Math 425, Spring 2025, USC		Instructor:	Steven Heilman
Name:	USC ID:	Date:	
Signature:	Discussion Sect	ion:	
(By signing here, I certify that I ha	eve taken this test wh	ile refraining from o	cheating.)

Final Exam

This exam contains 15 pages (including this cover page) and 8 problems. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 120 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score
1	18	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	88	

 $[^]a\mathrm{May}$ 8, 2025, © 2025 Steven Heilman, All Rights Reserved.

Reference Sheet

Let X, Y be sets. A **bijection** is a function $f: X \to Y$ such that, for all $y \in Y$, there exists exactly one $x \in X$ such that f(x) = y. We say that X is **finite** if and only if there exists $n \in \mathbb{N}$ such that there exists a bijection $f: X \to \{1 \le i \le n : i \in \mathbb{N}\}$. We say that X is **countable** if and only if there exists a bijection $f: X \to \mathbb{N}$. We say that X is **uncountable** if and only if X is not finite and X is not countable.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers, and let L be a real number. We say that the sequence $(a_n)_{n=0}^{\infty}$ converges to L if and only if, for every real $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that, for all $n \geq N$, we have $|a_n - L| < \varepsilon$.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers that is converging to a real number L. We then say that the sequence $(a_n)_{n=0}^{\infty}$ is **convergent**, and we write $L = \lim_{n\to\infty} a_n$. If $(a_n)_{n=0}^{\infty}$ is not convergent, we say that the sequence $(a_n)_{n=0}^{\infty}$ is **divergent**, and we say the limit of L is undefined.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers. We say that $(a_n)_{n=0}^{\infty}$ is a **Cauchy sequence** if and only if, for any real $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that, for all $n, m \geq N$, we have $|a_n - a_m| < \varepsilon$.

A sequence $(a_n)_{n=0}^{\infty}$ of real numbers is **bounded** if and only if there exists $M \in \mathbf{R}$ such that $|a_n| \leq M$ for all $n \in \mathbf{N}$.

Let E be a subset of \mathbf{R} with some upper bound. The least upper bound of E is called the **supremum** of E, and is denoted by $\sup(E)$ or $\sup E$. If E has no upper bound, we write $\sup(E) = +\infty$. If E is empty, we write $\sup(E) = -\infty$. Let E be a subset of \mathbf{R} with some lower bound. The greatest lower bound of E is called the **infimum** of E, and is denoted by $\inf(E)$ or $\inf E$. If E has no lower bound, we write $\inf(E) = -\infty$. If E is empty, we write $\inf(E) = +\infty$.

Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers. Define $\sup(a_n)_{n=m}^{\infty}$ to be the supremum of the set $\{a_n : n \geq m, n \in \mathbb{N}\}$. Define $\inf(a_n)_{n=m}^{\infty}$ to be the infimum of the set $\{a_n : n \geq m, n \in \mathbb{N}\}$.

Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers and let x be a real number. We say that x is a **limit point** of the sequence $(a_n)_{n=m}^{\infty}$ if and only if: for every real $\varepsilon > 0$, for every natural number $N \geq m$, there exists $n \geq N$ such that $|a_n - x| < \varepsilon$. We define

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{m \ge n} a_m = \inf_{n \ge m} \sup_{t \ge n} a_t.$$

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{m \ge n} a_m = \sup_{n \ge m} \inf_{t \ge n} a_t.$$

Let $\sum_{n=m}^{\infty} a_n$ be a formal infinite series. For any integer $N \geq m$, define the N^{th} partial sum S_N of this series by $S_N := \sum_{n=m}^N a_n$. If the sequence $(S_N)_{N=m}^{\infty}$ converges to some limit $L \in \mathbf{R}$ as $N \to \infty$, then we say that the infinite series $\sum_{n=m}^{\infty} a_n$ is **convergent**, and this infinite series **converges to** L. We say that the series $\sum_{n=m}^{\infty} a_n$ is **absolutely convergent**

if and only if the series $\sum_{n=m}^{\infty} |a_n|$ is convergent. If a series is not absolutely convergent, then it is absolutely divergent.

