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Final Exam

This exam contains 15 pages (including this cover page) and 8 problems. Enter all requested
information on the top of this page.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

� You have 120 minutes to complete the exam,
starting at the beginning of class.

� Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

� Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

� If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper appears at the end of the
document.

Do not write in the table to the right. Good luck!a

aMay 8, 2025, © 2025 Steven Heilman, All Rights Re-
served.

Problem Points Score

1 18

2 10

3 10

4 10

5 10

6 10

7 10

8 10

Total: 88



Reference Sheet

Let X, Y be sets. A bijection is a function f : X → Y such that, for all y ∈ Y , there exists
exactly one x ∈ X such that f(x) = y. We say that X is finite if and only if there exists
n ∈ N such that there exists a bijection f : X → {1 ≤ i ≤ n : i ∈ N}. We say that X is
countable if and only if there exists a bijection f : X → N. We say that X is uncountable
if and only if X is not finite and X is not countable.

Let (an)
∞
n=0 be a sequence of real numbers, and let L be a real number. We say that the

sequence (an)
∞
n=0 converges to L if and only if, for every real ε > 0, there exists a natural

number N = N(ε) such that, for all n ≥ N , we have |an − L| < ε.

Let (an)
∞
n=0 be a sequence of real numbers that is converging to a real number L. We then

say that the sequence (an)
∞
n=0 is convergent, and we write L = limn→∞ an. If (an)

∞
n=0 is

not convergent, we say that the sequence (an)
∞
n=0 is divergent, and we say the limit of L is

undefined.

Let (an)
∞
n=0 be a sequence of real numbers. We say that (an)

∞
n=0 is a Cauchy sequence if

and only if, for any real ε > 0, there exists a natural number N = N(ε) such that, for all
n,m ≥ N , we have |an − am| < ε.

A sequence (an)
∞
n=0 of real numbers is bounded if and only if there exists M ∈ R such that

|an| ≤ M for all n ∈ N.

Let E be a subset of R with some upper bound. The least upper bound of E is called the
supremum of E, and is denoted by sup(E) or sup E. If E has no upper bound, we write
sup(E) = +∞. If E is empty, we write sup(E) = −∞. Let E be a subset of R with some
lower bound. The greatest lower bound of E is called the infimum of E, and is denoted by
inf(E) or inf E. If E has no lower bound, we write inf(E) = −∞. If E is empty, we write
inf(E) = +∞.

Let (an)
∞
n=m be a sequence of real numbers. Define sup(an)

∞
n=m to be the supremum of the set

{an : n ≥ m, n ∈ N}. Define inf(an)
∞
n=m to be the infimum of the set {an : n ≥ m, n ∈ N}.

Let (an)
∞
n=m be a sequence of real numbers and let x be a real number. We say that x is a

limit point of the sequence (an)
∞
n=m if and only if: for every real ε > 0, for every natural

number N ≥ m, there exists n ≥ N such that |an − x| < ε. We define

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am = inf
n≥m

sup
t≥n

at.

lim inf
n→∞

an = lim
n→∞

inf
m≥n

am = sup
n≥m

inf
t≥n

at.

Let
∑∞

n=m an be a formal infinite series. For any integer N ≥ m, define the N th partial

sum SN of this series by SN :=
∑N

n=m an. If the sequence (SN)
∞
N=m converges to some limit

L ∈ R as N → ∞, then we say that the infinite series
∑∞

n=m an is convergent, and this
infinite series converges to L. We say that the series

∑∞
n=m an is absolutely convergent
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if and only if the series
∑∞

n=m |an| is convergent. If a series is not absolutely convergent,
then it is absolutely divergent.

Zero Test. Let
∑∞

n=m an be a formal series of real numbers. If
∑∞

n=m an converges, then
limn→∞ an = 0. Note that the contrapositive says: if an does not converge to zero as n → ∞,
then

∑∞
n=m an does not converge.

Alternating Series Test. Let (an)
∞
n=m be a decreasing sequence of nonnegative real num-

bers. That is, an+1 ≤ an and an ≥ 0 for all n ≥ m. Then the series
∑∞

n=m(−1)nan converges
if and only if an → 0 as n → ∞.

Comparison Test. Let
∑∞

n=m an,
∑∞

n=m bn be formal series of real numbers. Assume that
|an| ≤ bn for all n ≥ m. If

∑∞
n=m bn is convergent, then

∑∞
n=m an is absolutely convergent.

