Analysis 425 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 4, 10AM PST, to be uploaded as a single PDF document to Brightspace.

Homework 3

Exercise 1. Let x be a real number and let $\varepsilon > 0$ be any rational number. Show that there exists a rational number y such that $|x - y| < \varepsilon$.

Exercise 2. Let x, z be real numbers with x < z. Show that there exists a rational number y with x < y < z. (Hint: use the previous exercise, and the Archimedean property.)

Exercise 3. Let x be a real number. Show that there exists a Cauchy sequence of rational numbers $(a_n)_{n=0}^{\infty}$ such that $x = \text{LIM}_{n \to \infty} a_n$, and such that $a_n > x$ for all $n \ge 0$.

Exercise 4. For every real number x, show that exactly one of the following statements is true: x is positive, x is negative, or x is zero. Show that if x, y are positive real numbers, then x + y is positive, and xy is positive.

Exercise 5. Let x, y be real numbers. Prove that $(x^2 + y^2)/2 \ge xy$.

Exercise 6. Let A be the set of real numbers

$$A = \left\{ \frac{1}{n} : n \ge 1, \ n \in \mathbf{N} \right\} = \{1, 1/2, 1/3, 1/4, \ldots\}.$$

Compute $\sup(A)$ and $\inf(A)$.