Zero Test. Let $\sum_{n=m}^{\infty} a_n$ be a formal series of real numbers. If $\sum_{n=m}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$. Note that the contrapositive says: if a_n does not converge to zero as $n\to\infty$, then $\sum_{n=m}^{\infty} a_n$ does not converge.

Alternating Series Test. Let $(a_n)_{n=m}^{\infty}$ be a decreasing sequence of nonnegative real numbers. That is, $a_{n+1} \leq a_n$ and $a_n \geq 0$ for all $n \geq m$. Then the series $\sum_{n=m}^{\infty} (-1)^n a_n$ converges if and only if $a_n \to 0$ as $n \to \infty$.

Comparison Test. Let $\sum_{n=m}^{\infty} a_n$, $\sum_{n=m}^{\infty} b_n$ be formal series of real numbers. Assume that $|a_n| \leq b_n$ for all $n \geq m$. If $\sum_{n=m}^{\infty} b_n$ is convergent, then $\sum_{n=m}^{\infty} a_n$ is absolutely convergent. Moreover, $|\sum_{n=m}^{\infty} a_n| \leq \sum_{n=m}^{\infty} |a_n| \leq \sum_{n=m}^{\infty} b_n$.

The Root Test. Let $\sum_{n=m}^{\infty} a_n$ be a series of real numbers. Define $\alpha := \limsup_{n \to \infty} |a_n|^{1/n}$. (i) If $\alpha < 1$, then the series $\sum_{n=m}^{\infty} a_n$ is absolutely convergent. In particular, the series $\sum_{n=m}^{\infty} a_n$ is convergent. (ii) If $\alpha > 1$, then the series $\sum_{n=m}^{\infty} a_n$ is divergent. (iii) If $\alpha = 1$, no conclusion is asserted.

The Ratio Test. Let $\sum_{n=m}^{\infty} a_n$ be a series of nonzero numbers. (So, a_{n+1}/a_n is defined for any $n \geq m$.) (i) If $\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$, then the series $\sum_{n=m}^{\infty} a_n$ is absolutely convergent. In particular, $\sum_{n=m}^{\infty} a_n$ is convergent. (ii) If $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$, then the series $\sum_{n=m}^{\infty} a_n$ is divergent. In particular, $\sum_{n=m}^{\infty} a_n$ is not absolutely convergent.

Let X be a subset of \mathbf{R} and let $f: X \to \mathbf{R}$ be a function. Let x_0 be an element of X. We say that f is **continuous** at x_0 if and only if $\lim_{x\to x_0;x\in X} f(x)=f(x_0)$. That is, the limit of f at x_0 in X exists, and this limit is equal to $f(x_0)$. We say that f is **continuous on** X (or we just say that f is **continuous**) if and only if f is continuous at x_0 for every $x_0 \in X$. We say that f is **uniformly continuous** if and only if, for every $\varepsilon > 0$ there exists $\delta > 0$ such that, if $x \in X$ satisfies $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \varepsilon$. We say that f is **Lipschitz continuous** with constant L if and only if there exists $L \ge 0$ such that, for every $x, y \in X$, we have $|f(x) - f(y)| \le L|x - y|$.

Let $f: X \to \mathbf{R}$ be a function, and let $x_0 \in X$. We say that f attains its maximum at x_0 if and only if $f(x_0) \ge f(x)$ for all $x \in X$. We say that f attains its minimum at x_0 if and only if $f(x_0) \le f(x)$ for all $x \in X$.

The Maximum Principle. Let a < b be real numbers and let $f: [a, b] \to \mathbf{R}$ be a function that is continuous on [a, b]. Then f attains its maximum and minimum on [a, b].

Intermediate Value Theorem. Let a < b be real numbers. Let $f: [a, b] \to \mathbf{R}$ be function that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so that either $f(a) \le y \le f(b)$ or $f(a) \ge y \ge f(b)$. Then there exists a $c \in [a, b]$ such that f(c) = y.

Let X be a subset of \mathbf{R} and let x be a real number. We say that x is a **limit point** of X if

and only if, for every real $\varepsilon > 0$, there exists a $y \in X$ with $y \neq x$ such that $|y - x| < \varepsilon$.

