition 2.14, we find that
e There exists € > 0 such that for any 6 > 0, there exists x € E such that |z — x¢| < 0
but |f(z) — L| > e.
Now for each particular choice § = n~! (where n € N), we utilize this statement to pick
some z = a, € F such that |a, — 9| < d =n""' but |f(a,) — L] > ¢.

On the one hand, by this construction we clearly have lim, . a, = xo. (Just apply the
squeezing theorem to zo — n~' < a, < xo +n~'.) On the other hand, (f(a,))s2, cannot
converge to L. Indeed, assume otherwise so that f(a,) converges to L. Then there exists
N such that whenever n > N we have |f(a,) — L| < 3¢. But since |f(a,) — L| > € always
holds, we must have 0 < ¢ < %5, a contradiction! This completes the proof. 0

Exercise 8.4. Let X be a subset of R, let f : X — R be a function, let E be a subset of
X, let g be an adherent point of F, let L be a real number, and let § be a positive real
number. Then the following two statements are equivalent:

(1) l%mx—mo;xEE f(l') = L.

Solution. For the simplicity of notation, let us denote Es = E'N (zg — 0, x¢ + 0).
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(i) = (ii) : This direction is almost trivial. Assume that lim, ,,,.cp f(z) = L. Let € > 0 be
arbitrary. Then there exists n > 0 such that, for any = € E with |z — zo| < n we
have |f(z) — L| < e. Soif x € Es and |x — zo| < 1, then we have € E and hence
|f(z) — L| < e. From this we read out that lim,_,,,..epm, f(z) = L.

(ii) = (i) : Assume that lim, ., ..ep, f(z) = L. That is, for any ¢ > 0, there exists n > 0
such that whenever z € E; and |z — 2| < 1, we have |f(z) — L| < e. To complete
the proof, let ¥ = min{n,d}. Then whenever z € E and |x — 29| < 7/, we have
both x € Es and |x — 29| < 1. Then |f(z) — L| < e. From this we read out that
hmzazo;zeE f(«r) = L.

O

Exercise 8.5. Let X be a subset of R, let f: X — R be a function, and let zy5 € X. Then
the following three statements are equivalent.
(i) f is continuous at z.
(ii) For every sequence (a,)>%, in X such that lim,_, a, = o, we have lim,,_,, f(a,) =
f (o).
(ili) For every € > 0, there exists a 6 = d(¢) > 0 such that, for all x € X with |z —z¢| <,
we have |f(x) — f(zo)| < e.

Solution. (i) < (ii) : f is continuous at z( if and only if lim, . .ex f(z) = f(xo). By

Exercise 3, this is true if and only if (ii) is true.
(i) < (iii) : The statement (iii), together with the choice E' = X in Definition 2.14, exactly
tells us that lim, ., ..ex f(x) = f(xo), which is the definition of the continuity of f at x.
U

Exercise 8.6. Let X,Y be subsets of R. Let f: X — Y and let g : Y — R be functions.
Let zy € X. If f is continuous at x¢, and if ¢ is continuous at f(xg), then go f is continuous
at xg.

Solution. We have lim,_,z zex f(2) = f(x0) and limy, ¢(z0)mey 9(¥) = 9(f(20)). Let € > 0
be arbitrary. Using Definition 2.14,

e We can pick n = n(e) > 0 such that whenever y € Y and |y — f(z¢)| < n we have
l9(y) — g(f(x0))] <&

e We can pick 0 = d(n) > 0 such that whenever z € X and |z — x| < § we have
|[f(x) = flzo)| <.

Combining these two statements, we find that whenever |x — xo| < J, we have f(z) €

Y and |f(x) — f(zo)] < 1, hence |g(f(z)) — g(f(z0))| < €. From this we read out that

hm:}:%:{:o;:L‘EX g(f(iﬂ)) = g(f(l’o)) =

Exercise 8.7. Let a < b be real numbers. Let f : [a,b] — R be a continuous function on
la,b]. Let M := sup zefqp) f(2) be the maximum value of f on [a, b], and let m := inf ,¢[q 4 f(2)
be the minimum value of f on [a,b]. Let y be a real number such that m <y < M. Then
there exists ¢ € [a, b] such that f(c) =y. Moreover, f([a,b]) = [m, M].

Solution. By the Maximum Principle, both the values M and m are achieved at some different
points in [a, b]. That is, there exists a’ < V' in [a, b] such that {m, M} = {f(a’), f(¥')}.? Now

2This tricky demonstration is a technical, brief way of saying that ‘one of a’ and b’ is a maximum point
and the other is a minimum point’.
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note that f is continuous on [d’,b'] as well. Thus if m <y < M, then by the Intermediate
Value Theorem, there exists ¢ € [@/, '] such that f(c) = y. Since ¢ € [a, b] as well, the first
assertion follows.

For the second assertion, we prove that [m,M] C f([a,b]) and f([a,b]) C [m, M] are

subsets of each other. To this end, just observe that

e For any y € [m, M] we have f(c) =y for some ¢ € [a, b] by the first assertion. So we
have y € f([a,b]).
o If y € f([a,b]), then y = f(c) for some ¢ € [a,b]. Then

m = inf :):E[a,b}f(x) < f(C) < sup meh,b]f(x) =M
and hence y € [m, M].
This shows that [m, M] C f([a,b]) and f([a,b]) C [m, M]. Therefore they are equal to each
other. 0

Exercise 8.8. Let (a,)22,., (b,)52,, be two sequences of real numbers. Then (a,)5, and
(bp)se,, are equivalent if and only if lim,, . (a, — b,) = 0.

Solution. Carefully read out the definition of equivalent sequences to convince yourself that
the observation |a,, — b,| = ||a, — b,| — 0| suffices to complete the proof. O

Exercise 8.9. Let a < b be real numbers, and let f : [a,b] — R be a function. Assume that
there exists a real number L > 0 such that, for all z,y € [a, b], we have | f(z)—f(y)| < L|z—yl|.
Such an f is called Lipschitz continuous. Prove that f is continuous. Then, find a continuous
function that is not Lipschitz continuous.

Solution. For any € > 0, pick 6 =¢/(L +1). Then whenever z,y € [a,b] and |z —y| < §, we
have

1f(x) = fy)| < Llz —y| < L- LLH <e.

This proves that f is continuous at any point. (And also proves that f is uniformly contin-
uous.)

An example of a function which is continuous but not Lipschitz continuous is f : [0,1] — R
given by f(x) = \/x. To check this, notice that for any n € N,

U = 10 = = = Y=Y L i)

Thus no number L > 0 cannot satisfy |f(x)— f(y)| < Lz — y| for all z,y € [0,1]. (Otherwise
we must be able to find some L > 0 satisfying L > /n for all n, which is 1mp0881ble.) O

Exercise 8.10. Let X be a subset of R and let f : X — R be a function. Then the following
two statements are equivalent.
(i) f is uniformly continuous on X.
(ii) For any two equivalent sequences (a,)5, , (b,)s,. in X the sequences (f(a,))
(f(bn))se,, are also equivalent sequences.

o
n=mp?>

Solution. (1) = (ii): Let (a,)22,,, (b,)2,, be sequences in X which are equivalent. Then
for any € > 0,

e By the uniform convergence of f, there exists 0 > 0 such that whenever z,y € X and
|z —y| < 0 we have |f(z) — f(y)| <e.
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e By the equivalence, there exists N € N such that whenever n > N we have |a,, —b,| <

J.

Combining two statements, it follows that whenever n > N we have |f(a,) — f(b,)| < .
This proves that (f(a,))2,,, (f(b,))2,, are also equivalent sequences.
(ii) = (i): We prove contrapositive. Let us assume that f is not uniformly continuous.

By negating Definition 3.31,
e There exists € > 0 such that for any § > 0 there exists z,y € X such that |z —y| < ¢

but [f(z) = f(y)| = e.
Now for each particular choice 6 = n~! (where n € {1,2,...}) pick such two elements
T = a,,y="b, € X (that is, |a, — b,| < d =n~" but |f(a,) — f(bn)| > €). Then (a,)

n=1»
(bn)5e, are equivalent but (f(a,))22,., (f(b,))2,, cannot be equivalent. This proves the
contrapositive as desired. O

Exercise 8.11. Give an example of a continuous function f : R — (0, c0) such that, for any
real number 0 < € < 1, there exists € R such that f(z) =e.

Remark. In view of the Maximum Principle, a continuous function f : R — (0, c0) must
attain positive minimum on any finite closed interval [a,b] C R. Consequently, if ¢ > 0
is small, any solution of f(z) = e have large size. This in particular suggests that any
continuous function f : R — (0, 00) satisfying lim,_,, f(z) = 0 serves an example.

e 1st Solution. Let f(z) = 27®. Then clearly f is a continuous function with range
(0,00). Moreover, for any 0 < e < 1 we have f(log, 2) = e. Therefore f satisfies all
the desired properties.

If you raise an objection by claiming that we have never learned both exponential function
and logarithm in this course, here is another solution:

e 2nd Solution. Let f: R — (0,00) by

fla) = —

T 1422

9. HOMEWORK 9

Exercise 9.1. Let X be a subset of R, let zy be a limit point of X, and let f : X — R be
a function. If f is differentiable at xy, then f is also continuous at xy.

Solution. We have
(f(x) = f(x0)) = f(z) = f(zo)

111
z—xo;x€X \{zo} rz—zo;2€X \{zo} T — X

(x —x0) = f'(x) - 0=0.
Therefore, by adding f(xg) to both sides, it follows that f is continuous at x. O

Exercise 9.2. Let X be a subset of R, let g be a limit point of X, let f : X — R be a
function, and let L be a real number. Then the following two statements are equivalent.

(i) f is differentiable at zp on X with derivative L.
(ii) For every € > 0, there exists a § = d(¢) > 0 such that, if x € X satisfies |z — x| < 9,
then

|f(2) = [f (o) + Lz — wo)]| < el — ol

Solution. The proof is almost a tautology. Nevertheless we spell out every detail.
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(i) = (ii) : By definition, for every € > 0, there exists 6 = d(g) > 0 such that, if z € X\{zo}
satisfies |x — x| < 0, then

f(z) — f(xo)

T — 2o

— Ll <e.

