Please provide complete and well-written solutions to the following exercises.
Due April 27, 2PM PST, to be uploaded in blackboard as a single PDF document (in the Assignments tab).

Homework 12

Exercise 1. Let X_{1}, X_{2}, \ldots be independent random variables, each with exponential distribution with parameter $\lambda=1$. For any $n \geq 1$, let $Y_{n}:=\max \left(X_{1}, \ldots, X_{n}\right)$. Let $0<a<1<b$. Show that $\mathbf{P}\left(Y_{n} \leq a \log n\right) \rightarrow 0$ as $n \rightarrow \infty$, and $\mathbf{P}\left(Y_{n} \leq b \log n\right) \rightarrow 1$ as $n \rightarrow \infty$. Conclude that $Y_{n} / \log n$ converges to 1 in probability as $n \rightarrow \infty$.

Exercise 2. We say that random variables X_{1}, X_{2}, \ldots converge to a random variable X in L_{2} if

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left|X_{n}-X\right|^{2}=0
$$

Show that, if X_{1}, X_{2}, \ldots converge to X in L_{2}, then X_{1}, X_{2}, \ldots converges to X in probability.
Is the converse true? Prove your assertion.
Exercise 3. Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables such that $\mathbf{E}\left|X_{1}\right|<\infty$ and $\operatorname{var}\left(X_{1}\right)<\infty$. For any $n \geq 1$, define

$$
Y_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} .
$$

Show that Y_{1}, Y_{2}, \ldots converges in probability. Express the limit in terms of $\mathbf{E} X_{1}$ and $\operatorname{var}\left(X_{1}\right)$.
Exercise 4. Let $f, g, h: \mathbf{R} \rightarrow \mathbf{R}$. We use the notation $f(t)=o(g(t)) \forall t \in \mathbf{R}$ to denote $\lim _{t \rightarrow 0}\left|\frac{f(t)}{g(t)}\right|=0$. For example, if $f(t)=t^{3} \forall t \in \mathbf{R}$, then $f(t)=o\left(t^{2}\right)$, since $\lim _{t \rightarrow 0}\left|\frac{f(t)}{t^{2}}\right|=$ $\lim _{t \rightarrow 0}|t|=0$. Show: (i) if $f(t)=o(g(t))$ and if $h(t)=o(g(t))$, then $(f+h)(t)=o(g(t))$. (ii) If c is any nonzero constant, then $o(c g(t))=o(g(t))$. (iii) $\lim _{t \rightarrow 0} g(t) o(1 / g(t))=0$. (iv) $\lim _{t \rightarrow 0} o(g(t)) / g(t)=0$. (v) $o(g(t)+o(g(t)))=o(g(t))$.

Exercise 5. This exercise demonstrates that geometry in high dimensions is different than geometry in low dimensions.

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Let $\|x\|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. Let $\varepsilon>0$. Show that for all sufficiently large n, "most" of the cube $[-1,1]^{n}$ is contained in the annulus

$$
A:=\left\{x \in \mathbf{R}^{n}:(1-\varepsilon) \sqrt{n / 3} \leq\|x\| \leq(1+\varepsilon) \sqrt{n / 3}\right\} .
$$

That is, if X_{1}, \ldots, X_{n} are each independent and identically distributed in $[-1,1]$, then for n sufficiently large

$$
\mathbf{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in A\right) \geq 1-\varepsilon .
$$

(Hint: apply the weak law of large numbers to $X_{1}^{2}, \ldots, X_{n}^{2}$.)

Exercise 6 (Confidence Intervals). Among 625 members of a bank chosen uniformly at random among all bank members, it was found that 25 had a savings account. Give an interval of the form $[a, b]$ where $0 \leq a, b \leq 625$ are integers, such that with about 95% certainty, if we sample 625 bank members independently and uniformly at random (from a very large bank membership), then the number of these people with savings accounts lies in the interval $[a, b]$. (Hint: if Y is a standard Gaussian random variable, then $\mathbf{P}(-2 \leq Y \leq$ $2) \approx .95$.)