Let X be a subset of \mathbb{R} , and let x_0 be an element of X which is also a limit point of X. Let $f: X \to \mathbb{R}$ be a function. If the limit $\lim_{x \to x_0; x \in X \setminus \{x_0\}} \frac{f(x) - f(x_0)}{x - x_0}$ converges to a real number L, then we say that f is **differentiable** at x_0 on X with **derivative** L, and we write $f'(x_0) := L$. If this limit does not exist, or if x_0 is not a limit point of X, we leave $f'(x_0)$ undefined, and we say that f is **not differentiable** at x_0 on X.

Mean Value Theorem. Let a < b be real numbers, and let $f: [a, b] \to \mathbf{R}$ be a continuous function which is differentiable on (a, b). Then there exists $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Let a < b be real numbers, let $f: [a,b] \to \mathbf{R}$ be a bounded function, and let $P = \{x_0, \ldots, x_n\}$ be a partition of [a,b]. That is, $a = x_0 < x_1 < \cdots < x_n = b$. We define the **upper Riemann sum** U(f,P) by $U(f,P) := \sum_{i=1}^n (\sup_{x \in [x_{i-1},x_i]} f(x))(x_i - x_{i-1})$. We also define the **lower Riemann sum** L(f,P) by $L(f,P) := \sum_{i=1}^n (\inf_{x \in [x_{i-1},x_i]} f(x))(x_i - x_{i-1})$.

Let a < b be real numbers, let $f: [a, b] \to \mathbf{R}$ be a bounded function. We define the **upper** Riemann integral $\overline{\int_a^b} f$ of f on [a, b] by

$$\overline{\int_a^b} f := \inf \{ U(f, P) \colon P \text{ is a partition of } [a, b] \}.$$

We also define the **lower Riemann integral** $\int_{\underline{a}}^{\underline{b}} f$ of f on [a, b] by

$$\underline{\int_a^b} f := \sup\{L(f, P) \colon P \text{ is a partition of } [a, b]\}.$$

Let a < b be real numbers, let $f: [a, b] \to \mathbf{R}$ be a bounded function. If $\overline{\int_a^b} f = \underline{\int_a^b} f$ we say that f is **Riemann integrable** on [a, b], and we define $\int_a^b f := \overline{\int_a^b} f = \underline{\int_a^b} f$.

Fundamental Theorem of Calculus, Part 1. Let a < b be real numbers. Let $f: [a,b] \to \mathbf{R}$ be a continuous function on [a,b]. Assume that f is also differentiable on [a,b], and f' is Riemann integrable on [a,b]. Then $\int_a^b f' = f(b) - f(a)$.

Fundamental Theorem of Calculus, Part 2. Let a < b be real numbers. Let $f : [a,b] \to \mathbf{R}$ be a Riemann integrable function. Define a function $F : [a,b] \to \mathbf{R}$ by $F(x) := \int_a^x f$. Then F is continuous. Moreover, if $x_0 \in [a,b]$ and if f is continuous at x_0 , then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

A **metric space** (X, d) is a set X together with a function $d: X \times X \to [0, \infty)$ which satisfies the following properties. (i) For all $x \in X$, we have d(x, x) = 0. (ii) For all $x, y \in X$ with

 $x \neq y$, we have d(x,y) > 0. (Positivity) (iii) For all $x,y \in X$, we have d(x,y) = d(y,x). (Symmetry) (iv) For all $x,y,z \in X$, we have $d(x,z) \leq d(x,y) + d(y,z)$. (Triangle inequality)

Let X be a vector space over \mathbf{R} . A **normed linear space** $(X, ||\cdot||)$ is a vector space X over \mathbf{R} together with a norm function $||\cdot||: X \to [0, \infty)$ which satisfies the following properties. (i) ||0|| = 0. (ii) For all $x \in X$ with $x \neq 0$, we have ||x|| > 0. (Positivity) (iii) For all $x \in X$ and for all $\alpha \in \mathbf{R}$, we $||\alpha x|| = |\alpha| ||x||$. (Homogeneity) (iv) For all $x, y \in X$, we have $||x + y|| \leq ||x|| + ||y||$. (Triangle inequality)