Moreover, |
∑∞

n=m an| ≤
∑∞

n=m |an| ≤
∑∞

n=m bn.

The Root Test. Let
∑∞

n=m an be a series of real numbers. Define α := lim supn→∞ |an|1/n.
(i) If α < 1, then the series

∑∞
n=m an is absolutely convergent. In particular, the series∑∞

n=m an is convergent. (ii) If α > 1, then the series
∑∞

n=m an is divergent. (iii) If α = 1, no
conclusion is asserted.

The Ratio Test. Let
∑∞

n=m an be a series of nonzero numbers. (So, an+1/an is defined for

any n ≥ m.) (i) If lim supn→∞
|an+1|
|an| < 1, then the series

∑∞
n=m an is absolutely convergent.

In particular,
∑∞

n=m an is convergent. (ii) If lim infn→∞
|an+1|
|an| > 1, then the series

∑∞
n=m an

is divergent. In particular,
∑∞

n=m an is not absolutely convergent.

Let X be a subset of R and let f : X → R be a function. Let x0 be an element of X. We
say that f is continuous at x0 if and only if limx→x0;x∈X f(x) = f(x0). That is, the limit of
f at x0 in X exists, and this limit is equal to f(x0). We say that f is continuous on X (or
we just say that f is continuous) if and only if f is continuous at x0 for every x0 ∈ X. We
say that f is uniformly continuous if and only if, for every ε > 0 there exists δ > 0 such
that, if x ∈ X satisfies |x− x0| < δ, then |f(x)− f(x0)| < ε. We say that f is Lipschitz
continuous with constant L if and only if there exists L ≥ 0 such that, for every x, y ∈ X,
we have |f(x)− f(y)| ≤ L |x− y|.

Let f : X → R be a function, and let x0 ∈ X. We say that f attains its maximum at x0

if and only if f(x0) ≥ f(x) for all x ∈ X. We say that f attains its minimum at x0 if and
only if f(x0) ≤ f(x) for all x ∈ X.

The Maximum Principle. Let a < b be real numbers and let f : [a, b] → R be a function
that is continuous on [a, b]. Then f attains its maximum and minimum on [a, b].

Intermediate Value Theorem. Let a < b be real numbers. Let f : [a, b] → R be function
that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so that either
f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists a c ∈ [a, b] such that f(c) = y.

Let X be a subset of R and let x be a real number. We say that x is a limit point of X if
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and only if, for every real ε > 0, there exists a y ∈ X with y ̸= x such that |y − x| < ε.

Let X be a subset of R, and let x0 be an element of X which is also a limit point of X.
Let f : X → R be a function. If the limit limx→x0;x∈X∖{x0}

f(x)−f(x0)
x−x0

converges to a real
number L, then we say that f is differentiable at x0 on X with derivative L, and we
write f ′(x0) := L. If this limit does not exist, or if x0 is not a limit point of X, we leave
f ′(x0) undefined, and we say that f is not differentiable at x0 on X.

Mean Value Theorem. Let a < b be real numbers, and let f : [a, b] → R be a continuous
function which is differentiable on (a, b). Then there exists x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

Let a < b be real numbers, let f : [a, b] → R be a bounded function, and let P = {x0, . . . , xn}
be a partition of [a, b]. That is, a = x0 < x1 < · · · < xn = b.We define the upper Riemann
sum U(f, P ) by U(f, P ) :=

∑n
i=1(supx∈[xi−1,xi]

f(x))(xi − xi−1). We also define the lower
Riemann sum L(f, P ) by L(f, P ) :=

∑n
i=1(infx∈[xi−1,xi] f(x))(xi − xi−1).

Let a < b be real numbers, let f : [a, b] → R be a bounded function. We define the upper

Riemann integral
∫ b

a
f of f on [a, b] by∫ b

a

f := inf{U(f, P ) : P is a partition of [a, b]}.

We also define the lower Riemann integral
∫ b

a
f of f on [a, b] by∫ b

a

f := sup{L(f, P ) : P is a partition of [a, b]}.

Let a < b be real numbers, let f : [a, b] → R be a bounded function. If
∫ b

a
f =

∫ b

a
f we say

that f is Riemann integrable on [a, b], and we define
∫ b

a
f :=

∫ b

a
f =

∫ b

a
f.

