425 Midterm 1 Solutiond]

1. QUESTION 1

(a) The set of rational numbers Q is countable.

TRUE. We proved this in class, Corollary 2.1.24

(b) The set of real numbers R is uncountable.

TRUE. We proved this in class, Corollary 2.1.30

(c) There is a set of cardinality larger than the real numbers. That is, there is an uncount-
able set that does not have the same cardinality as the real numbers.

TRUE. By Proposition 2.1.28, 2R is an uncountable set with cardinality different than R.
(Since R C 2R, and since R is uncountable, 2R is uncountable.)

(d) The set N x N = {(a,b): a € N,b € N} is uncountable.

FALSE. We showed in class that N x N is countable in Lemma 2.1.22.

2. QUESTION 2

Prove the following;:
For any positive integer n,
2ntl > 2,

Solution. We prove this by induction on n. The base case n = 1 follows since it says
22 > 12 i.e. 4 > 1, which is true. Also note the base case n = 2 holds, since it says 23 > 22,
i.e. 8 > 4, which is true. We then do the inductive step. Assume the assertion holds for
n > 1, and we are required to show it holds in the case n+ 1. Using the inductive hypothesis,
we have

2" = 2. 2" > an?,
Also (n+1)% = n?+2n+1, so it remains to show that 2n? > n?+2n+1, i.e. that n> > 2n+1.
In the case n > 3, we have n? > 3n = 2n 4+ n > 2n + 1. So we are done the inductive step.
The desired assertion then follows by induction (using n = 2 as the base case.)

3. QUESTION 3

Prove the reverse triangle inequality. That is, show:
For any rational numbers x,y, we have

v =yl > |2l = Iyl |

(Hint: you can freely use the usual triangle inequality.)
Solution. Using the usual triangle inequality, we have

2| =[x —y)+yl <]z —y[+|yl and |y|=|(y—2)+2z|<|y—2|+|z|
Thus it follows that
2| = [yl < |z —yl and |yl —|z|<|y—o|=]z—y|. ()

By definition of the absolute value, ||z| — |y|| = |z| — |y| or ||z] — |y|| = —(Jz| — |y|). In the
first case, the first part of (x) concludes the proof, and in the second case, the second part of
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(%) concludes the proof. So regardless of whether ||z|—|y|| = |z| —|y| or ||| —|y|| = |y| —|=],
it follows that ||z| — |y|| < |x — y| as desired.

4. QUESTION 4

Let (@), be a sequence of rational numbers that converges to a real number z. Let
(b,)2, be a sequence of rational numbers that converges to a real number y.

Show that the sequence (a,, + b,)5%, converges to the real number x + y.

Solution. We have from the triangle inequality that for all n > 0,

|an + b = (z + )| < lan —x[+[bn —y[. (%)
Let ¢ > 0. Then there exists Ny, Ny > 0 such that |a, — x| < £/2 for all n > Nj, and
|b, — x| < /2 for all n > N,. Define then N := max(N;.Ns). Then for all n > N, we have
from (x) that
lan + b, — (r+y)| <e/2+¢€/2=¢.
That is, (a, + b,)5°, converges to the real number = + y.

5. QUESTION 5

Let z be a rational number. Prove that there exists a unique integer n such that n < x <
n + 1. In particular, there exists an integer /N such that x < N.

Solution. Let x € Q and write it as a quotient x = § of two integers p, q € Z with ¢ > 0.
Assume for now that p > 0. Then by the Euclidean algorithm, there exists m,r € N with
0 <r < g such that p = mq + r. This gives

p  mq—+r r

- = =m

q q q
But since 0 < £ < 1, it follows that m < m +r/q < m+ 1. Since z = m + r/q, we get
m < x < m + 1 and this proves the existence. In case p < 0, we apply the above reasoning
to —p/q to get m < —x < m+ 1, so that —(m+1) <z < —m.

To prove the uniqueness, let m,n € Z satisfy m < x < m+1andn < x < n+ 1,
respectively. We claim that in fact m = n. By relabeling if required, we may assume that
m < n. Then n = m + a for some a € N. But if a # 0, then a > 1 and this implies

r<m+1<m+4+a=n<cz

That is, x < x, a contradiction! Therefore a = 0 and hence m = n.
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