
425 Final Solutions1

1. Question 1

(a) The set of rational numbers Q is complete.
False.

√
2 /∈ Q, but there is a Cauchy sequence in Q that converges to

√
2. Consider for

example an which is an n-digit approximation to
√
2.

(b) For all x ∈ R, we have − log(1− x) =
∑∞

j=1 x
j/j.

(Here log denotes the natural logarithm.)
False. When x = −2, − log(1 − x) = − log(3) ∈ R, but the sum diverges when x = −2

from the ratio test, since |aj+1/aj| = |x| (j + 1)/j → 2 > 1 as j → ∞.
(c) Let f : R → R be differentiable. Then f is continuous.

True. For any x ∈ R, f(x)− f(y) = (x− y)f(x)−f(y)
x−y

. Since f is differentiable f(x)−f(y)
x−y

→
f ′(x) as y → x, so from the product limit law (x−y)f(x)−f(y)

x−y
→ 0 as x → y, i.e. f(x)−f(y) →

0 as x → y.
(d) Let f : R6 → R be a continuous function. Let K ⊆ R6 be a compact set. Then f(K)

is compact.
True. This was a Theorem in the notes. Continuous functions map compact sets to

compact sets.
(e) Let f : [0, 1] → R be a continuous function. Let ε > 0. Then there exists a polynomial

p : [0, 1] → R such that
sup

x∈[0,1]
|f(x)− p(x)| < ε.

True. This is the Weierstrass Approximation Theorem.
(f) Let V = {(x, y) ∈ R2 : 1 ≤ x ≤ 2 or 3 ≤ x ≤ 4}. Then there is a continuous function

f : [0, 1] → V such that f(0) = (1, 0) and f(1) = (4, 0).
False. Suppose for the sake of contradiction that f exists as stated. [0, 1] is connected

but V is not. If f(0) = (1, 0) and f(1) = (4, 0) then f(V ) is disconnected also. Since
f([0, 1]) must be connected by a Theorem from the notes (generalizing the intermediate
value theorem), we get a contradiction.

2. Question 2

Let (an)
∞
n=0 be a Cauchy sequence of real numbers.

Prove that (an)
∞
n=0 is bounded.

Solution. Let ε = 1. Then there exists N > 0 such that for all n,m ≥ N , we have
|an − am| < ε = 1. That is, |an − aN | ≤ 1 for all n ≥ N . Let A := maxn=0,...,N |an|. We
claim that |an| ≤ 1 + A for all n ≥ 0. The case 0 ≤ n ≤ N follows by definition of A. Also
by definition of A, we have |aN | ≤ A. So, by the triangle inequality, when n ≥ N , we have
|an| = |an − aN |+ |aN | ≤ 1 + A.

3. Question 3

Prove the following:
For any positive integer n,

n3 + 2n
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is divisible by 3. (That is, show that n3 + 2n is a multiple of 3.)
Solution. We induct on n. We begin with the base case n = 1. In this case n3 + 2n =

1+ 2 = 3 which is a multiple of 3. We now do the inductive step. Assume that n3 + 2n is a
multiple of 3. We need to show that (n+ 1)3 + 2(n+ 1) is also a multiple of 3. We have

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 3n+ 1 + 2n+ 2 = (n3 + 2n) + 3(n2 + n) + 3.

By the inductive hypothesis n3 + 2n is a multiple of 3. The remaining terms in the sum
are also multiples of 3, since 3(n2 + n) + 3 is a multiple of 3. The sum of all these terms
is therefore a multiple of 3. We have therefore completed the inductive step. The proof is
therefore complete.

4. Question 4

Consider the set A = {(x, y) ∈ R × R : x + y ∈ Q}. Is this set finite, countable, or
uncountable? Prove your assertion.