Now multiply both sides by |z — x¢|. Then we have
|f(2) = [f(w0) + L(z — x0)]| < el — ol

Since this continues to hold when x = zy, we get (ii).
(ii) = (i) : For every € > 0, pick § = §(¢/2) > 0 as in (ii). Then whenever z € X\{zo} and
|z — x0| < §, we have

[#(2) = [f(wo) + Lz = 2o)]] < |a —
SRS (GNP

O

Exercise 9.3. Let X be a subset of R, let zy be a limit point of X, and let f : X — R and
g : X — R be functions.

(i) If f is constant, so that there exists ¢ € R such that f(z) = ¢, then f is differentiable
at zo and f'(zg) = 0.
11 1s the 1dentity function, so that j(z) = x, then f 1s diflerentiable at xy an
(ii) If f is the identity f i hat f(x) hen f is diff iabl d
f’(ﬂfo) =1.
(iii) If f, g are differentiable at xg, then f + g is differentiable at xq, and (f + ¢)'(xo) =
f'(z0) + ¢ (7). (Sum Rule)
(iv) If f,g are differentiable at xy, then fg is differentiable at xy, and (fg)'(zo) =
f'(xo)g(xo) + ¢'(x0) f(z0). (Product Rule)
(v) If f is differentiable at o, and if ¢ € R, then cf is differentiable at x¢, and (cf)'(zo) =
cf'(xo).
(vi) If f, g are differentiable at xq, then f — g is differentiable at xq, and (f — g)'(x¢) =
f'(wo) — g'(w0).
(vii) If g is differentiable at z, and if g(z) # 0 for all z € X, then 1/g is differentiable at
o, and (1/g)'(w0) = —g'(w0)/(g(0))*.
(viii) If f, g are differentiable at zo, and if g(x) # 0 for all x € X, then f/g is differentiable
at xo, and
g(wo) f'(x0) — f(20)g'(x0)

(f/9) (x0) = (g(x0))2

(Quotient Rule)

Solution.
(i) Notice that
f(x) = (o)
——— =0 eX .
Lo e\t
Taking limit as @ — xy for x € X\{zo}, it follows that f is differentiable at xy and

f'(o) = 0.
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(ii) Notice that

fx) — f(xo)
=1 X .
pr— , x € X\{zo}
Taking limit as © — zo for x € X \{xzo}, it follows that f is differentiable at x, and

f'(zo) = 1.
(iii) Notice that
[f(x) + 9(=)] = [f(z0) + g(w0)] _ f(x) = f(zo) | 9(x) = g(x0)

= , e X .
r — Xy r — Xy + r — Tg o \{l’o}

Taking limit as © — zo for € X\{zo}, we know from both the assumption and the
Limit Laws that the right-hand side converges to f’(zo) + ¢'(zo). This proves the
Sum Rule.
(iv) Notice that
f(@)g(z) — f(wo)g(xo)  f(x) — f(wo)

—— R — -g(fvo)+wi(x), € X\{zo}.

Taking limit as © — x¢ for x € X\{zo}, we know from both the assumption and
the Limit Laws that the right-hand side converges to f'(x)g(zo) + ¢'(x0) f(zo). This
proves the Product Rule.
(v) This follows by (i) and (iv).
(vi) This follows by (iii) and (v), with the choice ¢ = —1.
(vii) Let ¢, be as in (1.1) for g. Then
[1/g(x)] = [t/g(xo)] _ _g(x) —glxo) 1 v e X\{a).

- )

T — X r—x9 g(x)g(xo)
Taking limit as x — o for z € X\{z¢}, we know from both the assumption and the
Limit Laws that the right-hand side converges to —¢'(z0)/(g(x0))?. This proves (vii).

(viii) This follows from (iv) and (vii).
O

Exercise 9.4. Let X,Y be subsets of R, let p € X be a limit point of X, and let yy € Y
be a limit point of Y. Let f: X — Y be a function such that f(xg) = yo and such that f
is differentiable at zy. Let g : Y — R be a function that is differentiable at yy. Then the
function g o f : X — R is differentiable at x,, and

(g0 f)(w0) = g'(yo) ' (wo)-
Remark. This would have followed easily if it were true that

9(f (@) — g(f(x0)) _ 9(f(x)) —g(f(x0)) flz)— f(xo)
T — 2 f(x) = f(zo) T — o
Unfortunately, this is not always true as f(z) — f(xo) may vanish infinitely many times near
zg. We need to circumvent this technical issue.
Let (a,)22, be any sequence in X ~\ {zo} which converges to zy. Then we deduce from

Exercise 8.5 that (f(a,))32, converges to f(zo). Now we divide into two cases:

e Case 1) Assume that f’(z) # 0. Then for the choice & = 1| f/(xo)| > 0, there exists
d > 0 such that, whenever z € X and |z — x| < § we have

[f () = f(zo) = f'(wo)(z — mo)| < elw — ol
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Then it follows from the reverse triangle inequality that
[f () = f(zo)| = | f'(xo)(x — wo)| = |f (x) = f (o) — ['(w0) (& — o)
> | (@)l — 2ol = 51 olllz = w0l = 311 o)l = 2ol

since |f'(x)| = 2e. In particular, since |[x—z| # 0, this implies that | f(z)—f(zo)| > 0
whenever |x—xg| < §. Next, we pick N sufficiently large so that |a,—x¢| < § whenever
n > N. Since a, € X\{zo}, it follows that |f(a,) — f(x¢)| > 0. Then our intuitive
idea works and we have

gUfe) o)) _ | g(f(en) — a(f () fla) — Flx)

n—00 a, — T n—00 f(an) — f(ﬂ?o) Ay — T

= g'(yo)f’(xo).

e Case 2) Now assume that f'(z9) = 0. For e = TQ, pick 6 > 0 such that, if y € Y and
|y — yo| < 6 then

19() = 9(00) = 9/ (90) (y = 0)| < 51y = 30l.
Then by the triangle inequality, we have
19(y) — 9(yo)| < 19" (o)lly — wol + |9(¥) — 9(v0) — 9'(%0)(y — ¥o)]
< (l9'(yo)| + %)|y — yol-

Also, choose N sufficiently large so that whenever n > N, we have |f(a,)— f(x)| < 9.
Then by noting that

9(f(an)) — 9(f(x0))

ap — o

|f(an) — f(zo)]

|an — o

5
'sodwm+§)
it follows from the squeezing theorem, together with lim,, ., £@n=f@o) — ¢ (x0) =0,

we have e
n—0o0 n 0

Therefore, in any cases the Chain Rule follows.

Exercise 9.5. Let a < b be real numbers, and let f : (a,b) — R be a function. If zy € (a,b),
if f is differentiable at xy, and if f attains a local maximum or minimum at zy, then

f'(z0) = 0.

Solution. We first consider local maximum case. Since z is a local maximum point of f, there
exists a sufficiently small § > 0 such that f attains a maximum on (xg — d, 29 + 9) C (a,b).
Then we have

f(l’)—f(iUo) >0 I0—5<I<J}0
T — To <0 x9<x<m0+0.
Thus taking right-limit and left-limit, we find that

f'(zo) = lim M <0 and f'(z0) = lim M > 0.
z—ag T — X Tz, T — o
This proves that f'(xo) = 0. Local minimum case can be tackled in the same way. 0]
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Exercise 9.6. Let a < b be real numbers, and let f : [a,b] — R be a continuous function
which is differentiable on (a,b). Assume that f(a) = f(b). Then there exists z € (a,b) such
that f’(z) = 0.

Solution. Utilizing the Maximum Principle, pick two points xg, 21 € [a, b] such that f attains
a global maximum at z( and a global minimum at x;. If f(xy) = f(z1), then f must reduce to
a constant function and hence the claim follows from Exercise 8.7.(i). (In this case, you can
pick any point € (a,b).) In view of the previous observation, we may ssume f(zo) # f(z1).
This implies that either f(x¢) # f(a) or f(z1) # f(a). In either cases, there exists a global
extremum z of f, which is neither a nor b. Thus z is also a global extremum of f|(4s. Then
z is a local extremum of f|; and by the previous exercise, we have f'(x) = 0.

Exercise 9.7. Let X be a subset of R, let xy be a limit point of X, and let f : X — R be
a function.

e If f is monotone increasing and if f is differentiable at xg, then f'(z) > 0.
e If f is monotone decreasing and if f is differentiable at x, then f'(z() < 0.

Solution. We first assume that f is monotone. If z € X\{zo}, then by dividing the cases
based on whether x > zy or z < xy, we find that

f(x) = f(xo)

T — Tg

>0

always holds. Now assume further that f is differentiable at zy. Taking x — xy in X\{zo},
the inequality is preserved and hence we have

fla) =  tim AW =S@) S,

z—zo;x€X \{zo} T — X

For ...
O

Exercise 9.8. Let a < b be real numbers, and let f: [a,b] — R be a differentiable function.
If f/(z) > 0 for all z € [a,b], then f is strictly monotone increasing. If f'(z) < 0 for all
x € [a,b], then f is strictly monotone decreasing. If f’(xz) = 0 for all € [a,b], then f is a
constant function.

10. HOMEWORK 10

10.1. Properties of supremum infimum combined with arithmetic operations.

Lemma 1. Let A C R be a non-empty subset and ¢ € R. Definec+ A= {c+a:a € A}.
Then sup (c + A) = ¢+ (sup A) and inf (¢ + A) = ¢ + (inf A).

Lemma 2. Let E C R be a non-empty subset and ¢ € R. Define cA = {ca:a € A}. Then
e Ifc >0, then sup (cA) = c(sup A) and inf (cA) = c(inf A).
e Ifc <0, then sup (cA) = ¢(inf A) and inf (cA) = ¢(sup A).
o [fc=0, then sup (cA) = inf (cA) = 0.

Proof. Let us first assume that ¢ > 0. To prove that sup (cA) = ¢(sup 4), we claim that

sup (cA) < c¢(supA) and sup(cA) > c(sup A).
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For the first inequality, let @’ € cA be arbitrary. Then a’ = ca for some a € A. But since
a < sup A, we have @’ = ca < ¢(sup A). This shows that ¢(sup A) is an upper bound of cA,
hence we have sup (cA) < ¢(sup A). The reverse inequality also follows in a similar manner.
(Or notice that csup A = csup (¢~ 'cA) < cc™'sup (cA) = sup (cA).) Then inf (cA) = c(inf A)
also follows in the same way.

