
Probability Theory 407 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 27, 2PM PST, to be uploaded in blackboard as a single PDF document (in the
Assignments tab).

Homework 12

Exercise 1. Let X1, X2, . . . be independent random variables, each with exponential distri-
bution with parameter λ = 1. For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let 0 < a < 1 < b.
Show that P(Yn ≤ a log n) → 0 as n → ∞, and P(Yn ≤ b log n) → 1 as n → ∞. Conclude
that Yn/ log n converges to 1 in probability as n→∞.

Exercise 2. We say that random variables X1, X2, . . . converge to a random variable X in
L2 if

lim
n→∞

E |Xn −X|2 = 0.

Show that, if X1, X2, . . . converge to X in L2, then X1, X2, . . . converges to X in probability.

Is the converse true? Prove your assertion.

Exercise 3. Let X1, X2, . . . be independent, identically distributed random variables such
that E |X1| <∞ and var(X1) <∞. For any n ≥ 1, define

Yn :=
1

n

n∑
i=1

X2
i .

Show that Y1, Y2, . . . converges in probability. Express the limit in terms of EX1 and var(X1).

Exercise 4. Let f, g, h : R → R. We use the notation f(t) = o(g(t)) ∀ t ∈ R to denote

limt→0

∣∣f(t)
g(t)

∣∣ = 0. For example, if f(t) = t3 ∀ t ∈ R, then f(t) = o(t2), since limt→0 |f(t)t2
| =

limt→0 |t| = 0. Show: (i) if f(t) = o(g(t)) and if h(t) = o(g(t)), then (f + h)(t) = o(g(t)).
(ii) If c is any nonzero constant, then o(cg(t)) = o(g(t)). (iii) limt→0 g(t)o(1/g(t)) = 0. (iv)
limt→0 o(g(t))/g(t) = 0. (v) o(g(t) + o(g(t))) = o(g(t)).

Exercise 5. This exercise demonstrates that geometry in high dimensions is different than
geometry in low dimensions.

Let x = (x1, . . . , xn) ∈ Rn. Let ||x|| :=
√
x21 + · · ·+ x2n. Let ε > 0. Show that for all

sufficiently large n, “most” of the cube [−1, 1]n is contained in the annulus

A := {x ∈ Rn : (1− ε)
√
n/3 ≤ ||x|| ≤ (1 + ε)

√
n/3}.

That is, if X1, . . . , Xn are each independent and identically distributed in [−1, 1], then for n
sufficiently large

P((X1, . . . , Xn) ∈ A) ≥ 1− ε.
(Hint: apply the weak law of large numbers to X2

1 , . . . , X
2
n.)
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Exercise 6 (Confidence Intervals). Among 625 members of a bank chosen uniformly at
random among all bank members, it was found that 25 had a savings account. Give an
interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a, b]. (Hint: if Y is a standard Gaussian random variable, then P(−2 ≤ Y ≤
2) ≈ .95.)

Exercise 7 (Hypothesis Testing). Suppose we run a casino, and we want to test whether or
not a particular roulette wheel is biased. Let p be the probability that red results from one
spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null hypothesis,
and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette wheel, 18 of the 38
spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0 otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Exercise 8. Suppose random variables X1, X2, . . . converge in probability to a random
variable X. Prove that X1, X2, . . . converge in distribution to X.

Then, show that the converse is false.

ALL EXERCISES BELOWARE OPTIONAL. THEYWILL NOT BE GRADED.

Exercise 9 (Optional). Let X1, X2, . . . be independent identically distributed random vari-
ables with P(X1 = 1) = P(X1 = −1) = 1/2. For any n ≥ 1, define

Sn :=
X1 + · · ·+Xn√

n
.

The Central Limit Theorem says that Sn converges in distribution to a standard Gaussian
random variable. We show that Sn does not converge in probability to any random variable.
The intuition here is that if Sn did converge in probability to a random variable Z, then

when n is large, Sn is close to Z, Yn :=
√
2S2n−Sn√

2−1 is close to Z, but Sn and Yn are independent.

And this cannot happen.

Proceed as follows. Assume that Sn converges in probability to Z.

• Let ε > 0. For n very large (depending on ε), we have P(|Sn − Z| > ε) < ε and
P(|Yn − Z| > ε) < ε.
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• Show that P(Sn > 0, Yn > 0) is around 1/4, using independence and the Central
Limit Theorem.
• From the first item, show P(Sn > 0|Z > ε) > 1 − ε, P(Yn > 0|Z > ε) > 1 − ε, so
P(Sn > 0, Yn > 0|Z > ε) > 1− 2ε.
• Without loss of generality, for ε small, we have P(Z > ε) > 4/9.
• By conditioning on Z > ε, show that P(Sn > 0, Yn > 0) is at least 3/8, when n is

large.

Exercise 10 (Optional). Let X1, X2, . . . be random variables that converge almost surely
to a random variable X. That is,

P( lim
n→∞

Xn = X) = 1.

Show that X1, X2, . . . converges in probability to X in the following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃

m=n

{ω ∈ Ω: |Xm(ω)−X(ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables X1, X2, . . . that converge
in probability to X, but where X1, X2, . . . do not converge to X almost surely.

Exercise 11 (Optional, Renewal Theory). Let t1, t2, . . . be positive, independent identically
distributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j,
we interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it is
replaced by the (j+1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · ·+ tn be the total lifetime
of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the
number of lightbulbs that have been used up until time t. Show that Nt/t converges almost
surely to 1/µ as t → ∞. (Hint: by definition of Nt, we have TNt−1 < t ≤ TNt . Now divide
the inequalities by Nt and apply the Strong Law.)

Exercise 12 (Optional, Playing Monopoly Forever). Let t1, t2, . . . be independent random
variables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of
tj as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · ·+ tn be
the total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get t
spaces away from the start. Using Exercise 11, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 13 (Optional, Random Numbers are Normal). Let X be a uniformly distributed
random variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2

be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
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• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with
probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be so
easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 14 (Optional). Using the Central Limit Theorem, prove the Weak Law of Large
Numbers.

Exercise 15 (Optional). Let X1, X2, . . . be random variables with mean zero and variance
one. The Strong Law of Large Numbers says that 1

n
(X1 + · · ·+Xn) converges almost surely

to zero. The Central Limit Theorem says that 1√
n
(X1+ · · ·+Xn) converges in distribution to

a standard Gaussian random variable. But what happens if we divide by some other power
of n? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n.)