Let X be a vector space over \mathbf{R} . A **real inner product space** $(X, \langle \cdot, \cdot \rangle)$ is a vector space X over \mathbf{R} together with an inner product function $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbf{R}$ which satisfies the following properties. (i) $\langle 0, 0 \rangle = 0$. (ii) For all $x \in X$ with $x \neq 0$, we have $\langle x, x \rangle > 0$. (iii) For all $x, y \in X$, we have $\langle x, y \rangle = \langle y, x \rangle$. (Symmetry) (iv) For all $x \in X$ and for all $\alpha \in \mathbf{R}$, we $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$. (Homogeneity) (v) For all $x, y, z \in X$, we have $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$. (Linearity)

Let (X, d) be a metric space. We say that (X, d) is **complete** if and only if the following property holds. For any Cauchy sequence $(x^{(j)})_{j=k}^{\infty}$ of elements of X, then there exists some $x \in X$ such that $(x^{(j)})_{j=k}^{\infty}$ converges to x with respect to d.

A metric space (X, d) is said to be **compact** if and only if every sequence in (X, d) has at least one convergent subsequence. We say that $Y \subseteq X$ is **compact** if and only if the metric space $(Y, d|_{Y \times Y})$ is compact.

Let (X, d) be a metric space. We say that X is **disconnected** if and only if there exist disjoint nonempty open sets V, W in X such that $V \cup W = X$. (Equivalently, X is disconnected if and only if X contains a proper non-empty subset which is both open and closed.) We say that X is **connected** if and only if X is not disconnected. We say that $Y \subseteq X$ is **connected** if and only if the metric space $(Y, d|_{Y \times Y})$ is connected. We say that Y is **disconnected** if and only if the metric space $(Y, d|_{Y \times Y})$ is disconnected.

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $(f_j)_{j=1}^{\infty}$ be a sequence of functions from X to Y. Let $f: X \to Y$ be another function. We say that $(f_j)_{j=1}^{\infty}$ **converges pointwise** to f on X if and only if, for every $x \in X$, we have $\lim_{j\to\infty} f_j(x) = f(x)$. That is, for all $x \in X$, we have $\lim_{j\to\infty} d_Y(f_j(x), f(x)) = 0$. That is, for every $x \in X$ and for every $\varepsilon > 0$, there exists J > 0 such that, for all j > J, we have $d_Y(f_j(x), f(x)) = 0$.

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $(f_j)_{j=1}^{\infty}$ be a sequence of functions from X to Y. Let $f: X \to Y$ be another function. We say that $(f_j)_{j=1}^{\infty}$ converges uniformly to f on X if and only if, for every $\varepsilon > 0$, there exists J > 0 such that, for all j > J and for all $x \in X$ we have $d_Y(f_j(x), f(x)) = 0$.

Let $a \in \mathbf{R}$ and let r > 0. Let E be a subset of \mathbf{R} such that $(a-r, a+r) \subseteq E$. Let $f: E \to \mathbf{R}$. We say that the function f is **real analytic on** (a-r, a+r) if and only if there exists a power series $\sum_{j=0}^{\infty} a_j(x-a)^j$ centered at a with radius of convergence R such that $R \ge r$ and such that this power series converges to f on (a-r, a+r).

- 1. Label the following statements as TRUE or FALSE.
 If the statement is true, **EXPLAIN YOUR REASONING**.
 If the statement is false, **PROVIDE A COUNTEREXAMPLE AND/OR EXPLAIN YOUR REASONING**.
 - (a) (3 points) The set of rational numbers \mathbf{Q} is complete. TRUE FALSE (circle one)

(b) (3 points) For all $x \in \mathbf{R}$, we have $-\log(1-x) = \sum_{j=1}^{\infty} x^j/j$. (Here log denotes the natural logarithm.)

TRUE FALSE (circle one)

(c) (3 points) Let $f : \mathbf{R} \to \mathbf{R}$ be differentiable. Then f is continuous. TRUE FALSE (circle one)

(d) (3 points) Let $f: \mathbf{R}^6 \to \mathbf{R}$ be a continuous function. Let $K \subseteq \mathbf{R}^6$ be a compact set. Then f(K) is compact.

