Analysis 425 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 1, 10AM PST, to be uploaded as a single PDF document to Brightspace.

Homework 8

Exercise 1. Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers converging to 0. Show that $(|a_n|)_{n=m}^{\infty}$ also converges to zero.

Exercise 2. Let a < b be real numbers. Let I be any of the four intervals (a, b), (a, b], [a, b) or [a, b]. Then the closure of I is [a, b].

Exercise 3. Let X be a subset of \mathbb{R} , let $f: X \to \mathbb{R}$ be a function, let E be a subset of X, let x_0 be an adherent point of E, and let E be a real number. Then the following two statements are equivalent. (That is, one statement is true if and only if the other statement is true.)

- f converges to L at x_0 in E.
- For every sequence $(a_n)_{n=0}^{\infty}$ which consists entirely of elements of E, and which converges to x_0 , the sequence $(f(a_n))_{n=0}^{\infty}$ converges to L.

Exercise 4. Let X be a subset of \mathbf{R} , let $f: X \to \mathbf{R}$ be a function, let E be a subset of X, let x_0 be an adherent point of E, let L be a real number, and let δ be a positive real number. Then the following two statements are equivalent:

- $\lim_{x \to x_0; x \in E} f(x) = L$.
- $\lim_{x \to x_0: x \in E \cap (x_0 \delta, x_0 + \delta)} f(x) = L$.

Exercise 5. Let X be a subset of \mathbf{R} , let $f: X \to \mathbf{R}$ be a function, and let $x_0 \in X$. Then the following three statements are equivalent.

- f is continuous at x_0
- For every sequence $(a_n)_{n=0}^{\infty}$ consisting of elements of X such that $\lim_{n\to\infty} a_n = x_0$, we have $\lim_{n\to\infty} f(a_n) = f(x_0)$.
- For every $\varepsilon > 0$, there exists a $\delta = \delta(\varepsilon) > 0$ such that, for all $x \in X$ with $|x x_0| < \delta$, we have $|f(x) f(x_0)| < \varepsilon$.

Exercise 6. Let X, Y be subsets of \mathbf{R} . Let $f: X \to Y$ and let $g: Y \to \mathbf{R}$ be functions. Let $x_0 \in X$. If f is continuous at x_0 , and if g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Exercise 7. Let a < b be real numbers. Let $f: [a,b] \to \mathbf{R}$ be a continuous function on [a,b]. Let $M := \sup_{x \in [a,b]} f(x)$ be the maximum value of f on [a,b], and let $m := \inf_{x \in [a,b]} f(x)$ be the minimum value of f on [a,b]. Let g be a real number such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Then there exists $g \in [a,b]$ such that $g \in \mathbb{R}$ Expression $g \in \mathbb{R}$ Then there exists $g \in \mathbb{R}$ Expression $g \in \mathbb{R}$ Such that $g \in \mathbb{R}$ Expression $g \in \mathbb{R}$ Expression

Exercise 8. Let $(a_n)_{n=m}^{\infty}$, $(b_n)_{n=m}^{\infty}$ be two sequences of real numbers. Then $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are equivalent if and only if $\lim_{n\to\infty}(a_n-b_n)=0$.

Exercise 9. Let a < b be real numbers, and let $f: [a,b] \to \mathbf{R}$ be a function. Assume that there exists a real number L > 0 such that, for all $x,y \in [a,b]$, we have $|f(x) - f(y)| \le L|x-y|$. Such an f is called **Lipschitz continuous**. Prove that f is continuous. Then, find a continuous function that is not Lipschitz continuous.

Exercise 10. Let X be a subset of **R** and let $f: X \to \mathbf{R}$ be a function. Then the following two statements are equivalent.

- f is uniformly continuous on X.
- For any two equivalent sequences $(a_n)_{n=m}^{\infty}$, $(b_n)_{n=m}^{\infty}$, the sequences $(f(a_n))_{n=m}^{\infty}$, $(f(b_n))_{n=m}^{\infty}$ are also equivalent sequences.

Exercise 11. Give an example of a continuous function $f: \mathbf{R} \to (0, \infty)$ such that, for any real number $0 < \varepsilon < 1$, there exists $x \in \mathbf{R}$ such that $f(x) = \varepsilon$.