
Analysis 425 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 29, 10AM PST, to be uploaded as a single PDF document to Brightspace.

Homework 12

Exercise 1. Let (X, d) be a compact metric space. Show that (X, d) is both complete and
bounded. (Hint: prove each property separately, and use argument by contradiction.)

Exercise 2. Let n be a positive integer. Let (Rn, d) denote Euclidean space with the metric
d = dℓ2 or d = dℓ1 . Let E be a subset of Rn. Show that E is compact if and only if E is
both closed and bounded. (Hint: use Bolzano-Weierstrass in Rn.)

Exercise 3. Let (X, d) be a metric space, and let K1, K2, . . . be a sequence of nonempty
compact subsets of X such that

K1 ⊇ K2 ⊇ K3 ⊇ · · · .
Show that the intersection ∩∞

j=1Kj is nonempty. (Hint: first, work in the compact metric
space (K1, d|K1×K1). Then, consider the sets K1 ∖ Kj which are open in K1. Assume for
the sake of contradiction that ∩∞

j=1Kj = ∅. Then apply the Open Cover Characterization of
compactness.)

Exercise 4. Let (X, dX) and let (Y, dY ) be metric spaces. Let f : X → Y be a function.
Show that the following two statements are equivalent.

• f is continuous at x0.
• If we have a sequence (x(j))∞j=1 in X which converges to x0 with respect to dX , then

the sequence (f(x(j)))∞j=1 converges to f(x0) with respect to the metric dY .

Exercise 5. Let (X, dX) and let (Y, dY ) be metric spaces. Let f : X → Y be a function.
Show that the following four statements are equivalent.

• f is continuous at x0, for all x0 ∈ X.
• For all x0 ∈ X, if we have a sequence (x(j))∞j=1 in X which converges to x0 with

respect to dX , then the sequence (f(x(j)))∞j=1 converges to f(x0) with respect to the
metric dY .

• For all open sets W in Y , the set f−1(W ) = {x ∈ X : f(x) ∈ W} is an open set in
X.

• For all closed sets V in Y , the set f−1(V ) is a closed set in X.

Exercise 6. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. Let f : (X, dX) → (Y, dY )
be a continuous function and let g : (Y, dY ) → (Z, dZ) be a continuous function. Show that
g ◦ f : (X, dX) → (Z, dZ) is a continuous function.

Exercise 7. Give an example of a continuous function f : R → R and of an open set W
such that f(W ) is not open.
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Exercise 8. Give an example of a continuous function f : R → R and of a closed set W
such that f(W ) is not closed.

Exercise 9. Let (X, dX) and (Y, dY ) be metric spaces. Let f : (X, dX) → (Y, dY ) be a
continuous function. Suppose K ⊆ X is a compact set. Show that f(K) = {f(x) : x ∈ K}
is also a compact set.

Exercise 10. Using the previous exercise, prove the Maximum Principle: Let K be a closed
and bounded subset of Rn, and let f : K → R be a continuous function. Then there exist
points a, b ∈ K such that f attains its maximum at a and f attains its minimum at b. (Hint:
consider the numbers supx∈K f(x) and infx∈K f(x).)

THE QUESTIONS BELOWARE OPTIONAL. THEYWILL NOT BE GRADED.
These questions are provided as extra practice for the final exam.

Exercise 11 (Optional). Let n be a positive integer. Let ||·|| and let ||·||′ be two norms
on Rn. Prove that these norms are equivalent. That is, there exist constants C, c > 0 such
that, for all x ∈ Rn, we have c ||x||′ ≤ ||x|| ≤ C ||x||′. Consequently, any two norms on Rn

are equivalent. (Hint: there are a few ways to solve this problem, but it is difficult to avoid
circular reasoning. Here is one way to solve the problem.

• Note that it suffices to assume that ||x||′ = ||x||ℓ∞ .
• Let (e1, . . . , en) denote the standard basis of Rn, and prove that

||x|| ≤ (
n∑

i=1

||ei||) ||x||ℓ∞ .

• Consider f : Rn → R defined by f(x) := ||x||. From the previous item, f is a
continuous function from (Rn, dℓ∞) into R. Let S denote the unit cube S := {x ∈
Rn : ||x||ℓ∞ = 1}. Using that S is compact with respect to dℓ∞ , now apply the
maximum principle to f on the set S.

Remark 1. There exist infinite dimensional vector spaces with norms that are not equiva-
lent.

Exercise 12 (Optional). Determine which of the following subsets of R2 are compact.
Justify your answers. (As usual, if we do not specify a metric on R2, we mean R2 with the
standard Euclidean metric dℓ2 .)

• {(x, y) ∈ R2 : x2 + y2 = 3}.
• {(x, y) ∈ R2 : 0 ≤ xy ≤ 1}.
• {(1, 1/n) ∈ R2 : n ∈ N}.
• {(x, y) ∈ R2 : x2 + y2 < 3}.
• {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

Exercise 13 (Optional). Let (X, dX) and (Y, dY ) be vector spaces. Let f : X → Y be a
continuous function. Let E be a connected subset of X. Show that f(E) is connected.