When ¢ < 0, the proof goes in almost the same way, but what changes now is that
multiplying ¢ to an inequality reverses the order. I leave the detail of the proof to you. [

10.2. Refinement of partition. Suppose that a closed bounded interval [a, b] is given. If
P, P' C la,b] are partitions such that P C P’, then we call P’ a refinement of P. Thus any
refinement of P is obtained by adding finitely many points of [a,b]. The next lemma shows
why this concept is useful in the context of Riemann sum.
Lemma 3. Let P, P' be partitions of [a,b] and f : [a,b] — R be a bounded function. Then
e If P’ is a refinement of P, then U(f, P") < U(f, P),
e If P’ is a refinement of P, then L(f, P') > L(f, P).
In other words, refining a partition makes the upper sum to become smaller and the lower
sum to become bigger.

Proof. We only prove the first part, since the second part follows mutatis mutandis. Also
let us first consider a very simple case where P = {a, b} consists of only two endpoints and
P ={a=ty<-- <t, =>} Then it is easy to observe that, for 1 <i < m,

M; = sup e,y v1f (2) < sup peap f(2) = M.
Indeed, this follows since f(x) < M for any a < x < b. Then it follows that

U(f, P = ZMi(ti —t;1) < ZM(@- —ti1) =M(b—a)=U(f,P).

This observation readily generalizes to arbitrary partition P and its refinement P’, but a
direct proof may require huge burden of notations. Instead we give a concise demonstration.
Let us write P = {a = 29 < -+ < x, = b}. Also we write I; = [z;_1,x;] for simplicity.
Then it is easy to observe that P’ N I; is a partition in I; which is a refinement of {x; 1, xz;}.
Consequently,

U(fP)=> Ufls, PN L)< U(fly A{zior,2:}) = U(f. P)
=1 =1

and the proof is done. ([l
10.3. Riemann integrability condition.

Lemma 4. Let f: [a,b] — R be bounded. Then the followings are equivalent:
(i) f is Riemann integrable.
(ii) For any e > 0, there exists a partition P of [a,b] such that U(f, P) — L(f, P) < .

Proof. (i) = (ii) : Let € > 0 be arbitrary. Using property of infimum and supremum, pick
partitions P; and P, such that

b b
U(f,P1)</f+g and L(f,P2)>/f—%.
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Let P = P, U P, be the common refinement. Then by Lemma 1.3, we also have

b b
UG SUGR) < [£45 and LUAP) 2 LR > [ 15

But since f is Riemann integrable, both the upper Riemann integral and the lower Riemann
integral coincide, let f; f= fab f= f; f, and hence

U(f, P)— L(f,P) < (/aber%)—(/:f—%):e.

(i) = (i) : For each € > 0, pick a partition P satisfying the condition of (ii). Then we
have

b b
og/f—/fsv<f,P>—L<f,P><a

Now since ¢ is arbitrary, taking e — 0 shows that fab f— fab f = 0, which implies (i) as

desired. 0

Exercise 10.1. Let a < b be real numbers, and let f,g: [a,b] — R be Riemann integrable

functions on [a, b]. Then

(i) The function f + ¢ is Riemann integrable on [a, b], and f;(f +g)= (fab )+ (fab q).
v) If f(z) >0 for all z € [a,b], then [” f > 0.

(v) If f(z) > g(x) for all z € [a,b], then fabf > f; qg.

(vi) If there exists a real number ¢ such that f(x) = ¢ for x € [a, b], then f; f=c(b—a).
)

(vili) Let ¢ be a real number such that a < ¢ < b. Then f|,q and f|; are Riemann
integrable on [a, c| and [c, b] respectively, and

/abf = /acflia,c] +/be|[c,b]-

Remark 1. Our general strategy is as follows: suppose that f : [a,b] — R is bounded
functions. If we can somehow figure out that there exists I € R satisfying

Ig/abf and Zfél,
IgﬁfsffSI.

Thus all these inequalities boil down to equalities, and we find that (1) f is Riemann in-
tegrable and ( f f = I. In our actual proofs, our goal is to identify suitable number

I.
Solution. (i) To this end, we show that

/f+/g</ (f+g) and f(fw)sfﬂfg- (7)
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In fact, this holds for any bounded function f, g : [a,b] — R as we will see from our proof.
Once this is proved, then for Riemann integrable functions f, g : [a,b] — R, we obtain

/abf+/abg§/ib(f+g) and /ab(f+g>§/abf+/abg-

Therefore the conclusion follows by the remark.
So it remains to prove (7). Let P,@ be any partitions of [a,b]. Then P U @ is also a
partition of [a, b], and thus we can write PUQ = {a = x¢ < -+ < x, = b}. Then we have

sup we[xi—lyxi}(f(x) + g(x)) < (Sup w€[$171,xi}f($>) + (Sup IEE[Iiﬂ,Ii]g(x)) :
This is a direct consequence of the following fact: for all z € [z;_q, 2],
f(@) + g(x) < (3uP yeps 100 f () + (SUP 2w 1,019(2)) -
With this, we readily observe that

[ tra<u¢egpPuQ

3

(SUP a:e[xi,w;i](f(l’) + g(x))) (25 — 24-1)

7

(Sup Z‘E[Ii_l,xi]f<x> + Sup Z‘G[Ii_l,wi]g(‘r)) (‘Il - xi—l)

-

=1

3 |l

(SUP ze[ri_l,mi]f(x)) (i — wio1) + Z (SUP we[mi_l,mi}g(x)) (xi — zi-1)

1 =1
=U(f,PUQ)+U(g9, PUQ)
<U(f,P)+Ulg, @),

<.
I

where at the last inequality we exploited Lemma 1.3.> By taking infimum for all P and for
all () separately we obtain

b

b b
/<f+g>smpr<f,P>+ianU<g,Q>=/f+/g.

Then the second inequality of (7) follows from this. The first inequality follows exactly in
the same way. (All you have to do is to replace suprema by infima, upper sums by lower
sums, upper integrals by lower integrals and reverse the order of every inequality.) Therefore
the proof if (i) is finished.

(iv) If f >0, then for any partition P = {xo,..., 2}, inf s, , 2 f(2) > 0. So L(f, P) =

S™(inf f)Az; > 0. Since f is integrable, [* f = sup pL(f, P) > L(f, {a,b}) > 0.

3Now the reason why we introduced two partitions is clear. We want to take infimum of U (f, P) and
U(g, Q) separately. But if P and @ are somehow related, then it is not easy to tell whether the corresponding
infimum becomes the sum of infima. Thankfully, our observations show that we can indeed decouple U(f, P)

and U(g, Q).
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(v) Apply (iv) to f — g > 0 instead. Then by (i) and (iii), we have

/ab(f—g)ZO — /abf—/abgzo — /abfz/abg.

(vi) If f is a constant function with the common value ¢, then for any partition P =

{@o, ..., xn}, SUP o, o f = candinf,,_ . f =c. Thus U(f, P) = > c(z; —xi-1) = c(b—a)
and L(f, P) =Y c(x; —x;—1) = ¢(b—a). Upon taking infimum and supremum respectively,

it follows that
b b
/f—c(b—a) and /f—c(b—a).

Since they are equal, f is integrable and f; f = c(b—a), and hence the claim follows.

(vii) Let F(z) = f(x) for z € [a,b] and F(z) = 0 for z € [¢,d] \ [a,b]. Assume ¢ <
a < b < d Let P’ be a partition of [¢,d]. Let P = P'U {a,b}. P is a refinement
of Pl. Let P={c=2p< - <zp=a<+-<z,=0b<- <z, =d}. Then
U(F7 P) = f:l(sup [$i—1,$i]F)Axi + Zg:p—l—l(SUP [zi—lyzi]F>A$i + Z?:q—l—l(suP [zi—lyzi]F>A$i'
Since F' = 0 on [c,a] and [b,d], the first and third sums are 0. The middle sum is U(f, Q)
where @) = PN|a,b] is a partition of [a,b]. Thus U(F, P) = U(f, Q). Since P is a refinement

of P, U(F,P) <U(F,P'). Also fch = inf pU(F, P') < U(F, P'). For the specific partition

P constructed from P/, fch < U(F,P) =U(f,Q). This holds for the partition @ of [a, b]
derived from P’. Can we take infimum over Q7 Let Q) be any partition of [a,b]. Let
P'=QoU{c,d}. Then P = P'U{a,b} = Qo U {c,d} is a partition of [c,d]. PNla,b] = Qo.

So U(F,P) = U(f,Qo). Then [‘F = inf paU(F,P") < U(F,P) = U(f, Qo). Since this
holds for any Qo, ['F < inf,U(f, Qo) = ['f. Similarly, L(F,P) = L(f,Q). ['F =
sup pL(F, P") > L(F,P) = L(f,Q). So fch > sup o L(f,Q) = fff If fis integrzgle on
a, b], fabf = f_abf = fab f. Then fch > fabf > f_ch. Since deF < f_ch always holds, we

must have equality. Thus F' is integrable on [c, d] and fcd F= fab f.

(viii) For this problem, we utilize the equivalent formulation as in Lemma 1.4. Let € > 0
be arbitrary. Then there exists a partition P on [a, b] such that U(f, P) — L(f, P) <e. We
may assume that P contains ¢, otherwise we can replace P by the refinement P U {¢} which
preserves the inequality U(f, PU{c}) — L(f, PU{c}) < U(f,P) — L(f, P) < €. Now write
P={a=2y< - <Zpy=¢c<Tpy < - <x, =>}. Using this we can define P, = {a =
xog < -+ < Ty, = ¢} as a partition of [a, ] and likewise P, = {c =2, < -+ < x, =b} as a
partition of [c,b]. Then it follows that

U(f’[a,c]; Pl) - L(f‘[a,c]a Pl) = (SUP [xi,hzi]f — inf [acifl,xi]f) (-Z'z - xi—l)

<

M- 11

(Sup [I¢717x¢]f — inf [xifl,l'i]f) (ZL’l - zi—l)

1

(f,P)—L(f,P) <e.

