Analysis 425 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 29, 10AM PST, to be uploaded as a single PDF document to Brightspace.

Homework 12

Exercise 1. Let (X, d) be a compact metric space. Show that (X, d) is both complete and
bounded. (Hint: prove each property separately, and use argument by contradiction.)

Exercise 2. Let n be a positive integer. Let (R", d) denote Euclidean space with the metric
d =dy, or d =d,. Let E be a subset of R". Show that E is compact if and only if E is
both closed and bounded. (Hint: use Bolzano-Weierstrass in R™.)

Exercise 3. Let (X,d) be a metric space, and let K, Ks,... be a sequence of nonempty
compact subsets of X such that

Ki2Ky D K32---.

Show that the intersection N%2, K is nonempty. (Hint: first, work in the compact metric
space (K1,d|k,xk,). Then, consider the sets K7 ~ K; which are open in K;. Assume for
the sake of contradiction that N2, K; = (). Then apply the Open Cover Characterization of
compactness. )

Exercise 4. Let (X,dx) and let (Y,dy) be metric spaces. Let f: X — Y be a function.
Show that the following two statements are equivalent.

e f is continuous at z.
e If we have a sequence (a:(J))‘]?‘;l in X which converges to xy with respect to dx, then

the sequence (f(z1))32; converges to f(xo) with respect to the metric dy-.

Exercise 5. Let (X,dy) and let (Y, dy) be metric spaces. Let f: X — Y be a function.
Show that the following four statements are equivalent.

e f is continuous at x, for all o € X.
e For all zyp € X, if we have a sequence (x(j))j?";l in X which converges to zy with

respect to dx, then the sequence (f(219))%2, converges to f(xo) with respect to the
metric dy.

e For all open sets W in Y, the set f~'(W) = {z € X: f(x) € W} is an open set in
X

e For all closed sets V in Y, the set f~!(V) is a closed set in X.

Exercise 6. Let (X,dx), (Y,dy) and (Z,dz) be metric spaces. Let f: (X,dx) — (Y,dy)
be a continuous function and let ¢g: (Y,dy) — (Z,dz) be a continuous function. Show that
go f:(X,dx) — (Z,dz) is a continuous function.

Exercise 7. Give an example of a continuous function f: R — R and of an open set W
such that f(7/) is not open.
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Exercise 8. Give an example of a continuous function f: R — R and of a closed set W
such that f(7V) is not closed.

Exercise 9. Let (X,dx) and (Y,dy) be metric spaces. Let f: (X,dx) — (Y,dy) be a
continuous function. Suppose K C X is a compact set. Show that f(K) = {f(z): v € K}
is also a compact set.

Exercise 10. Using the previous exercise, prove the Maximum Principle: Let K be a closed
and bounded subset of R", and let f: K — R be a continuous function. Then there exist
points a,b € K such that f attains its maximum at ¢ and f attains its minimum at b. (Hint:
consider the numbers sup, ., f(z) and inf,cx f(x).)

THE QUESTIONS BELOW ARE OPTIONAL. THEY WILL NOT BE GRADED.
These questions are provided as extra practice for the final exam.

Exercise 11 (Optional). Let n be a positive integer. Let ||-|| and let ||-]| be two norms
on R". Prove that these norms are equivalent. That is, there exist constants C,c > 0 such
that, for all z € R™, we have c||z||' < ||z|| < C|z||. Consequently, any two norms on R"
are equivalent. (Hint: there are a few ways to solve this problem, but it is difficult to avoid
circular reasoning. Here is one way to solve the problem.

e Note that it suffices to assume that ||z||" = =], -
e Let (eq,...,e,) denote the standard basis of R"”, and prove that

n
[l]] < (D Mleal) [Nz, -
i=1

e Consider f: R® — R defined by f(z) := [|z||. From the previous item, f is a
continuous function from (R"™,d,_) into R. Let S denote the unit cube S := {z €
R": |[|z|[,_ = 1}. Using that S is compact with respect to dy,,, now apply the
maximum principle to f on the set S.

Remark 1. There exist infinite dimensional vector spaces with norms that are not equiva-
lent.

Exercise 12 (Optional). Determine which of the following subsets of R? are compact.
Justify your answers. (As usual, if we do not specify a metric on R?, we mean R? with the
standard Euclidean metric dy,.)

z,y) € R?: 2% +y? = 3}.
yeR?: 0 < ay < 1}.

) € R?: 2% +y? < 3}
(r,y) eER*: 0< 2 <1,0<y<a?}

Exercise 13 (Optional). Let (X, dx) and (Y,dy) be vector spaces. Let f: X — Y be a
continuous function. Let E be a connected subset of X. Show that f(E) is connected.