Exercise 7 (Hypothesis Testing). Suppose we run a casino, and we want to test whether or not a particular roulette wheel is biased. Let p be the probability that red results from one spin of the roulette wheel. Using statistical terminology, " $p=18 / 38$ " is the null hypothesis, and " $p \neq 18 / 38$ " is the alternative hypothesis. (On a standard roulette wheel, 18 of the 38 spaces are red.) For any $i \geq 1$, let $X_{i}=1$ if the $i^{\text {th }}$ spin is red, and let $X_{i}=0$ otherwise.

Let $\mu:=\mathbf{E} X_{1}$ and let $\sigma:=\sqrt{\operatorname{var}\left(X_{1}\right)}$. If the null hypothesis is true, and if Y is a standard Gaussian random variable

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}\right| \geq 2\right)=\mathbf{P}(|Y| \geq 2) \approx .05
$$

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null hypothesis if $\left|X_{1}+\cdots+X_{n}-n \mu\right|>2 \sigma \sqrt{n}$. Rejecting the null hypothesis when it is true is called a type I error. In this test, we set the type I error percentage to be 5%. (The type I error percentage is closely related to the p-value.)

Suppose we spin the wheel $n=3800$ times and we get red 1868 times. Is the wheel biased? That is, can we reject the null hypothesis with around 95% certainty?

Exercise 8. Suppose random variables X_{1}, X_{2}, \ldots converge in probability to a random variable X. Prove that X_{1}, X_{2}, \ldots converge in distribution to X.

Then, show that the converse is false.

ALL EXERCISES BELOW ARE OPTIONAL. THEY WILL NOT BE GRADED.

Exercise 9 (Optional). Let X_{1}, X_{2}, \ldots be independent identically distributed random variables with $\mathbf{P}\left(X_{1}=1\right)=\mathbf{P}\left(X_{1}=-1\right)=1 / 2$. For any $n \geq 1$, define

$$
S_{n}:=\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} .
$$

The Central Limit Theorem says that S_{n} converges in distribution to a standard Gaussian random variable. We show that S_{n} does not converge in probability to any random variable. The intuition here is that if S_{n} did converge in probability to a random variable Z, then when n is large, S_{n} is close to $Z, Y_{n}:=\frac{\sqrt{2} S_{2 n}-S_{n}}{\sqrt{2}-1}$ is close to Z, but S_{n} and Y_{n} are independent. And this cannot happen.

Proceed as follows. Assume that S_{n} converges in probability to Z.

- Let $\varepsilon>0$. For n very large (depending on ε), we have $\mathbf{P}\left(\left|S_{n}-Z\right|>\varepsilon\right)<\varepsilon$ and $\mathbf{P}\left(\left|Y_{n}-Z\right|>\varepsilon\right)<\varepsilon$.
- Show that $\mathbf{P}\left(S_{n}>0, Y_{n}>0\right)$ is around $1 / 4$, using independence and the Central Limit Theorem.
- From the first item, show $\mathbf{P}\left(S_{n}>0 \mid Z>\varepsilon\right)>1-\varepsilon, \mathbf{P}\left(Y_{n}>0 \mid Z>\varepsilon\right)>1-\varepsilon$, so $\mathbf{P}\left(S_{n}>0, Y_{n}>0 \mid Z>\varepsilon\right)>1-2 \varepsilon$.
- Without loss of generality, for ε small, we have $\mathbf{P}(Z>\varepsilon)>4 / 9$.
- By conditioning on $Z>\varepsilon$, show that $\mathbf{P}\left(S_{n}>0, Y_{n}>0\right)$ is at least $3 / 8$, when n is large.
Exercise 10 (Optional). Let X_{1}, X_{2}, \ldots be random variables that converge almost surely to a random variable X. That is,

$$
\mathbf{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Show that X_{1}, X_{2}, \ldots converges in probability to X in the following way.

- For any $\varepsilon>0$ and for any positive integer n, let

$$
A_{n, \varepsilon}:=\bigcup_{m=n}^{\infty}\left\{\omega \in \Omega:\left|X_{m}(\omega)-X(\omega)\right|>\varepsilon\right\}
$$

Show that $A_{n, \varepsilon} \supseteq A_{n+1, \varepsilon} \supseteq A_{n+2, \varepsilon} \supseteq \cdots$.

- Show that $\mathbf{P}\left(\cap_{n=1}^{\infty} A_{n, \varepsilon}\right)=0$.
- Using Continuity of the Probability Law, deduce that $\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n, \varepsilon}\right)=0$.