Fundamental Theorem of Calculus, Part 1. Let a < b be real numbers. Let f : [a, b] →
R be a continuous function on [a, b]. Assume that f is also differentiable on [a, b], and f ′ is

Riemann integrable on [a, b]. Then
∫ b

a
f ′ = f(b)− f(a).

Fundamental Theorem of Calculus, Part 2. Let a < b be real numbers. Let f : [a, b] →
R be a Riemann integrable function. Define a function F : [a, b] → R by F (x) :=

∫ x

a
f . Then

F is continuous. Moreover, if x0 ∈ [a, b] and if f is continuous at x0, then F is differentiable
at x0 and F ′(x0) = f(x0).

A metric space (X, d) is a set X together with a function d : X×X → [0,∞) which satisfies
the following properties. (i) For all x ∈ X, we have d(x, x) = 0. (ii) For all x, y ∈ X with

Page 4



x ̸= y, we have d(x, y) > 0. (Positivity) (iii) For all x, y ∈ X, we have d(x, y) = d(y, x).
(Symmetry) (iv) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y)+d(y, z). (Triangle inequality)

Let X be a vector space over R. A normed linear space (X, ||·||) is a vector space X over
R together with a norm function ||·|| : X → [0,∞) which satisfies the following properties.
(i) ||0|| = 0. (ii) For all x ∈ X with x ̸= 0, we have ||x|| > 0. (Positivity) (iii) For all
x ∈ X and for all α ∈ R, we ||αx|| = |α| ||x||. (Homogeneity) (iv) For all x, y ∈ X, we have
||x+ y|| ≤ ||x||+ ||y||. (Triangle inequality)

Let X be a vector space over R. A real inner product space (X, ⟨·, ·⟩) is a vector space
X over R together with an inner product function ⟨·, ·⟩ : X × X → R which satisfies the
following properties. (i) ⟨0, 0⟩ = 0. (ii) For all x ∈ X with x ̸= 0, we have ⟨x, x⟩ > 0. (iii) For
all x, y ∈ X, we have ⟨x, y⟩ = ⟨y, x⟩. (Symmetry) (iv) For all x ∈ X and for all α ∈ R, we
⟨αx, y⟩ = α⟨x, y⟩. (Homogeneity) (v) For all x, y, z ∈ X, we have ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.
(Linearity)

Let (X, d) be a metric space. We say that (X, d) is complete if and only if the following
property holds. For any Cauchy sequence (x(j))∞j=k of elements of X, then there exists some

x ∈ X such that (x(j))∞j=k converges to x with respect to d.

A metric space (X, d) is said to be compact if and only if every sequence in (X, d) has at
least one convergent subsequence. We say that Y ⊆ X is compact if and only if the metric
space (Y, d|Y×Y ) is compact.

Let (X, d) be a metric space. We say thatX is disconnected if and only if there exist disjoint
nonempty open sets V,W in X such that V ∪W = X. (Equivalently, X is disconnected if
and only if X contains a proper non-empty subset which is both open and closed.) We say
that X is connected if and only if X is not disconnected. We say that Y ⊆ X is connected
if and only if the metric space (Y, d|Y×Y ) is connected. We say that Y is disconnected if
and only if the metric space (Y, d|Y×Y ) is disconnected.

Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of functions from X to

Y . Let f : X → Y be another function. We say that (fj)
∞
j=1 converges pointwise to f on

X if and only if, for every x ∈ X, we have limj→∞ fj(x) = f(x). That is, for all x ∈ X, we
have limj→∞ dY (fj(x), f(x)) = 0. That is, for every x ∈ X and for every ε > 0, there exists
J > 0 such that, for all j > J , we have dY (fj(x), f(x)) = 0.

Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of functions from X to

Y . Let f : X → Y be another function. We say that (fj)
∞
j=1 converges uniformly to f

on X if and only if, for every ε > 0, there exists J > 0 such that, for all j > J and for all
x ∈ X we have dY (fj(x), f(x)) = 0.

Let a ∈ R and let r > 0. Let E be a subset of R such that (a−r, a+r) ⊆ E. Let f : E → R.
We say that the function f is real analytic on (a − r, a + r) if and only if there exists a
power series

∑∞
j=0 aj(x − a)j centered at a with radius of convergence R such that R ≥ r

and such that this power series converges to f on (a− r, a+ r).
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1. Label the following statements as TRUE or FALSE.
If the statement is true, EXPLAIN YOUR REASONING.
If the statement is false, PROVIDE A COUNTEREXAMPLE AND/OR EX-
PLAIN YOUR REASONING.