7

I
J
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Similarly U(f|ce), P2) — L(f|jcp)s P2) < €. Therefore by Lemma 1.4, both f|,q and f|s are
integrable. Also, using the same setting as before, we find that

c b
/ ft / < U(flwes P) + U(fliesy. P2) = U, P).

Since f is integrable on [a, b], fabf = inf pU(f, P). Thus [* f+fcbf < fab f. Similar argument
shows that

c b
/ f+/ fZL(f|[a,c]apl)+L(f|[c,b}ap2):L(f7p)

Taking supremum over P, [*f + fcbf > sup pL(f,P) = f; f. Thus by taking ¢ — 0% we
obtain the equality f: f= fac f+ fcb f as desired. 0

Exercise 10.2. Let a < b be real numbers. Let f: [a,b] — R be a bounded function. Let
¢ € [a,b]. Assume that, for each § > 0, we know that f is Riemann integrable on the set
{z € [a,b]: |z —¢| > d}. Then f is Riemann integrable on [a, b].

Proof. For the simplicity of our proof, let us assume that a < ¢ < b. For the exceptional
cases ¢ = a and ¢ = b, only a minor modification is needed, so we only focus on the case
a < ¢ <b. We use Lemma 1.4 for the proof. Choose a bound M > 0 such that |f(z)| < M
for all € [a,b]. Let ¢ > 0 be arbitrary. Now we pick ¢ as follows:

5:min{ c — b—c}'
AM +17 2 7 2
Note § > 0. By the assumption, we know that f is Riemann integrable on the set {x €
la,b] : |x — ¢| > &}. Note that we can write
{z €la,b]: |x—c| >} =[a,c—]U[c+d,b] =1 UL,
where I} = [a,c—6] and Iy = [c+6, b] are disjoint closed intervals. Then by invoking Exercise

1 (viii), f is integrable on I; and I. By Lemma 1.4, for each ¢ = 1,2 we can find a partition
P, of I, such that

U(fln, Bi) = L(fln, Br) < %

Now let P = P, U P,. This forms a partition of [a, b] if we add the points ¢ — §,c+ § (if they
are not already endpoints) and consider the interval [c — §, ¢ 4 §]. More precisely, let P* be
the partition of [a, b] given by the union of the points in P, and P,. P* partitions [a, b] into
subintervals from Pj, subintervals from P, and the interval [c — ¢, ¢ + d]. We have

U(f? P*) - L(f? P*) - (U(f|]17P1) - L(f|]1,P1)) + (U(f|]27P2) - L(f|127P2))
+ (Sup [076,c+5]f — inf [c75,6+5]f> ((C + 5) - (C - 5))
<S4 (M —(=M))(25)

3 3

2
— = L aMs

3

2¢e €
< — 4+4M
<5+ (5e9)
<25+€_5€

3 3
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Let’s re-evaluate the choice of 4. Choose 0 = ;377 is small enough? Let’s try § = g5;. If

M =0, f =0, integrable. Assume M > 0. Thenézmin((sLM,%,b;QC).
€ € 2e € 2¢ 2 4e
Uf,P")—L(f,P)<=-+=-4+4M6< —+4M— = — + — = —.

(. F) (. %) 3+3+ _3+ 6M 3+3 3

Still not quite < €. Let’s use the text’s value 6 = min (55777, ---). Use £/3 instead of £/2014.

Let partitions Py, P, satisfy U — L < ¢/3 on Iy, I. Choose § = min(g57, 52, b%c) Then

. . e € 2e € 2 2 4e

U(f,P") L(f,P)<3+3+4M6§ 3 +4M6M— 3 + 3= 3
This argument shows it’s O(g). To get exactly < ¢, choose U — L < ¢/3 on I, I, and § =
min(:57, 5%, %5¢). Then U—L < ¢/3+¢/3+4M(e/(TM)) = 2¢/3+4¢/7 = (14+12)e/21 =
26¢/21. Still > £. Maybe § = ¢/(12M)? U — L < 2¢/3 + 4M(2/(12M)) = 2¢/3 + /3 = e.
Yes, choosing § = min(57, 5%, %) (assuming M > 0) works. Let Py, P, be partitions for
I, Iy such that U(f|;,, B;) — L(fl1,, P;) < ¢/3. Let P* = PLUP,. Then U(f, P*)—L(f, P*) <
€/3+¢/3+2M(20) =2¢/3+4Mo < 2¢/3+4M(c/(12M)) = 2¢/3 4+ ¢/3 = €. Therefore f

is integrable by Lemma 1.4. 0

Exercise 10.3. Find a function f: [0,1] — R such that f is not Riemann integrable on
[0, 1], but such that |f| is Riemann integrable on [0, 1].

Proof. Define f by
1, reQnlo,1
() = o
-1, z€[0,1]\Q
Since any interval of positive length contains both rational numbers and irrational numbers,
for any partition P = {a = xy,...,z, = b} we have
SUD pefe; 1,2 f () =1 and inf e, | 00 f(x) = -1

Consequently it follows that U(f,P) = > 1 (z; —x;-1) = b—a = 1 and L(f,P) =
>(=1) - (i — xi—1) = —(b—a) = —1 for any partition P of [0,1]. Hence we have

Zf:1¢—1:£f.

So f is not Riemann integrable on [0,1]. On the other hand, |f(z)| = 1 for all z € [0, 1].
Since |f| is a constant function, it is Riemann integrable on [0, 1] by Exercise 1(vi), and

J1fldz =1(1 - 0) = 1. O

Exercise 10.4. Let a < b be real numbers. Let f: [a,b] — R be a bounded function. So,
there exists a real number M such that |f(z)| < M for all € [a,b]. Let P be a partition of
[a, b].
e Using the identity o? — 3% = (a + 8)(a — 3), where a, 3 € R, show that
e Show that if f is Riemann integrable on [a,b], then f? is also Riemann integrable on
la, b].
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e Let f,g: [a,b] — R be Riemann integrable functions on [a,b]. Using the identity
4aff = (a+ B)? — (a — B)?, where «, 3 € R, show that fg is Riemann integrable on
[a, 0].

Proof. (i) Let P = {a = 2o < --- < x, = b}. Let w;(h) = Sup pefz, | zM(®) —inf 1o, | o h(2)
denote the oscillation of a function h on the i-th subinterval. Then U(h, P) — L(h, P) =
S wilh)(x; — 24-1). We need to show w;(f?) < 2Muw;(f) for each i. Let z,y € [z;_1, 7).
Then

[F@)* = f@)?| = |(f(y) = F@) () + f@)] =) = F@)|If(y) + f2)].
Since |f(xz)] < M for all =, |f(y) + f(x)] < |f(y)| + |f(z)] < M+ M = 2M. Also,
<

(z)] <
fly) = fz) < sup f —inf f = w;(f) and f(z) = f(y) < sup f —inf f = wi(f). So [f(y) —

f(z)] < wi(f). Combining these, we get |f(y)? — f(z)?| < wi(f)(2M) = 2Mw;(f). Since
this holds for all z,y € [x;_1,2;], we have w;(f?) = sup,.,|f(v)? — f(x)?] < 2Mw;(f). (Note:

wi(h) = supxy€1.|h( ) — h(z)]). Now, multiply by (z; — x;_1) and sum over i:

U(f*,p sz (fHAz; < Z 2Mw;(f)Az; = 2Mzn:wi(f)A:vi =2M(U(f, P)—L

i=1

(ii) Assume f is Riemann 1ntegrable By Lemma 1.4, for any € > 0, there exists a partition
P such that U(f, P)— L(f, P) < (if M =0, f =0, f> =0, integrable; assume M > 0).
Then by (i),

2M+1

U(f%, P) — L(f% P) < 2M(U(f, P) — L(f, P)) < 2M <2M€+ 1) <

By Lemma 1.4, f? is also Riemann integrable on [a, b].

(iii) Let f,¢g be Riemann integrable. By Exercise 1(i), f + g is Riemann integrable.
By Exercise 1(iii), f — ¢ is Riemann integrable. By part (ii), (f + ¢)® and (f — g)? are
Riemann integrable. Using Exercise 1(iii) again, the difference (f+¢)?>— (f —g)? is Riemann
integrable. Using Exercise 1(ii), the function §((f 4+ ¢)* — (f — ¢)?) is Riemann integrable.

But 4fg = (f+9)* — (f — 9)% So fg=1((f +9)* — (f — g)%) is Riemann integrable. O

Exercise 10.5. Let f: [0,1] — [0,00) be a continuous function such that fol f =0. Prove
that f(z) =0 for all = € [0, 1].

Proof. Assume otherwise. Then there exists ¢ € [0,1] such that f(¢) > 0. Since f is
continuous, for ¢ = f(c¢)/2 > 0, there exists 0 > 0 such that if x € [0, 1] and |z —¢| < §, then

|f(x) — f(c)] < e = f(c)/2. This implies f(x) > f(c) —e = f(c) — f(c)/2 = f(c)/2 for all
x € (c—6,c+6)NJ0,1]. Let [p,q| be a closed interval contained in (¢ — 4, ¢+ ) N[0, 1] with
p < q. For instance, let p = max(0,¢ — §/2) and ¢ = min(1,c+ §/2). Then ¢ —p > 0. On
[p,q], we have f(x) > f(c)/2 > 0. Since f(z) > 0 for all z € [0, 1], we have

/Olfdx:/OPfdx+/qfdx+/lfdx.