Exercise 14 (Optional). Using the previous exercise, prove the Intermediate Value Theorem:
Let (X, d) be a metric space. Let f: X — R be a continuous function. Let E be a connected
subset of X and let a, b be any two elements of E. Let y be a real number between f(a) and
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f(b), so that either f(a) <y < f(b) or f(b) <y < f(a). Then there exists ¢ € E such that
fle)=y.
Exercise 15 (Optional). Let (X, dx) and (Y, dy) be metric spaces, let E be a subset of X,

let f: X — Y be a function, let o € X be an adherent point of E, and let L € Y. Show
that the following statements are equivalent.

i hmac—)acg;a:GE f(l') = L"
e For any sequence (2 ));-”;1 in £ which converges to xy with respect to the metric dy,

the sequence (f (:L‘(j)));?‘;l converges to L with respect to the metric dy.

Exercise 16 (Optional). Let (X, dx) and (Y, dy) be metric spaces. Let (f;)32, be a sequence
of functions from X to Y. Let f: X — Y be another function. Let o € X. Suppose f;
converges uniformly to f on X. Suppose that, for each j > 1, we know that f; is continuous
at xo. Show that f is also continuous at xy. Hint: it is probably easiest to use the € — ¢
definition of continuity. Once you do this, you may require the triangle inequality in the
form

dy (f(x), f(z0)) < dy(f(z), f;(x)) + dy (fi(x), fi(w0)) + dy (fj(0), f(0)).

Exercise 17 (Optional). Let (X, dx) and (Y, dy) be metric spaces. Let (f;)32, be a sequence
of functions from X to Y. Let f: X — Y be another function. Suppose (f;)32; converges
uniformly to f on X. Suppose also that, for each j > 1, we know that f; is bounded. Show
that f is also bounded.

Exercise 18 (Optional). Let (X, dx) and (Y, dy) be metric spaces. Let B(X;Y’) denote the
set of functions f: X — Y that are bounded. Let f,g € B(X;Y). We define the metric
dew: B(X;Y) x B(X;Y) — [0,00) by

dso(f,9) = supdy (f(z), g(2)).

zeX
Show that the space (B(X;Y),d) is a metric space.

Exercise 19 (Optional). Let (X, dx) and (Y, dy) be metric spaces. Let (f;)52, be a sequence
of functions in B(X;Y). Let f € B(X;Y). Show that (f;)52, converges uniformly to f on
X if and only if (f;)52, converges to f in the metric dp(x;y).

Exercise 20 (Optional). Let (X, dx) be a metric space, and let (Y, dy) be a complete metric
space. Then the space (C(X;Y),dp(x;v)lcx;y)xc(x;y)) is a complete subspace of B(X;Y).
That is, every Cauchy sequence of functions in C'(X;Y’) converges to a function in C'(X;Y).

Exercise 21 (Optional). Let € (—1,1). For each integer j > 1, define f;(z) := z7. Show
that the series Z;’il f; converges pointwise, but not uniformly, on (—1,1) to the function
f(z) =x/(1—=x). Also, for any 0 < ¢t < 1, show that the series Zj‘;l f; converges uniformly
to f on [—t,t].

Exercise 22 (Optional). Let X be a set. Show that ||-|| _ is a norm on the space B(X;R).

Exercise 23 (Optional; Weierstrass M-test). Let (X, d) be a metric space and let (f;)32,
be a sequence of bounded real-valued continuous functions on X such that the series (of
real numbers) > 7% || fj|| is absolutely convergent. Show that the series > 7, f; converges
uniformly to some continuous function f: X — R. (Hint: first, show that the partial sums



4

Z;.Izl f; form a Cauchy sequence in C'(X;R). Then, use Exercise 20 and the completeness
of the real line R.)

Exercise 24 (Optional). Let a < b be real numbers. For each integer j > 1, let f;: [a,b] = R
be a Riemann integrable function on [a,b]. Suppose 7, f; converges uniformly on [a, b].
Then Zj; fj is also Riemann integrable, and

g/absz/abgfj-

Exercise 25 (Optional). Let @ < b. For every integer j > 1, let f;: [a,b] — R be a
differentiable function whose derivative (f;)': [a,b] — R is continuous. Assume that the
derivatives (f;)’ converge uniformly to a function g: [a,b] - R as j — oco. Assume also
that there exists a point zy € [a,b] such that lim;_,, f;(zo) exists. Then the functions f;
converge uniformly to a differentiable function f as j — oo, and ' = g.

Exercise 26 (Optional). Let a < b. For every integer j > 1, let f;: [a,b] — R be a
differentiable function whose derivative f;: [a,b] — R is continuous. Assume that the series
of real numbers Y 7, |[f/|| is absolutely convergent. Assume also that there exists zo €
[a,b] such that the series of real numbers ™, f;(x) converges. Then the series »°°, f;
converges uniformly on [a, b] to a differentiable function. Moreover, for all z € [a, b],

d — = d
o ;fj(l‘) = ; %fj(l')