Solution. This set is uncountable. To see this, recall that the real numbers R are uncount-
able. Define a function f : R → A by f(x) = (x,−x) for all x ∈ R. Note that f(x) is in A
for all x ∈ R, since x + (−x) = 0 ∈ Q. We now claim that f is a bijection onto its image
in A. That is, if we define f(R) = {f(x) : x ∈ R} = {(x,−x) : x ∈ R}, then f : R → f(R)
is a bijection. Indeed, given any element y of f(R) we have y = (x,−x) for some x ∈ R,
so f(x) = y = (x,−x). And this x is unique, since if f(x) = f(x′) for some x, x′ ∈ R, then
(x,−x) = (x′,−x′), so that x = x′. In conclusion, f : R → f(R) is a bijection. We now
show that A is uncountable. It cannot be the case that A is countable, since A contains the
uncountable set f(R). Similarly, A cannot be finite. Therefore, A is uncountable, as desired.

5. Question 5

Let f : [0, 1] → [0, 1] be a Riemann integrable function such that
∫ 1

0
f = 0. Assume that

f is continuous. Prove that f(x) = 0 for all x ∈ [0, 1].
Solution. We argue by contradiction. Assume that f(x) > 0 for some x ∈ [0, 1]. Since f

is continuous, if we choose ε := f(x)/2, then there exists δ > 0 such that, for all y ∈ [0, 1]
with |y − x| < δ such that |f(x)− f(y)| < ε = f(x)/2. From the reverse triangle inequality,
|f(y)| = |f(y)− f(x) + f(x)| ≥ |f(x)| − |f(y)− f(x)| ≥ f(x)− f(x)/2 = f(x)/2 > 0. That
is, we have uniform lower bound on all such y. So, if P is any partition of [0, 1] that includes
{x− δ, x, x + δ} ∩ [0, 1], we have L(f, P ) ≥ δf(x)/2, by definition of L(f, P ). By definition

of the Riemann integral, we therefore have
∫ 1

0
f ≥ L(f, P ) ≥ δf(x)/2 > 0, a contradiction

to the fact that f has integral 0. We conclude that in fact f = 0 for all x ∈ [0, 1], as desired.

6. Question 6

Let x ∈ R, and let j be a positive integer. Define the function

fj(x) :=
x

1 + jx2
.

• Show that the sequence of functions (fj)
∞
j=1 converges uniformly to some function f .

• We use the function f from the first part of the question. Show that, if x ̸= 0, then
f ′(x) = limj→∞ f ′

j(x). Show that, if x = 0, then f ′(x) ̸= limj→∞ f ′
j(x).
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Solution. Let f(x) = 0 for all x ∈ R. Let j > 0, j ∈ Z. Let hj(x) = 1/(1 + jx2) for any
j > 0, j ∈ Z. Note that limx→∞ hj(x) = 0 = limx→−∞ hj(x). Also, h

′
j(x) = −2jx/(1 + jx2).

That is, on the set (−∞,−j−1/4] ∪ [j1/4,+∞), hj achieves its maximum value at x = j−1/4

and at x = −j−1/4. This maximum value is hj(j
−1/4) = 1/(1 + j1/2).

For any x ∈ [−j−1/4, j1/4], we use the bound |fj(x)| ≤ |x| ≤ j−1/4, and for any other
x ∈ R, we use the bound |fj| (x) ≤ 1/(1 + j1/2). That is, for any x ∈ R, we have |fj(x)| ≤
max(j−1/4, 1/(1+j1/2)). That is, for any j > 0, we have d∞(f, fj) ≤ max(j−1/4, 1/(1+j1/2)).
That is, fj converges to f uniformly as j → ∞.
(b) Show that, if x ̸= 0, then f ′(x) = limj→∞ f ′

j(x). Show that, if x = 0, then f ′(x) ̸=
limj→∞ f ′

j(x).

Note: f ′
j(x) =

1+jx2−x(2jx)
(1+jx2)2

= 1−jx2

(1+jx2)2
. So, if x ̸= 0, then limj→∞ f ′

j(x) = limj→∞
−jx2

(1+jx2)2
=

limj→∞
−jx2

1+2jx2+j2x4 = 0, since the numerator has a factor of j, but the denominator has a

factor of j2 (since x ̸= 0). Since f = 0, we have f ′(x) = 0, so f ′(x) = limj→∞ f ′
j(x). If x = 0,

then f ′
j(x) = 1 for all j > 1, while f ′(x) = 0, so f ′(x) ̸= limj→∞ f ′

j(x).

