
425 Midterm 1 Solutions1

1. Question 1

(a) The set of rational numbers Q is countable.
TRUE. We proved this in class, Corollary 2.1.24
(b) The set of real numbers R is uncountable.
TRUE. We proved this in class, Corollary 2.1.30
(c) There is a set of cardinality larger than the real numbers. That is, there is an uncount-

able set that does not have the same cardinality as the real numbers.
TRUE. By Proposition 2.1.28, 2R is an uncountable set with cardinality different than R.

(Since R ⊆ 2R, and since R is uncountable, 2R is uncountable.)
(d) The set N×N = {(a, b) : a ∈ N, b ∈ N} is uncountable.
FALSE. We showed in class that N×N is countable in Lemma 2.1.22.

2. Question 2

Prove the following:
For any positive integer n,

2n+1 > n2.

Solution. We prove this by induction on n. The base case n = 1 follows since it says
22 > 12, i.e. 4 > 1, which is true. Also note the base case n = 2 holds, since it says 23 > 22,
i.e. 8 > 4, which is true. We then do the inductive step. Assume the assertion holds for
n ≥ 1, and we are required to show it holds in the case n+1. Using the inductive hypothesis,
we have

2n+2 = 2 · 2n+1 > 2n2.

Also (n+1)2 = n2+2n+1, so it remains to show that 2n2 ≥ n2+2n+1, i.e. that n2 ≥ 2n+1.
In the case n ≥ 3, we have n2 ≥ 3n = 2n + n ≥ 2n + 1. So we are done the inductive step.
The desired assertion then follows by induction (using n = 2 as the base case.)

3. Question 3

Prove the reverse triangle inequality. That is, show:
For any rational numbers x, y, we have

|x− y| ≥
∣∣∣ |x| − |y|

∣∣∣.
(Hint: you can freely use the usual triangle inequality.)

Solution. Using the usual triangle inequality, we have

|x| = |(x− y) + y| ≤ |x− y|+ |y| and |y| = |(y − x) + x| ≤ |y − x|+ |x|.
Thus it follows that

|x| − |y| ≤ |x− y| and |y| − |x| ≤ |y − x| = |x− y|. (∗)
By definition of the absolute value, ||x| − |y|| = |x| − |y| or ||x| − |y|| = −(|x| − |y|). In the
first case, the first part of (∗) concludes the proof, and in the second case, the second part of
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(∗) concludes the proof. So regardless of whether ||x|−|y|| = |x|−|y| or ||x|−|y|| = |y|−|x|,
it follows that ||x| − |y|| ≤ |x− y| as desired.

4. Question 4

Let (an)
∞
n=0 be a sequence of rational numbers that converges to a real number x. Let

(bn)
∞
n=0 be a sequence of rational numbers that converges to a real number y.

Show that the sequence (an + bn)
∞
n=0 converges to the real number x+ y.

Solution. We have from the triangle inequality that for all n ≥ 0,

|an + bn − (x+ y)| ≤ |an − x|+ |bn − y| . (∗)
Let ε > 0. Then there exists N1, N2 > 0 such that |an − x| < ε/2 for all n ≥ N1, and
|bn − x| < ε/2 for all n ≥ N2. Define then N := max(N1.N2). Then for all n ≥ N , we have
from (∗) that

|an + bn − (x+ y)| ≤ ε/2 + ε/2 = ε.

That is, (an + bn)
∞
n=0 converges to the real number x+ y.

5. Question 5

Let x be a rational number. Prove that there exists a unique integer n such that n ≤ x <
n+ 1. In particular, there exists an integer N such that x < N .
Solution. Let x ∈ Q and write it as a quotient x = p

q
of two integers p, q ∈ Z with q > 0.

Assume for now that p ≥ 0. Then by the Euclidean algorithm, there exists m, r ∈ N with
0 ≤ r < q such that p = mq + r. This gives

x =
p

q
=

mq + r

q
= m+

r

q
.

But since 0 ≤ r
q
< 1, it follows that m ≤ m + r/q ≤ m + 1. Since x = m + r/q, we get

m ≤ x < m + 1 and this proves the existence. In case p < 0, we apply the above reasoning
to −p/q to get m ≤ −x ≤ m+ 1, so that −(m+ 1) ≤ x ≤ −m.
To prove the uniqueness, let m,n ∈ Z satisfy m < x < m + 1 and n < x < n + 1,

respectively. We claim that in fact m = n. By relabeling if required, we may assume that
m ≤ n. Then n = m+ a for some a ∈ N. But if a ̸= 0, then a ≥ 1 and this implies

x < m+ 1 ≤ m+ a = n ≤ x

That is, x < x, a contradiction! Therefore a = 0 and hence m = n.
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