Since f >0, [ fdz > 0 and f fdx > 0. For the middle integral, fq fdx > fq c)/2)dr =
(f(e)/2)(¢ — p) > 0. Thus, fo fdz > (f(c)/2)(¢ — p) > 0. This contradicts the given
condition fol f = 0. Therefore, our assumption must be false, and f(x) = 0 for all z € [0, 1].
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Another proof. Here is another proof which is in some sense a sledgehammer method. Since

f is continuous, F(z) = [/ f(t)dt defines a differentiable function such that F'(z) = f(z) on
0, 1] by the Fundamental Theorem of Calculus Moreover, since f is non-negative (f(z) > 0),
for 0 <z <y <1, Fly) = [V f(t)dt > 0. Thus F(z) is non-decreasing. We

have F(0) = fo f =0. We are given F(1) = fo f = 0. Since F' is non-decreasing and
F(0) = F(1) =0, it must be that F'(z) = 0 for all z € [0, 1]. This shows that F is identically
zero, hence F'(x) = f(z) =0 for all = € [0,1] as well. O

Exercise 10.6. The following exercise deals with metric properties of the space of Riemann
integrable functions.

e Let , 3 be real numbers. Prove that a8 < (a? + 5%)/2. Now, let a < b be real
numbers, and let f,g: [a,b] — R be two Riemann integrable functions. Assume that

fab f? =1 and fab g> = 1. (Recall that since f,g are Riemann integrable, we know
that f2, g% and fg are also Riemann integrable by Exercise 10.4.) Prove that

/abfgél.

e Let a < b be real numbers, and let f,g: [a,b] — R be two Riemann integrable
functions. Prove the Cauchy-Schwarz inequality:

bfg < (/bf2)1/2 (/b92>1/2

e Let a < bbereal numbers, and let f, g, h: [a,b] — R be Riemann integrable functions.

Define . 12
ata)=([r-a2)

Prove the triangle inequality for d. That is, show that

d(f,g) < d(f,h) +d(h,g).
Proof. (i) By expanding the trivial inequality (o — 3)? > 0, we get a® —2a3+ % > 0, which
implies a? + 3% > 2a3, or aff < (a? + 3?)/2. Applying this pointwise for f(x) and g(z), we
have f(z)g(z) < (f(2)* + g(x)?)/2 for all = € [a,b]. Since f, g are integrable, f2, g2, fg are
integrable. By linearity and monot0n1c1ty of the integral (Exercise 1(ii, v)):

/fgda:</ fla)f +9(@) +g (/ f2dx+/ zda:).

Given f: f?=1and fa g° =1, we get

b 1
/fg§§(1+1):1.

(i) Let A = fbf2 and B = fbg Case 1: A > 0and B > 0. Define f(z) = f(z)/VA and
g(z) = ( )/\/_ Then [V f2 = [P(f2/A) = (1/A) [ f* = AJA = 1. Similarly ["§* = 1.
By part (i f f§ < 1. Substituting back:

" f(x) g(2) ’ ’
’ ﬁﬁdwgl — m/@ fgdr <1 = /a fgdx < VAVB.
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This is f fg < ( f H2( f 2)1/2. Now apply this result to —f and g. Since [(—f)? =
[ f*=A, we get fa fg < \/_\/E, which means — f; fg < V/AVB. Combining the two
inequalities gives | [ ; fgl < VAVB.

Case 2: A = fabf2 =0or B = fng = 0. Suppose A = 0. Since f*(z) > 0 and f?
is integrable (by Exercise 4ii), f: f? = 0 implies f(x)? = 0 ”almost everywhere”. If f is
continuous, this implies f(x) = 0 for all = (by Exercise 5 logic). Then fg =0, so [ fg = 0.
The right hand side is AY/2BY? = 0'/2B'/2 = 0. So 0 < 0 holds. For integrable functions,
does [ f? =0 imply [ fg = 0? We can show this using the inequality |fg] < 3(ef? + 1g?).
Then | [ fg| < [|fg] < 35(e [ f>+ 1 [¢*) = 3(0+ 1B). This holds for all £ > 0. Letting
£ — 00, this suggests | [ fg| <0, so f fg=0. Thus the inequality holds 0 < 0.

(iii) We want to show d(f, g) < d(f,h)+ d(h,g). This is equivalent to showing d(f, g)* <
(d(f,h) + d(h, g))? since distances are non-negative.

dugf:/Xf—wwxzjku—hwuh—mfm
b
:/ﬁu—hf+%f—mm—gwwh—m%m
_ / (f — h)2dz +2 / (f = h)(h— g)dz + / (h— g)2dz (by linearity)

—d(f P 2 [ (f = B g)do + d(hg)°

a

Now apply the Cauchy-Schwarz inequality (part ii) to the middle term with functions F' =

f—hand G =h—g:
/ab(f —h)(h = g)dz| < (/ab(f - h)%lsc) : </ab<h B g)QdI) - Al

So, f:(f—h)(h—g)dx < d(f,h)d(h,g). Substituting this back into the expression for d(f, g)*:
d(f,9)* < d(f,h)* +2d(f, h)d(h, g) + d(h, g)*
= (d(f,h) +d(h, g))*.

Taking the square root of both sides (which preserves the inequality since both sides are
non-negative) gives the desired triangle inequality:

d(f,g9) <d(f,h) +d(h,g).

11. HOMEWORK 11

Exercise 11.1. Let (X, ||-||]) be a normed linear space. Define d: X x X — R by d(x,y) :=
|z — y||. Show that (X, d) is a metric space.

Solution. Proof. It’s clear that d > 0. If d(x,y) = 0, then since || - || is a norm it follows that
x —y = 0 or, equivalently, that x = y. Now, d is symmetric insofar as

diz,y) =l —yll=[-1-(y—2)[| = =1 |ly — z|[ = d(y, x).
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Lastly, the triangle inequality for d follows from the triangle inequality for the norm:
dz,y) =z —yll = llz — 2+ 2z —y[| < ||z — 2l + [z = yl| = d(z, 2) + d(z,y).
O
Exercise 11.2. Let n be a positive integer and let - € R". Show that [|lz[|, = limj, o [|z[[, -
Solution. Proof. Fix x = (x1,...,x,) € R". Find j € {1,...,n} with
||l my = [25] = ] [eoe m)-

Then for p > 0 we see that

n 1/p 1/p
||| oo (m) = [25] < <Z \xz’|p> (Z || [foe R"))

= (n]]z|[j~ Rn))l/p = nl/p||$||goo(Rn).
By the squeeze theorem, lim, . ||z||, exists and equals ||z|| e @n). O
Exercise 11.3. Let (X, (-,-)) be a real inner product space. Define ||| : X — [0,00) by
|z|| := +/(z,z). Show that (X, ||-||) is a normed linear space. Consequently, from Exercise
12.20, if we define d: X x X — [0,00) by d(z,y) = \/{(z —y), (x — y)), then (X,d) is a

metric space.

Solution. We verify the norm properties. Let o« € F (where F is the scalar field, R or C) and
z,y € X.

(1) Non-negativity: (x,z) > 0 by definition of inner product, so ||z| = \/(z,z) > 0.

(2) Definiteness: [|z]| =0 <= /(z,2) =0 <= (z,2) =0 <= 2 =0.
(3) Homogeneity:

laz|| = Vaz, ax) = ad(z,z) = V]a*(z,2) = V]aV/{x,2) = |a]|2]|

(4) Triangle Inequality: We need to show ||z + y|| < ||z|]| + ||ly||. This is equivalent to
showing [l + y|I* < ([l=[| + [[y))*.

o +yl* = (z+y,2+y)
= (2, 2) + (z,y) + (v, 2) + (v, 9)
= Jz]|* + (z, y) + (z,y) + |yl
= ||z[|* + 2Re(z,y) + [lyl*

By the Cauchy-Schwarz inequality (|(z, y)| < [|z||||y]|), we know Re(x,y) < |{z,y)| <
llz||||y||. Therefore,

lz +yll* < ll=l* + 2l ]Iyl + lly]*
= (=l + llylh*.
Taking the square root of both sides yields ||z + y|| < ||| + ||ly||-

All norm properties are satisfied. 0J
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Exercise 11.4. Consider the set A of all (z,y) in the plane R? such that x > 0. Find the
set of all adherent points of A, then find whether or not A is open or closed (or both, or
neither).

Solution. We'll show that A = {(z,y) € R? : z > 0}. Let (z,y) € R% If 2 > 0, then
(x,y) € A and so (z,y) is an adherent point of A vacuously. Suppose then that x = 0. If
e > 0, then (¢/2,y) € A and

Iz.5) = (c/29)ll = [[(=e/2,0)ll = 5 <&

and so (x,y) is an adherent point of A. If x < 0, then choosing ¢ = —x/2, we see that the
ball of radius € about (x,y) does not intersect A, and so (z,y) is not an adherent point of

A. O

Exercise 11.5. Let n be a positive integer. Let x € R™. Let (x(j));?‘;k be a sequence of
)

elements of R”. We write 29 = (aigj Yo ,x%j)), so that for each 1 < i < n, we have 2 e R,

that is, a:z(j) is the " coordinate of 7). Prove that the following three statements are
equivalent.
. (x(j))j?";k converges to x with respect to dy, .

. (x(j))j?’ik converges to x with respect to dy,.

. (a:(j));‘;k converges to x with respect to dy__.
Solution. Proof. We'll prove a more general result. From the proof in Exercise 11.2, we see
that if 1 < p,q < oo, then

n_l/q||$||ep(Rn) < ||x||£q(Rn) < nl/pHmeRn) < n1+1/p||$||gw(Rn) < n1+1/p+1/q||$||eq(w)
or, in short,

-1
n @] le@ny < [lzllagn < ntllzl|een)
with the convention that 1/co = 0. Now, say {27}52, is a sequence in R" and z, € R" with
x7 converging to xy with respect to d,. Then dgp(gn(zo,27) — 0 as j — oo, and so
dpagen) (@7, 20) = |27 — o|leaginy < n'P||27 — o|len(ny = 0P eny (27, 0) — 0

as j — 0o, and so ¥/ — xg with respect to d, as j — oo. 0
Exercise 11.6. Let (X, d) be a metric space, let E be a subset of X, and let xy be a point
in X. Prove that the following statements are equivalent.

e 1 is an adherent point of E.

® 1y is either an interior point of £ or a boundary point of E.

e There exists a sequence (z,,)%; of elements of F which converges to xy with respect
to the metric d.

Solution. Proof.

(i) Suppose x is an interior point of X. Then Jr > 0 such that B(zg,7) C X. If x4 is an
exterior point, then B(zg,r) N X = () and so B(zg,r) C X° which is a contradiction.
Therefore x is not an exterior point. If x( is not a boundary point, then zy is an
exterior point or interior point. Since xq is not an exterior point, then x is an interior
point.
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(ii) Suppose g is not an interior point. Then for all » > 0 we have B(xy,r) € X which
implies that B(xg,r) N X # (). But also since zq is not a an interior point we have
B(zg,7) N X # () for any r > 0 and so x¢ is a boundary point.