Now, show that the converse is false. That is, find random variables X_{1}, X_{2}, \ldots that converge in probability to X, but where X_{1}, X_{2}, \ldots do not converge to X almost surely.

Exercise 11 (Optional, Renewal Theory). Let t_{1}, t_{2}, \ldots be positive, independent identically distributed random variables. Let $\mu \in \mathbf{R}$. Assume $\mathbf{E} t_{1}=\mu$. For any positive integer j, we interpret t_{j} as the lifetime of the $j^{\text {th }}$ lightbulb (before burning out, at which point it is replaced by the $(j+1)^{s t}$ lightbulb). For any $n \geq 1$, let $T_{n}:=t_{1}+\cdots+t_{n}$ be the total lifetime of the first n lightbulbs. For any positive integer t, let $N_{t}:=\min \left\{n \geq 1: T_{n} \geq t\right\}$ be the number of lightbulbs that have been used up until time t. Show that N_{t} / t converges almost surely to $1 / \mu$ as $t \rightarrow \infty$. (Hint: by definition of N_{t}, we have $T_{N_{t}-1}<t \leq T_{N_{t}}$. Now divide the inequalities by N_{t} and apply the Strong Law.)

Exercise 12 (Optional, Playing Monopoly Forever). Let t_{1}, t_{2}, \ldots be independent random variables, all of which are uniform on $\{1,2,3,4,5,6\}$. For any positive integer j, we think of t_{j} as the result of rolling a single fair six-sided die. For any $n \geq 1$, let $T_{n}=t_{1}+\cdots+t_{n}$ be the total number of spaces that have been moved after the $n^{t h}$ roll. (We think of each roll as the amount of moves forward of a game piece on a very large Monopoly game board.) For any positive integer t, let $N_{t}:=\min \left\{n \geq 1: T_{n} \geq t\right\}$ be the number of rolls needed to get t spaces away from the start. Using Exercise 11, show that N_{t} / t converges almost surely to $2 / 7$ as $t \rightarrow \infty$.
Exercise 13 (Optional, Random Numbers are Normal). Let X be a uniformly distributed random variable on $(0,1)$. Let X_{1} be the first digit in the decimal expansion of X. Let X_{2} be the second digit in the decimal expansion of X. And so on.

- Show that the random variables X_{1}, X_{2}, \ldots are uniform on $\{0,1,2, \ldots, 9\}$ and independent.
- Fix $m \in\{0,1,2, \ldots, 9\}$. Using the Strong Law of Large Numbers, show that with probability one, the fraction of appearances of the number m in the first n digits of X converges to $1 / 10$ as $n \rightarrow \infty$.
(Optional): Show that for any ordered finite set of digits of length k, the fraction of appearances of this set of digits in the first n digits of X converges to 10^{-k} as $n \rightarrow \infty$. (You already proved the case $k=1$ above.) That is, a randomly chosen number in (0,1) is normal. On the other hand, if we just pick some number such that $\sqrt{2}-1$, then it may not be easy to say whether or not that number is normal.
(As an optional exercise, try to explicitly write down a normal number. This may not be so easy to do, even though a random number in $(0,1)$ satisfies this property!)

Exercise 14 (Optional). Using the Central Limit Theorem, prove the Weak Law of Large Numbers.

Exercise 15 (Optional). Let X_{1}, X_{2}, \ldots be random variables with mean zero and variance one. The Strong Law of Large Numbers says that $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ converges almost surely to zero. The Central Limit Theorem says that $\frac{1}{\sqrt{n}}\left(X_{1}+\cdots+X_{n}\right)$ converges in distribution to a standard Gaussian random variable. But what happens if we divide by some other power of n ? This Exercise gives a partial answer to this question.

Let $\varepsilon>0$. Show that

$$
\frac{X_{1}+\cdots+X_{n}}{n^{1 / 2}(\log n)^{(1 / 2)+\varepsilon}}
$$

converges to zero almost surely as $n \rightarrow \infty$. (Hint: Re-do the proof of the Strong Law of Large Numbers, but divide by $n^{1 / 2}(\log n)^{(1 / 2)+\varepsilon}$ instead of n.)