7. Question 7

Prove the first Fundamental Theorem of Calculus:
Let a < b be real numbers. Let f : [a, b] → R be a continuous function on [a, b]. Assume

that f is also differentiable on [a, b], and f ′ is Riemann integrable on [a, b]. Then
∫ b

a
f ′ =

f(b)− f(a).

(Hint: write the Riemann sum for
∫ b

a
f ′, then apply a certain Theorem to write terms of

the form f ′(ci)(xi − xi−1) in a different form.)
Solution. Let P = {x0, . . . , xn} be a partition of [a, b]. Then

f(b)− f(a) = f(xn)− f(x0) =
n∑

i=1

(f(xi)− f(xi−1)). (∗)

By the Mean Value Theorem, for each 1 ≤ i ≤ n there exists yi ∈ [xi−1, xi] such that

(xi − xi−1)f
′(yi) = f(xi)− f(xi−1).

Substituting these equalities into (∗), we get

f(b)− f(a) =
n∑

i=1

(xi − xi−1)f
′(yi).

Applying the definitions of L(f ′, P ) and U(f ′, Q), we have: for all partitions P,Q of [a, b],

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, Q).

From Definition of the lower and upper Riemann integrals, we then get∫ b

a

f ′ ≤ f(b)− f(a) ≤
∫ b

a

f ′. (∗∗)

Since f ′ is Riemann integrable,
∫ b

a
f ′ =

∫ b

a
f ′ =

∫ b

a
f ′. So, (∗∗) implies that

∫ b

a
f ′ = f(b)−f(a),

as desired.
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8. Question 8

Let ℓ2(N) = {(aj)∞j=0 :
∑∞

j=0 a
2
j < ∞, aj ∈ R∀ j ≥ 0}. That is, ℓ2(N) is the set of square-

summable real sequences on N. You can freely use that ℓ2(N) is a real inner product space,
with inner product given by ⟨(aj)∞j=0, (bj)

∞
j=0⟩ :=

∑∞
j=0 ajbj. From this inner product, we

then obtain a norm
∥∥(aj)∞j=0

∥∥ := ⟨(aj)∞j=0, (aj)
∞
j=0⟩1/2 =

√∑∞
j=0 a

2
j and associated metric on

ℓ2(N) defined by d((aj)
∞
j=0, (bj)

∞
j=0) :=

√∑∞
j=0(aj − bj)2. That is, ℓ2(N) is a metric space

with respect to this metric. (You can freely use this fact.)
Define

B(0, 1) := {(aj)∞j=0 ∈ ℓ2(N) :
∥∥(aj)∞j=0

∥∥ ≤ 1}.
Is B(0, 1) compact (with respect to the metric d)? Prove your assertion.

Solution. B(0, 1) is not compact. It is closed and bounded but not compact. To see
this, we just need to find a bounded sequence z(1), z(2), . . . ⊆ ℓ2(N) that has no convergent
subsequence. Define z(i) so that z(i) = (0, . . . , 0, 1, 0, . . .), i.e. so that the ith element of z(i) is
1 while all other elements of z(i) are zero. Then

∥∥z(i)∥∥ = 1 for all i ≥ 1 (so that the sequence

is bounded), and
∥∥z(i) − z(j)

∥∥ =
√
2 for all i, j ≥ 1 with i ̸= j. And any subsequence of

z(1), z(2), . . . also has these properties. Since
∥∥z(i) − z(j)

∥∥ =
√
2 for all i, j ≥ 1 with i ̸= j,

this sequence (or any subsequence) cannot be a Cauchy sequence. That is, any subsequence
cannot be convergent. Therefore, B(0, 1) is not compact.

4


	1. Question 1
	2. Question 2
	3. Question 3
	4. Question 4
	5. Question 5
	6. Question 6
	7. Question 7
	8. Question 8