TRUE FALSE (circle one)

(e) (3 points) Let $f: [0,1] \to \mathbf{R}$ be a continuous function. Let $\varepsilon > 0$. Then there exists a polynomial $p: [0,1] \to \mathbf{R}$ such that

$$\sup_{x \in [0,1]} |f(x) - p(x)| < \varepsilon.$$

TRUE FALSE (circle one)

(f) (3 points) Let $V = \{(x,y) \in \mathbf{R}^2 : 1 \le x \le 2 \text{ or } 3 \le x \le 4\}$. Then there is a continuous function $f : [0,1] \to V$ such that f(0) = (1,0) and f(1) = (4,0).

TRUE FALSE (circle one)

2. (10 points) Let $(a_n)_{n=0}^{\infty}$ be a Cauchy sequence of real numbers. Prove that $(a_n)_{n=0}^{\infty}$ is bounded.

[this was a repeated homework exercise.]

3. (10 points) Prove the following:

For any positive integer n,

$$n^3 + 2n$$

is divisible by 3. (That is, show that $n^3 + 2n$ is a multiple of 3.)

4. (10 points) Consider the set $A=\{(x,y)\in \mathbf{R}\times \mathbf{R}\colon x+y\in \mathbf{Q}\}$. Is this set finite, countable, or uncountable? Prove your assertion.

[this was repeated from a practice exam]

5. (10 points) Let $f: [0,1] \to [0,1]$ be a Riemann integrable function such that $\int_0^1 f = 0$. Assume that f is continuous. Prove that f(x) = 0 for all $x \in [0,1]$. [this was a repeated homework exercise.] 6. [this was repeated from a practice exam]

Let $x \in \mathbf{R}$, and let j be a positive integer. Define the function

$$f_j(x) := \frac{x}{1 + jx^2}.$$

(a) (5 points) Show that the sequence of functions $(f_j)_{j=1}^{\infty}$ converges uniformly to some function f.

(b) (5 points) We use the function f from the first part of the question. Show that, if $x \neq 0$, then $f'(x) = \lim_{j \to \infty} f'_j(x)$. Show that, if x = 0, then $f'(x) \neq \lim_{j \to \infty} f'_j(x)$.

7. (10 points) Prove the first Fundamental Theorem of Calculus:

Let a < b be real numbers. Let $f: [a,b] \to \mathbf{R}$ be a continuous function on [a,b]. Assume that f is also differentiable on [a,b], and f' is Riemann integrable on [a,b]. Then $\int_a^b f' = f(b) - f(a)$.

(Hint: write the Riemann sum for $\int_a^b f'$, then apply a certain Theorem to write terms of the form $f'(c_i)(x_i - x_{i-1})$ in a different form.)

8. (10 points) Let $\ell_2(\mathbf{N}) = \{(a_j)_{j=0}^{\infty} : \sum_{j=0}^{\infty} a_j^2 < \infty, \ a_j \in \mathbf{R} \ \forall j \geq 0\}$. That is, $\ell_2(\mathbf{N})$ is the set of square-summable real sequences on \mathbf{N} . You can freely use that $\ell_2(\mathbf{N})$ is a real inner product space, with inner product given by $\langle (a_j)_{j=0}^{\infty}, (b_j)_{j=0}^{\infty} \rangle := \sum_{j=0}^{\infty} a_j b_j$. From this inner product, we then obtain a norm $||(a_j)_{j=0}^{\infty}|| := \langle (a_j)_{j=0}^{\infty}, (a_j)_{j=0}^{\infty} \rangle^{1/2} = \sqrt{\sum_{j=0}^{\infty} a_j^2}$ and associated metric on $\ell_2(\mathbf{N})$ defined by $d((a_j)_{j=0}^{\infty}, (b_j)_{j=0}^{\infty}) := \sqrt{\sum_{j=0}^{\infty} (a_j - b_j)^2}$. That is, $\ell_2(\mathbf{N})$ is a metric space with respect to this metric. (You can freely use this fact.) Define

$$B(0,1) := \{(a_j)_{j=0}^{\infty} \in \ell_2(\mathbf{N}) : ||(a_j)_{j=0}^{\infty}|| \le 1\}.$$

Is B(0,1) compact (with respect to the metric d)? Prove your assertion.

(Scratch paper)