Please provide complete and well-written solutions to the following exercises.
Due April 13, 2PM PST, to be uploaded in blackboard as a single PDF document (in the Assignments tab).

Homework 10

Exercise 1. Let X be a binomial random variable with parameters $n=2$ and $p=1 / 2$. So, $\mathbf{P}(X=0)=1 / 4, \mathbf{P}(X=1)=1 / 2$ and $\mathbf{P}(X=2)=1 / 4$. And X satisfies $\mathbf{E} X=1$ and $\mathbf{E} X^{2}=3 / 2$.

Let Y be a geometric random variable with parameter $1 / 2$. So, for any positive integer k, $\mathbf{P}(Y=k)=2^{-k}$. And Y satisfies $\mathbf{E} Y=2$ and $\mathbf{E} Y^{2}=6$.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k, $\mathbf{P}(Z=k)=\frac{1}{e} \frac{1}{k!}$. And Z satisfies $\mathbf{E} Z=1$ and $\mathbf{E} Z^{2}=2$.

Let W be a discrete random variable such that $\mathbf{P}(W=0)=1 / 2$ and $\mathbf{P}(W=4)=1 / 2$, so that $\mathbf{E} W=2$ and $\mathbf{E} W^{2}=8$.

Assume that X, Y, Z and W are all independent. Compute

$$
\operatorname{var}(X+Y+Z+W)
$$

Exercise 2. Let X_{1}, \ldots, X_{n} be random variables with finite variance. Define an $n \times n$ matrix A such that $A_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ for any $1 \leq i, j \leq n$. Show that the matrix A is positive semidefinite. That is, show that for any $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n}$, we have

$$
y^{T} A y=\sum_{i, j=1}^{n} y_{i} y_{j} A_{i j} \geq 0
$$

Exercise 3. Using the definition of convergence, show that the sequence of numbers $1,1 / 2,1 / 3,1 / 4, \ldots$ converges to 0 .

Exercise 4 (Uniqueness of limits). Let x_{1}, x_{2}, \ldots be a sequence of real numbers. Let $x, y \in$ R. Assume that x_{1}, x_{2}, \ldots converges to x. Assume also that x_{1}, x_{2}, \ldots converges to y. Prove that $x=y$. That is, a sequence of real numbers cannot converge to two different real numbers.

Exercise 5. Let X be a random variable. Assume that $M_{X}(t)$ exists for all $t \in \mathbf{R}$, and assume we can differentiate under the expected value any number of times. For any positive integer n, show that

$$
\left.\frac{d^{n}}{d t^{n}}\right|_{t=0} M_{X}(t)=\mathbf{E}\left(X^{n}\right)
$$

So, in principle, all moments of X can be computed just by taking derivatives of the moment generating function.

Exercise 6. Let X be a standard Gaussian random variable. Compute an explicit formula for the moment generating function of X. (Hint: completing the square might be helpful.) From this explicit formula, compute an explicit formula for all moments of the Gaussian random variable. (The $2 n^{\text {th }}$ moment of X should be something resembling a factorial.)
Exercise 7. Construct two random variables $X, Y: \Omega \rightarrow \mathbf{R}$ such that $X \neq Y$ but $M_{X}(t), M_{Y}(t)$ exist for all $t \in \mathbf{R}$, and such that $M_{X}(t)=M_{Y}(t)$ for all $t \in \mathbf{R}$.

Exercise 8. Unfortunately, there exist random variables X, Y such that $\mathbf{E} X^{n}=\mathbf{E} Y^{n}$ for all $n=1,2,3, \ldots$, but such that X, Y do not have the same CDF. First, explain why this does not contradict the Lévy Continuity Theorem, Weak Form. Now, let $-1<a<1$, and define a density

$$
f_{a}(x):= \begin{cases}\frac{1}{x \sqrt{2 \pi}} e^{-\frac{(\log x)^{2}}{2}}(1+a \sin (2 \pi \log x)) & , \text { if } x>0 \\ 0 & , \text { otherwise }\end{cases}
$$

Suppose X_{a} has density f_{a}. If $-1<a, b<1$, show that $\mathbf{E} X_{a}^{n}=\mathbf{E} X_{b}^{n}$ for all $n=1,2,3, \ldots$. (Hint: write out the integrals, and make a change of variables $s=\log (x)-n$.)