Exercise 14 (Optional). Using the previous exercise, prove the Intermediate Value Theorem:
Let (X, d) be a metric space. Let f : X → R be a continuous function. Let E be a connected
subset of X and let a, b be any two elements of E. Let y be a real number between f(a) and
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f(b), so that either f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). Then there exists c ∈ E such that
f(c) = y.

Exercise 15 (Optional). Let (X, dX) and (Y, dY ) be metric spaces, let E be a subset of X,
let f : X → Y be a function, let x0 ∈ X be an adherent point of E, and let L ∈ Y . Show
that the following statements are equivalent.

• limx→x0;x∈E f(x) = L.
• For any sequence (x(j))∞j=1 in E which converges to x0 with respect to the metric dX ,

the sequence (f(x(j)))∞j=1 converges to L with respect to the metric dY .

Exercise 16 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence

of functions from X to Y . Let f : X → Y be another function. Let x0 ∈ X. Suppose fj
converges uniformly to f on X. Suppose that, for each j ≥ 1, we know that fj is continuous
at x0. Show that f is also continuous at x0. Hint: it is probably easiest to use the ε − δ
definition of continuity. Once you do this, you may require the triangle inequality in the
form

dY (f(x), f(x0)) ≤ dY (f(x), fj(x)) + dY (fj(x), fj(x0)) + dY (fj(x0), f(x0)).

Exercise 17 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence

of functions from X to Y . Let f : X → Y be another function. Suppose (fj)
∞
j=1 converges

uniformly to f on X. Suppose also that, for each j ≥ 1, we know that fj is bounded. Show
that f is also bounded.

Exercise 18 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let B(X;Y ) denote the
set of functions f : X → Y that are bounded. Let f, g ∈ B(X;Y ). We define the metric
d∞ : B(X;Y )×B(X;Y ) → [0,∞) by

d∞(f, g) := sup
x∈X

dY (f(x), g(x)).

Show that the space (B(X;Y ), d∞) is a metric space.

Exercise 19 (Optional). Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence

of functions in B(X;Y ). Let f ∈ B(X;Y ). Show that (fj)
∞
j=1 converges uniformly to f on

X if and only if (fj)
∞
j=1 converges to f in the metric dB(X;Y ).

Exercise 20 (Optional). Let (X, dX) be a metric space, and let (Y, dY ) be a complete metric
space. Then the space (C(X;Y ), dB(X;Y )|C(X;Y )×C(X;Y )) is a complete subspace of B(X;Y ).
That is, every Cauchy sequence of functions in C(X;Y ) converges to a function in C(X;Y ).

Exercise 21 (Optional). Let x ∈ (−1, 1). For each integer j ≥ 1, define fj(x) := xj. Show
that the series

∑∞
j=1 fj converges pointwise, but not uniformly, on (−1, 1) to the function

f(x) = x/(1− x). Also, for any 0 < t < 1, show that the series
∑∞

j=1 fj converges uniformly

to f on [−t, t].

Exercise 22 (Optional). Let X be a set. Show that ||·||∞ is a norm on the space B(X;R).

Exercise 23 (Optional; Weierstrass M-test). Let (X, d) be a metric space and let (fj)
∞
j=1

be a sequence of bounded real-valued continuous functions on X such that the series (of
real numbers)

∑∞
j=1 ||fj||∞ is absolutely convergent. Show that the series

∑∞
j=1 fj converges

uniformly to some continuous function f : X → R. (Hint: first, show that the partial sums
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j=1 fj form a Cauchy sequence in C(X;R). Then, use Exercise 20 and the completeness

of the real line R.)

Exercise 24 (Optional). Let a < b be real numbers. For each integer j ≥ 1, let fj : [a, b] → R
be a Riemann integrable function on [a, b]. Suppose

∑∞
j=1 fj converges uniformly on [a, b].

Then
∑∞

j=1 fj is also Riemann integrable, and

∞∑
j=1

∫ b

a

fj =

∫ b

a

∞∑
j=1

fj.

Exercise 25 (Optional). Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be a
differentiable function whose derivative (fj)

′ : [a, b] → R is continuous. Assume that the
derivatives (fj)

′ converge uniformly to a function g : [a, b] → R as j → ∞. Assume also
that there exists a point x0 ∈ [a, b] such that limj→∞ fj(x0) exists. Then the functions fj
converge uniformly to a differentiable function f as j → ∞, and f ′ = g.

Exercise 26 (Optional). Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be a
differentiable function whose derivative f ′

j : [a, b] → R is continuous. Assume that the series
of real numbers

∑∞
j=1 ||f ′

j||∞ is absolutely convergent. Assume also that there exists x0 ∈
[a, b] such that the series of real numbers

∑∞
j=1 fj(x0) converges. Then the series

∑∞
j=1 fj

converges uniformly on [a, b] to a differentiable function. Moreover, for all x ∈ [a, b],

d

dx

∞∑
j=1

fj(x) =
∞∑
j=1

d

dx
fj(x)