O

Exercise 11.7. Prove the following statements.

e Let (X,d) be a metric space, and let Y be a subset of X, so that (Y,d|y«y) is a
metric space. If (Y, d|y«y) is complete, then Y is closed in (X, d).

e Conversely, assume that (X, d) is a complete metric space and that Y is a closed
subset of X. Then (Y, d|y«y) is complete.

Solution. (i) Say (Y, dyxy) is complete. Suppose z,, is a sequence in Y converging to zo € X
with respect to d. Then {z,,}5°, is a Cauchy sequence with respect to dyxy. Since (Y, d|yxy)
is complete, there exists some yy € Y with z,, — yo with respect to dyyy. Now,

0 < d(z0,%0) < d(z0, 7,) + d(20, y0) = d(w0, 70) + dyxy (Tn, Yo) — 0
and so by the squeeze theorem d(zg,yy) = 0. So g = yp € Y. So Y contains its limit points,
and hence Y is closed. ]

Exercise 11.8. Let X be a subset of the real line R and let I be a set. The set X is said
to be open if and only if there exists a (possibly uncountable) collection of open intervals
{(aa,ba) taer where a, < b, are real numbers for all o € I, so that X = Uaer(aa,ba)-
Assume that X is open. Conclude that there exists a set J which is either finite or countable,
and there exists a disjoint collection of open intervals {(ca, dy)}acs Which is either finite or
countable, where ¢, < d, are real numbers for all & € J, so that X = Uaes(Ca,dy). (Hint:
given any x € X, consider the largest open interval that contains x and that is contained in
X. Consider then the set of all such intervals, for all z € X.)

Remark 2. The analogous statement for R? is not true.

Solution. Let X be an open subset of R. Define an equivalence relation on X by declaring
that x ~ y if the closed interval

[min{z, y}, max{z,y}] C X.

Fix z € X. I claim that the equivalence class [x] = {y € X : y ~ z} is an open interval.
Let’s first prove it is open. Say y € [z]. Since y € X, there exists some £ > 0 so that
B(y,e) C X. But then

[min{yu Yy + 7’}, max{y, Y + T}]? [Hlll’l{y, Yy — T‘}, max{y, Yy — T}] - X

for every 0 < r < e/2. Soy+r ~y—r ~y~ xforevery 0 < r < e/2. Hence B(y,e/2) C [z],
and so [z] is open. Now, let

a, =inf{y € X : [y,2] C X} and b, =inf{y € X :[z,y] C X}
It’s not difficult to prove that (a,,b,) C [z]. If y € [x] and 2 < y. Then
[z,y] € X
Since X is open, there exists some € > 0 so that

(z,y+e)C X
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But then a, < x <y <y+e < b,. Soy € (az,b,). This holds similarly if y < x, which
proves the reverse conclusion. Since equivalence classes are disjoint, and partition X, this
proves that X is a disjoint union of open intervals. To see why there must be a countable
number of intervals, define a map ® : QN X — {[z] : z € X} by

®(q) = lq]-

I claim this map is surjective. Indeed, say that z € X. Then [z] is an interval. Since Q is
dense in R, there exists some g € [z] € X. So ¢ € XNQ and ®(g) = [z]. Since Q is countable
and @ is surjective, we know that {[z] : x € X} is at most countable, i.e. countable infinite
or finite. O

12. HOMEWORK 12

Exercise 12.1. Let (X, d) be a compact metric space. Show that (X, d) is both complete
and bounded. (Hint: prove each property separately, and use argument by contradiction.)

Solution. We first prove that X is bounded. Suppose for the sake of a contradiction that
(X, d) is not bounded. I claim there exists a sequence {x,}52, with the property that

d(z;,x;) > 1 for all i # j.
Choose 1 € X. Since X is not bounded we know that
X g B(Sll'h 1)

and so we may choose x5 € X \ B(zy,1). Note that zo ¢ B(x;,1) and so we see that
d(xe,21) > 1. Since X is not bounded we know that X cannot be contained in the union of
two balls

X & B(z1,1) U B(2,1)
since otherwise we would have it contained in one large ball X C B(z1, 1+ d(z1,z2)) (draw
a picture). So there exists some x5 € X \ (B(x1,1) U B(xq,1)). Note that

d(zs,xzj) > 1for j=1,2
since z3 ¢ B(x1,1) U B(xg,1). Continue in this way, as
X ¢ B(xy,1)U---UB(xy-1,1)
we may find z, ¢ B(x;,1)U---U B(z,-1,1) and note that
d(zy,z;) >1for1 <j<n-—1

which completes our claim. Now, since (X, d) is compact the sequence {x,}°, has a con-
vergent and hence Cauchy subsequence {z,, }7°,. But

d(Tngs ;) = 1 for i # j

and so {z,, }32, cannot be Cauchy, a contradiction. We now prove that X is complete.
Suppose {x,}22, is an arbitrary Cauchy sequence in X. Since X is compact, there exists
a convergent subsequence {z,, }?°, and a point zo € X with z,, — zo. We'll show that
{z,}5°, converges to zp, which will complete the proof. Let € > 0. Since {x,}52, is Cauchy
there exists some N; € N so that

€
d nsym a
(p, )<2
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for n,m > Ny. Since {x,, }3°, converges to zy there exists some Ny € N so that
£
d(ﬁnk,l'o) < 5

for all £ > Ns. So if we let N = max{Ny, Ny}, then for all £ > N we see that
d<xk7 Zl’fo) S d<xk7 :Bnk> + d(ﬂfnk,.fo) < g —+ g =€

and so {x,}>2, converges to g, as desired. O

Exercise 12.2. Let n be a positive integer. Let (R™,d) denote Euclidean space with the
metric d = dy, or d = dy,. Let E be a subset of R”. Show that E is compact if and only if
E is both closed and bounded. (Hint: use Bolzano-Weierstrass in R".)

Solution. If E is compact, then from Exercise 1 we know that (E,dg x E) is bounded and
complete. By Proposition 4.8, we see that F is closed in R™. So F is closed and bounded,
as desired. Suppose that F is closed and bounded. Let {z;}52, be a sequence in E. Since
E is bounded, the sequence {z;}32, is bounded. By Bolzano-Weierstrass, there exists a
subsequence {z;, }?°, and xy € R" with z;, — z. But E is closed, so zy € E. Hence every
sequence in E has a subsequence which converges to an element of E, whence it follows that
E' is compact, as desired. ([l

Exercise 12.3. Let (X, d) be a metric space, and let K, Ks, ... be a sequence of nonempty
compact subsets of X such that

KiDKy DKy ---.

Show that the intersection N?2; K is nonempty. (Hint: first, work in the compact metric
space (Ki,d|k,xx,). Then, consider the sets K; ~ K; which are open in K;. Assume for
the sake of contradiction that N2, K; = (). Then apply the Open Cover Characterization of
compactness. )

Solution. Suppose for the sake of a contradiction that ﬂ;’il K; = 0. Then

KiCX=X~0=X~("K)=X K =X~KU(JX\K)
j=1 j=1 j=2
and so
K C XNk,
j=2
Since each K is compact and hence closed, it follows that X \ K is open. So {X \ K},

is an open cover of K;. Since K; is compact, there exists a finite sub-cover {X \ K} _;
so that

n n
Ky C|JXNEK, =X~ ([|X\K;,)=X\Kj,
m=1 m=1
So K, is contained in its complement, and so K, = 0. But every K is non-empty, and so
we have a contradiction. 0

Exercise 12.4. Let (X, dx) and let (Y, dy) be metric spaces. Let f: X — Y be a function.
Show that the following two statements are equivalent.
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e f is continuous at z.
e If we have a sequence (z1))%2 in X which converges to xy with respect to dx, then

the sequence (f(z1)))32; converges to f(x) with respect to the metric dy.
The proof of this exercise is contained in the next one.

Exercise 12.5. Let (X, dx) and let (Y, dy) be metric spaces. Let f: X — Y be a function.
Show that the following four statements are equivalent.

e f is continuous at xg, for all o € X.

e For all 7y € X, if we have a sequence (1))

in X which converges to zy with

j=1
respect to dy, then the sequence (f(x(j)));?‘;l converges to f(xg) with respect to the
metric dy.
e For all open sets W in Y, the set f~'(W) = {z € X: f(x) € W} is an open set in
X

e For all closed sets V in Y, the set f~*(V) is a closed set in X.

Solution.

(1) Assume (a). Say {x,}22 is a sequence in X which converges to xy. We want to show
that {f(z,)}>2, converges to f(zo). To this end, let ¢ > 0. Since f is continuous
there exists > 0 so that

d(f(xo), f(y)) <e

for all y € X with d(y, z¢) < J. Since x, — x( there exists N € N so that d(z,, o) <
0 for all n > N. But then for all n > N we have

d(f(zn), f(20)) <e.
So {f(xn)}22, converges to f(xg), as desired.
(2) Assume (b). Say x¢ € f~1(W) so that f(zo) € W. Suppose that z, is not an interior
point of f~*(W). Then for every n € N we know that
B(xo,27") £ f7H(W)

So there exists x, in X with d(z,,z9) < 27" but f(z,) € X ~W. So {z,}°2,
converges to xg. By (b), we know that { f(z,)}>, converges to f(xo). But {f(x,)}>2,
is a sequence in X ~ W, which is a closed set since W is open. So this tells us that
f(zg) € X N\ W. So xg ¢ f~*(W), a contradiction.

(3) Assume (c). Let V be closed. Then Y \ V is open, and

FIYNV) =X\ (V)

is open by (c) which implies that f~!(V) is closed.
(4) Assume (d). Let g € X and € > 0 be arbitrary. Since B(f(xo),€) is open, its
complement Y ~\ B(f(xg),¢) is closed. So

F7HY N B(f(20),€)) = X N f7H(B(f(w0),€))

is closed, which implies that f~!(B(f(xo),¢)) is open. Since xg € f~(B(f(x0),¢)),
there exists > 0 so that

B(o,0) € f~H(B(f(20),¢))
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or, equivalently,

f(B(zo,0)) € B(f(20), ).
Now, if y € X and d(zg,y) <  then y € B(xo,0) and so f(y) € B(f(xo),¢e) or,
equivalently, d(f(xo), f(y)) < e. Thus, for every € > 0 there exists § > 0 so that
if d(zo,y) < & we have d(f(zo), f(y)) < € which, by definition, means that f is
continuous.

