Analysis 425 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 22, 10AM PST, to be uploaded as a single PDF document to Brightspace.

Homework 11

Exercise 1. Let $(X, ||\cdot||)$ be a normed linear space. Define $d: X \times X \to \mathbf{R}$ by d(x, y) := ||x - y||. Show that (X, d) is a metric space.

Exercise 2. Let n be a positive integer and let $x \in \mathbb{R}^n$. Show that $||x||_{\ell_{\infty}} = \lim_{p \to \infty} ||x||_{\ell_p}$.

Exercise 3. Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. Define $||\cdot||: X \to [0, \infty)$ by $||x|| := \sqrt{\langle x, x \rangle}$. Show that $(X, ||\cdot||)$ is a normed linear space. Consequently, from Exercise 1, if we define $d: X \times X \to [0, \infty)$ by $d(x, y) := \sqrt{\langle (x - y), (x - y) \rangle}$, then (X, d) is a metric space.

Exercise 4. Consider the set A of all (x, y) in the plane \mathbb{R}^2 such that x > 0. Find the set of all adherent points of A, then find whether or not A is open or closed (or both, or neither).

Exercise 5. Let n be a positive integer. Let $x \in \mathbf{R}^n$. Let $(x^{(j)})_{j=k}^{\infty}$ be a sequence of elements of \mathbf{R}^n . We write $x^{(j)} = (x_1^{(j)}, \dots, x_n^{(j)})$, so that for each $1 \le i \le n$, we have $x_i^{(j)} \in \mathbf{R}$, that is, $x_i^{(j)}$ is the i^{th} coordinate of $x^{(j)}$. Prove that the following three statements are equivalent.

- $(x^{(j)})_{j=k}^{\infty}$ converges to x with respect to d_{ℓ_1} .
- $(x^{(j)})_{j=k}^{\infty}$ converges to x with respect to d_{ℓ_2} .
- $(x^{(j)})_{j=k}^{\infty}$ converges to x with respect to $d_{\ell_{\infty}}$.

Exercise 6. Let (X, d) be a metric space, let E be a subset of X, and let x_0 be a point in X. Prove that the following statements are equivalent.

- x_0 is an adherent point of E.
- x_0 is either an interior point of E or a boundary point of E.
- There exists a sequence $(x_n)_{n=1}^{\infty}$ of elements of E which converges to x_0 with respect to the metric d.

Exercise 7. Prove the following statements.

- Let (X, d) be a metric space, and let Y be a subset of X, so that $(Y, d|_{Y \times Y})$ is a metric space. If $(Y, d|_{Y \times Y})$ is complete, then Y is closed in (X, d).
- Conversely, assume that (X, d) is a complete metric space and that Y is a closed subset of X. Then $(Y, d|_{Y \times Y})$ is complete.

Exercise 8. Let X be a subset of the real line \mathbf{R} and let I be a set. The set X is said to be **open** if and only if there exists a (possibly uncountable) collection of open intervals $\{(a_{\alpha}, b_{\alpha})\}_{\alpha \in I}$ where $a_{\alpha} < b_{\alpha}$ are real numbers for all $\alpha \in I$, so that $X = \bigcup_{\alpha \in I} (a_{\alpha}, b_{\alpha})$.

Assume that X is open. Conclude that there exists a set J which is either finite or countable, and there exists a disjoint collection of open intervals $\{(c_{\alpha}, d_{\alpha})\}_{\alpha \in J}$ which is either finite or countable, where $c_{\alpha} < d_{\alpha}$ are real numbers for all $\alpha \in J$, so that $X = \bigcup_{\alpha \in J} (c_{\alpha}, d_{\alpha})$. (Hint: given any $x \in X$, consider the largest open interval that contains x and that is contained in X. Consider then the set of all such intervals, for all $x \in X$.)

Remark 1. The analogous statement for \mathbb{R}^2 is not true.