(a) (3 points) The set of rational numbers Q is complete.

TRUE FALSE (circle one)

(b) (3 points) For all x ∈ R, we have − log(1− x) =
∑∞

j=1 x
j/j.

(Here log denotes the natural logarithm.)

TRUE FALSE (circle one)

(c) (3 points) Let f : R → R be differentiable. Then f is continuous.

TRUE FALSE (circle one)
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(d) (3 points) Let f : R6 → R be a continuous function. Let K ⊆ R6 be a compact
set. Then f(K) is compact.

TRUE FALSE (circle one)

(e) (3 points) Let f : [0, 1] → R be a continuous function. Let ε > 0. Then there exists
a polynomial p : [0, 1] → R such that

sup
x∈[0,1]

|f(x)− p(x)| < ε.

TRUE FALSE (circle one)

(f) (3 points) Let V = {(x, y) ∈ R2 : 1 ≤ x ≤ 2 or 3 ≤ x ≤ 4}. Then there is a
continuous function f : [0, 1] → V such that f(0) = (1, 0) and f(1) = (4, 0).

TRUE FALSE (circle one)
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2. (10 points) Let (an)
∞
n=0 be a Cauchy sequence of real numbers.

Prove that (an)
∞
n=0 is bounded.

[this was a repeated homework exercise.]
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3. (10 points) Prove the following:

For any positive integer n,
n3 + 2n

is divisible by 3. (That is, show that n3 + 2n is a multiple of 3.)
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4. (10 points) Consider the set A = {(x, y) ∈ R × R : x + y ∈ Q}. Is this set finite,
countable, or uncountable? Prove your assertion.

[this was repeated from a practice exam]
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5. (10 points) Let f : [0, 1] → [0, 1] be a Riemann integrable function such that
∫ 1

0
f = 0.

Assume that f is continuous. Prove that f(x) = 0 for all x ∈ [0, 1].

[this was a repeated homework exercise.]
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6. [this was repeated from a practice exam]

Let x ∈ R, and let j be a positive integer. Define the function

fj(x) :=
x

1 + jx2
.

(a) (5 points) Show that the sequence of functions (fj)
∞
j=1 converges uniformly to some

function f .

(b) (5 points) We use the function f from the first part of the question. Show that, if
x ̸= 0, then f ′(x) = limj→∞ f ′

j(x). Show that, if x = 0, then f ′(x) ̸= limj→∞ f ′
j(x).

Page 12



7. (10 points) Prove the first Fundamental Theorem of Calculus:

Let a < b be real numbers. Let f : [a, b] → R be a continuous function on [a, b].
Assume that f is also differentiable on [a, b], and f ′ is Riemann integrable on [a, b].

Then
∫ b

a
f ′ = f(b)− f(a).

(Hint: write the Riemann sum for
∫ b

a
f ′, then apply a certain Theorem to write terms of

the form f ′(ci)(xi − xi−1) in a different form.)
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8. (10 points) Let ℓ2(N) = {(aj)∞j=0 :
∑∞

j=0 a
2
j < ∞, aj ∈ R∀ j ≥ 0}. That is, ℓ2(N) is the

set of square-summable real sequences onN. You can freely use that ℓ2(N) is a real inner
product space, with inner product given by ⟨(aj)∞j=0, (bj)

∞
j=0⟩ :=

∑∞
j=0 ajbj. From this

inner product, we then obtain a norm
∣∣∣∣(aj)∞j=0

∣∣∣∣ := ⟨(aj)∞j=0, (aj)
∞
j=0⟩1/2 =

√∑∞
j=0 a

2
j

and associated metric on ℓ2(N) defined by d((aj)
∞
j=0, (bj)

∞
j=0) :=

√∑∞
j=0(aj − bj)2. That

is, ℓ2(N) is a metric space with respect to this metric. (You can freely use this fact.)

Define
B(0, 1) := {(aj)∞j=0 ∈ ℓ2(N) :

∣∣∣∣(aj)∞j=0

∣∣∣∣ ≤ 1}.

Is B(0, 1) compact (with respect to the metric d)? Prove your assertion.
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(Scratch paper)
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