O

Exercise 12.6. Let (X,dx), (Y,dy) and (Z, dz) be metric spaces. Let f: (X,dx) — (Y, dy)
be a continuous function and let ¢g: (Y,dy) — (Z,dz) be a continuous function. Show that
go f:(X,dx) — (Z,dz) is a continuous function.

Solution. Let W C Z be open. From Exercise 5, we know that ¢~*(W) is an open subset of

Y since g is continuous. From Exercise 5 again, we know that f=*(¢g=*(W)) is open. So for
every open W C Z we have

(go /)T (W)= f g™ (W)
is open, and so g o f is continuous by Exercise 5. 0

Exercise 12.7. Give an example of a continuous function f: R — R and of an open set W
such that f(W/) is not open.

Solution. Take the function f : R — R given by f(z) = m. Then W = (0,1) is an open
subset of R, but f(WW) = {r} is not. O

Exercise 12.8. Give an example of a continuous function f: R — R and of a closed set W
such that f(1V) is not closed.

Solution. Take the function f : R — R given by f(z) = 12;+1 and take W = R. Then W is

closed, but f(W) = (0, 1] is not closed.
U

Exercise 12.9. Let (X,dx) and (Y, dy) be metric spaces. Let f: (X,dx) — (Y,dy) be a
continuous function. Suppose K C X is a compact set. Show that f(K) = {f(z): z € K}
is also a compact set.

Solution. Let {y,}5°, be a sequence in f(K). For each n > 1 find z,, € K with f(x,) = y,.
Now {z,}7°, is a sequence in the compact set K, so there exists a subsequence {z,, }32, and
xo € K with x,, — xo. Since f is continuous, we see that f(z,,) = yn, — f(x0) € f(K).
So every sequence in f(K) has a convergent subsequence in f(K') converging to an element
in f(K). So f(K) is compact. O

Exercise 12.10. Using the previous exercise, prove the Maximum Principle: Let K be a
closed and bounded subset of R", and let f: K — R be a continuous function. Then there
exist points a,b € K such that f attains its maximum at ¢ and f attains its minimum at b.
(Hint: consider the numbers sup ,ex f(z) and inf ,c i f(x).)

Solution. For each n € N
sup{f(z) :x € K} —27"
is not an upper bound on the set {f(z) : x € K} and so there exists x, € K with

f(z,) >sup{f(z):x € K} —2"".
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The sequence {z,}>°; belongs to the compact set K, and so there exists zo € K and a
convergent subsequence {z,, }7°, with z,, — x¢. Since f is continuous we see that

sup {f(w) 1@ € K} > f(zo) = f(lim z,)
= lim f(an,)
> lim sup {f(x) 12 € K} —27"
=sup{f(z):z € K}
So
f(zo) =sup{f(z) : z € K}

and so f attains its maximum at xy. The proof for the minimum is similar. 0

THE EXERCISES BELOW WERE OPTIONAL

Exercise 12.11 (Optional). Let n be a positive integer. Let ||-|| and let ||| be two norms
on R™. Prove that these norms are equivalent. That is, there exist constants C,c¢ > 0 such
that, for all x € R, we have c||z|| < ||z|| < C||z||'. Consequently, any two norms on R"
are equivalent. (Hint: there are a few ways to solve this problem, but it is difficult to avoid
circular reasoning. Here is one way to solve the problem.

e Note that it suffices to assume that [|z[|" = ||z||,_.
e Let (eq,...,e,) denote the standard basis of R", and prove that

n
lzll < ) lleall) Nzl -
i=1

e Consider f: R — R defined by f(z) := ||z||. From the previous item, f is a
continuous function from (R™,d,_) into R. Let S denote the unit cube S = {x €
R™: [[z[|, = 1}. Using that S is compact with respect to dy,, now apply the
maximum principle to f on the set S.

Remark 3. There exist infinite dimensional vector spaces with norms that are not equiva-
lent.

Solution. Let (eq,...,e,) denote the standard basis of R", so that for any = € R™ we may

write
n
Tr = E €Ti€;
=1

for ; € R. It follows by the triangle inequality that

szel < ZLT% leill < (Z ||€z\|> ][ ¢oe ()

] =
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Let

C=3" el
=1

Consider the map f : R" — R given by f(z) = ||z||. I claim that f is continuous on
(R™, £>(R™)). Indeed, if € > 0 then provided ||z — y||sern) < £/C we have that

[f (@) = fW)l = [zl = llylll < [lz = yll < Cllz = yllew@ny < Ce/C =e.
So f is continuous on (R™, ¢*°(R™)). Consider the restriction of f to the set K = {z € R":
|z|[e~ = 1}. Note that K is compact by Bolzano-Weierstrass. So there exists a minimum
nonzero value on K, call it ¢, i.e.

sup zex f(z) > ¢ > 0.
Now, if x € R", then

||| = 2|0 ®r) = || 7=l [|||gee mny > cl|||goo @n)
&™) || oo ()

which completes the claim. O

Exercise 12.12 (Optional). Determine which of the following subsets of R? are compact.
Justify your answers. (As usual, if we do not specify a metric on R?, we mean R? with the
standard Euclidean metric dp,.)

y) €R?:0 < ay < 1},
1/n) € R*: n € N}.

z,y) € R%: 2% + % < 3}.

r,y) ER*:0<z2<1,0<y<a2?}

Solution.

(1) It is compact. Define the function f : R* — R by f(z,y) = 22 + y?. Then f is
continuous since for every € > 0 we have that

| (o, 50) = f(z,y)] = |2* — 25+ y* — g
< |z = @ol|z + ol + [y — wolly + vol
<|l(x — 20,y — yo)|le2w2) (|2 + 0| + [y + yol)
< de((2,9), (z0,40)) (1 + 2|zo| + 1 4 2yo|)
<e¢€

provided

9
don <0 <miny 1 '
Y ((l',y),(lDayO)) mln{ ’ 1+2|5L’0| +1+2|y0|}

Since f is continuous and the set {3} is a closed subset of R we know that
B ={(.y) eR*: f(z,y) =3} = {(z,y) €R* 12 +y* = 3}
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is a closed subset of R?. If (z,y) € f~'({3}), then

d((0,0), (z,9)) = Va? +y* =3

and so f~'({3}) € B((0,0),v/3 4+ 1). So f~1({3}) is bounded. Since it is a closed
and bounded subset of R?, we know it is compact.

(2) It is not compact since it is not bounded. (You'd still need to prove it’s unbounded).

(3) It is not compact since it is not closed. (The sequence (1,1/n) converges to (1,0) ¢
{(1,1/n) e R? : n € N}).

(4) It is not compact since it is not closed. The sequence {(0,3 —1/n)}°°, is a sequence
in {(z,y) : 2 + y* < 3} that converges to (0,3) ¢ {(z,y) : 2> + y* < 3}. So
{(x,y) : 2* + y* < 3} is not closed, and cannot be compact.

(5) Let f: R? - R and g(z,y) : R* — R be given by f(z,y) = z and g(x,y) = y*. Since
f and g are continuous,

F71([0,1]) and g7'([1, 00))

are closed sets, being the pre-image of a closed set under a continuous function. But
then

{(a:,y):OS:ES1,O§y§x2}:{(m,y):nggl}ﬂ{(x,y):()gygxz}
= fﬁl([oal]) mgil([ov OO))

is closed, being an intersection of two closed sets. It suffices to show this set is
bounded. If (x,y) € {(z,y) : 0 <z < 1,0 <y < 22}, then

d((0,0), (z,y)) = Va2 + 2 < VI+ 21 <VI+1=+2

and so it is bounded as well.

O

Exercise 12.13 (Optional). Let (X,dx) and (Y, dy) be vector spaces. Let f: X — Y be a
continuous function. Let E be a connected subset of X. Show that f(E) is connected.

Solution. We proceed by contradiction. Suppose F is connected but f(F) is disconnected.
Then there exists nonempty A, B relatively open subsets of f(E) with AN B = () and
AUB = E. Since f is continuous and both A and B are open, we see that f~'(A) and
f7Y(B) are relatively open subsets of E with

E=f(f(E)=f(AUB) = f(A)Uf (B
and
0=f"AnB)=f(A)nf(B).
So E is disconnected, a contradiction. O
Exercise 12.14 (Optional). Using the previous exercise, prove the Intermediate Value The-
orem: Let (X, d) be a metric space. Let f: X — R be a continuous function. Let E be a
connected subset of X and let a, b be any two elements of E. Let y be a real number between

f(a) and f(b), so that either f(a) <y < f(b) or f(b) <y < f(a). Then there exists c € £
such that f(c) =v.
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Solution. Let f : X — R be a continuous function and E a connected subset of E. Say
a,b € E and without loss of generality y € [f(a), f(b)]. We know from the previous exercise
that f(FE) is connected. By Theorem 8.4 this implies since f(a) € f(E) and f(b) € f(F)
that [f(a), f(b)] C f(E). In particular, y € f(E). So there exists at least one z € E with
f(z) =y, as desired. O

Exercise 12.15 (Optional). Let (X,dx) and (Y, dy) be metric spaces, let E be a subset of
X, let f: X =Y be a function, let x5 € X be an adherent point of £, and let L € Y. Show
that the following statements are equivalent.
L4 hmm—)mo;CEEE f('r) - L
e For any sequence ()%, in E which converges to xo with respect to the metric dx,
the sequence (f(z1)))32; converges to L with respect to the metric dy.
Solution.

(1) Assume (i). Say {z"1°, is a sequence in E which converges to zy with respect to
the metric dx. Let € > 0. Since (i) holds there exists § > 0 so that

dy(f(z),L) <e

for every x € E with dx(z,z0) < d. Now since {29}, converges to gy there exists
N sufficiently large so that dx(z"), z0) < § for all j > N. But then

dy (f(a7),L) <e
for all j > N, as desired.

(2) Assume (ii). Say that (i) fails, so that
lim f(x) # L.

T—TQ
zeFE

Then there exists £ > 0 so that for every § > 0 there exists x € E with dx(z,z) <
yet dy (f(z), L) > e. Taking 6 = 1/n for each n € N this produces, for every n € N, an
z, € E with dx(x,, o) < 1/n with dy (f(x,), L) > . But then z,, — z with respect
to x,. So by (ii), there exists N € N so that for all n > N we have dy (f(x,), L) < &,
a contradiction.

O

Exercise 12.16 (Optional). Let (X,dx) and (Y,dy) be metric spaces. Let (f;)32; be a
sequence of functions from X to Y. Let f: X — Y be another function. Let zy € X.
Suppose f; converges uniformly to f on X. Suppose that, for each j > 1, we know that f;
is continuous at xy. Show that f is also continuous at x,. Hint: it is probably easiest to use
the € — § definition of continuity. Once you do this, you may require the triangle inequality
in the form

dy (f(), f(20)) < dy(f(2), fi(z)) +dy (fi(2), fi(w0)) + dy (fi(x0), f(0))-

Solution. Let zg € X. Let € > 0. Since f; converges uniformly to f(x), there exists N € N
so that .
(), F(2) <

64



for all j > N and z € X. Since fy is continuous, there exists 6 > 0 so that

dy (v (w0). J(x)) < 5

for all x € X with dx(z,x¢) < d. Now, by the triangle inequality it follows that for all z € X
with dx(x,z9) < § we have

3

dy (£(@). f(20) < dy (F(@), f(@)) + dy (), F(ao) + dy (o). f(a0)) < 5+ 545 =<

So f is continuous at xg, as desired. O

Exercise 12.17 (Optional). Let (X,dx) and (Y,dy) be metric spaces. Let (f;)32; be a
sequence of functions from X to Y. Let f: X — Y be another function. Suppose (f;)32,

converges uniformly to f on X. Suppose also that, for each j > 1, we know that f; is
bounded. Show that f is also bounded.

Solution. As (f;)32, converges uniformly to f, there exists some NN so that

SU.pxexdy(fj(l'),f(x)) <1

for every n > N. Fix z¢y € X. Since fy is bounded, there exists some C' so that

sup zexdy (fn (o), fn(z)) < C.
By the triangle inequality and the fact that fy is bounded, we see that

sup zexdy (fn(20), (7)) < supsexdy (fn(2o), fn(2)) + supzexdy (fn (), f(2))
< sup zexdy (fn (o), fn(w)) +1
<C+1
So
{f(z): 2z e X} C B(fn(x),1)
which, by definition, means that {f(x) : x € X} is a bounded subset of Y, and hence f is a
bounded function. O

Exercise 12.18 (Optional). Let (X, dy) and (Y, dy) be metric spaces. Let B(X;Y") denote
the set of functions f: X — Y that are bounded. Let f,g € B(X;Y). We define the metric
de: B(X;Y) x B(X;Y) — [0,00) by

doo(fvg) = SuprXdY(f(x)vg(x))‘
Show that the space (B(X;Y),d) is a metric space.
Solution. TIt’s clear that for any f,g € B(X;Y) that d(f,g9) > 0, doo(f,f) = 0, and

doo(f,9) = doo(g, f). The triangle inequality for d, follows from the triangle inequality for
dy and the subadditivity of the supremum:

dso(f,9) < supgexdy (f(2), h(z)) + dy (h(z), g(x)) < doo(f, h) + deo(h, g)
UJ

Exercise 12.19 (Optional). Let (X,dx) and (Y,dy) be metric spaces. Let (f;)32; be a
sequence of functions in B(X;Y). Let f € B(X;Y). Show that (f;)32, converges uniformly
to f on X if and only if (f;)32, converges to f in the metric dp(x,y).
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Solution. Say (f;);2, converges uniformly to f. Let ¢ > 0. Then there exists N sufficiently
large so that dy (fn(x), f(x)) < € for every z € X. That is,

dy (fn(2), f(2)) = sup sexdy (fn (), f(z)) <e.
So fn converges to f in the d,, metric. The reverse direction is similar. ([l
Exercise 12.20 (Optional). Let (X, dx) be a metric space, and let (Y, dy) be a complete
metric space. Then the space (C(X;Y),dpx;v)loxvyxc(xyy)) is a complete subspace of

B(X;Y). That is, every Cauchy sequence of functions in C'(X;Y") converges to a function
in C(X;Y).

Solution. It suffices to show that a Cauchy sequence of continuous functions in the d
metric converges uniformly to a continuous function. Towards this end, let (f;)%2, be a
Cauchy sequence in the d,, metric. For a fixed xq € X, we see that

dy (fu(20), fm(70)) < doo(fr, frm)

and so we see that the sequence (f,,(x¢))so_; is a Cauchy sequence in Y. Since Y is complete,
this sequence converges, and

n—oo
exists for each xg € X. This permits us to define a function f : X — Y by
f(z) = lim f,(z).
n—oo

We need to prove that f is continuous and that f, converges uniformly to f. Towards proving
the second point, note that for any € > 0 that

Ay (F(2). Jul@)) = 1 dy (fu(a). Jul@)) < ¢
provided n is sufficiently large. Now, if xy € X is fixed we see that
dy (f (o), f(x)) < dy (f(20), fu(20)) + dy (fn(20), fu(®)) + dy (fu(2), f(2))

< Qdoo(fn, f) + dY(fn(x0)7 fn(x))

Find N sufficiently large so that do.(fn, f) < /3. Since fy is continuous, there exists § > 0
so that dy (fn(zo), f(z)) < /3 provided dx(zo,x) < 6. But then

dy (f(xo), f(x)) <e

provided dx (zg, ) < 0. So f is continuous at zy. Since xy was arbitrarily chosen, it follows
that f is continuous. O

Exercise 12.21 (Optional). Let 2 € (—1,1). For each integer j > 1, define f;(z) := 7.
Show that the series Z]oil f; converges pointwise, but not uniformly, on (—1,1) to the
function f(z) = /(1 —z). Also, for any 0 < ¢ < 1, show that the series 77, f; converges
uniformly to f on [—t,1].

Solution. The pointwise convergence follows from summing the geometric series. Since
n o
Z |fj|oo < Z |fj|oo <mn,
=1 j=1
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we see that {D_7_, fi}72; is a bounded sequence of functions. Suppose, for a contradiction

that it converges uniformly to ;. By exercise one, this implies that ;= is a bounded

function on (—1,1). But = is unbounded on (—1,1), a contradiction. O
Exercise 12.22 (Optional). Let X be a set. Show that ||-||  is a norm on the space B(X;R).
Solution. This is very similar to a previous exercise. 0

Exercise 12.23 (Optional; Weierstrass M-test). Let (X,d) be a metric space and let
(fj)321 be a sequence of bounded real-valued continuous functions on X such that the se-
ries (of real numbers) 37, | f;llc is absolutely convergent. Show that the series > 77, f;
converges uniformly to some continuous function f: X — R. (Hint: first, show that the
partial sums Z}I=1 f;j form a Cauchy sequence in C'(X;R). Then, use Exercise 12.20 and the
completeness of the real line R.)

Solution. 1t suffices to prove that the partial sums form a Cauchy sequence in C(X; R), since
exercise 4 will imply the remaining conclusions. Indeed, suppose > 7=, || fjl|o is absolutely
convergent. To this end, let € > 0. Since Z;; || fjllc converges, there exists N € N so that

n
dollfille <&
j=m

for every n > m > N. But then

D L= 1 S il < Ile <e
j=1 j=1 j=m Ay  J=m

as desired O

o0

Exercise 12.24 (Optional). Let a < b be real numbers. For each integer j > 1, let
fi+ la,b] — R be a Riemann integrable function on [a,b]. Suppose > 72, f; converges uni-
formly on [a,b]. Then Z;; f; is also Riemann integrable, and

00 b b oo
S h=[Yn
j=1"a a j=1

Solution. Apply Theorem 5.1 to the sequence

O
j=1

Indeed, by hypothesis they converge uniformly to Zj’;l fj, and so by Theorem 5.1 this
function is Riemann integrable and

b oo b n n b o0 b
E fidr = lim/ E [idr = lim g /fjdw=§ /fjdx-
n—o00 n—00
j=1 @ j=1 j=1"¢ j=1"1

a
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Exercise 12.25 (Optional). Let a < b. For every integer j > 1, let f;: [a,b] — R be a
differentiable function whose derivative (f;)": [a,b] — R is continuous. Assume that the
derivatives (f;)" converge uniformly to a function g: [a,b] — R as j — oo. Assume also that
there exists a point xg € [a, b] such that lim;_, f;(zo) exists. Then the functions f; converge
uniformly to a differentiable function f as j — oo, and ' = g.

Solution. Let zo € [a,b] be such that lim;_,, f;(x¢) exists. By the fundamental theorem of
calculus, we know that

fi(x) = fi(xo) + /x fi(t)dt.

Since {f;}52; converges uniformly to g, we know from Theorem 5.1 that

i () = lim £(o0) + [ (0.

J]—00 x0

Denote the right hand side by h(z), so that the sequence {f;(x)}52, converges pointwise to
h(z). By the fundamental theorem of calculus, we know that h(z) is differentiable and that
h'(x) = g(z). We need only show that f; converges uniformly to h. Indeed,

= £l = @) = Jim fzo)l +1 | at0) = p0t
< 1fstw0) = i fy(ao)] +1lg = fll(b — a)
Since N sufficiently large so that
i) = lim fi(zo)] < 2/2

and so that ||g — fi[|e < 35 for all j > N. But then |[h — fillo < € for all 7 > N, and
so f; converge uniformly to h, as desired. O

Exercise 12.26 (Optional). Let @ < b. For every integer j > 1, let f;: [a,b] — R be
a differentiable function whose derivative f: [a,b] — R is continuous. Assume that the
series of real numbers 77, || fi||o is absolutely convergent. Assume also that there exists
zo € [a,b] such that the series of real numbers » %) f;(xo) converges. Then the series
;= fj converges uniformly on [a, b] to a differentiable function. Moreover, for all z € [a, b],

d — = d
T > file) =) %fj(x)
j=1 j=1
Solution. Apply the previous exercise to the sequence

{Z fitnes
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