
407 Final v3 Solutions1

1. Question 1

Let X be a random variable uniformly distributed in [0, 1].
(That is, X has PDF fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 when x /∈ [0, 1].)
Let Y be a random variable uniformly distributed in [0, 1].
Assume that X and Y are independent.

• Compute P(X > 3/4).
• Compute EX.
• Compute P(X + Y ≤ 1/2).

In all cases, simplify your answer to the best of your ability.
Solution. Since X has PDF fX = 1[0,1], we have P(X > 3/4) =

∫ 1

3/4
dx = 1/4 and

EX =
∫ 1

0
xdx = 1/2. Since X and Y are independent, they have joint PDF fX,Y = 1[0,1]2 ,

so that

P(X + Y ≤ 1/2) =

∫
{(x,y)∈R2 : x≥0,y≥0,x+y≤1/2}

=

∫ x=1/2

x=0

∫ y=1/2−x

y=0

dydx

=

∫ x=1/2

x=0

(1/2− x)dx = ((1/2)x− x2/2)
x=1/2
x=0

= (1/2)2 − (1/2)3 = 1/4− 1/8 = 1/8.

2. Question 2

Let X and Y be independent random variables. Assume that X is uniformly distributed
in [−1, 1], and Y is uniformly distributed in [−1, 1].

• Compute E(X2Y ).
• Compute P(X2 + Y 2 ≥ 1).

In all cases, simplify your answer to the best of your ability.
Simplify your answer to the best of your ability.
Solution. Since X, Y are independent, E(X2Y ) = EX2EY = 0, since EY = 0. (We have

EY =
∫ 1

−1 ydy/2 = 0.)

Since X, Y are independent, we have fX,Y (x, y) = fX(x)fY (y) = (1/2)2 = (1/4) if x, y ∈
[−1, 1] and 0 otherwise. So, by definition of joint PDF,

P(X2 + Y 2 ≥ 1) = 1−P(X2 + Y 2 < 1) = 1−
∫
{(x,y)∈R2 : x2+y2<1}

fX,Y (x, y)dxdy

= 1− 1

4

∫
{(x,y)∈R2 : x2+y2<1}

dxdy = 1− 1

4
π = 1− π/4.

In the last line, we used that the area of the unit disc {(x, y) ∈ R2 : x2 + y2 < 1} is π.
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3. Question 3

Suppose there are five separate bins. You first place a sphere randomly in one of the bins,
where each bin has an equal probability of getting the sphere. Once again, you randomly
place another sphere uniformly at random in one of the bins. This process occurs twenty
times, so that twenty spheres have been placed in bins. (All of the sphere placements up to
this point are independent of each other).

Suppose you now flip a fair coin. (A fair coin has probability 1/2 of landing heads, and
probability 1/2 of landing tails). (The coin flip result is independent of all of the sphere
placements.) If the coin lands heads, you then place another ten spheres randomly into the
bins (with each sphere being equally likely to appear in any of the five bins).

What is the expected number of empty bins?
Simplify your answer to the best of your ability. (As usual, show your work.)
Solution. Let A be the event that the coin flip is heads. Let N be the number of empty

bins. We are required to compute EN . From the Total Expectation Theorem,

EN = E(N |A)P(A) + E(N |Ac)P(Ac).

By its definition, P(A) = P(Ac) = 1/2, so

EN = (1/2)[E(N |A) + E(N |Ac)].

For each 1 ≤ i ≤ 5, let Xi be 1 if bin i is empty, and Xi = 0 otherwise. Then N =
∑5

i=1Xi

and E(N |A) =
∑5

i=1E(Xi|A), E(N |Ac) =
∑5

i=1E(Xi|Ac). Since Xi only takes values 0 or
1, we then have

E(N |A) =
5∑
i=1

P(Xi = 1|A), E(N |Ac) =
5∑
i=1

P(Xi = 1|Ac)

If A occurs, there are thirty total spheres placed in the bins, with all placements being
independent and uniformly random. Since all sphere placements are equally likely, P(Xi =
1|A) is the probability that all thirty spheres lie in the other bins (other than the ith bin),
i.e. this probability is (4/5)30. Similarly, if Ac occurs, there are twenty total spheres placed
in the bins, with all placements being independent and uniformly random. Since all sphere
placements are equally likely, P(Xi = 1|Ac) is the probability that all twenty spheres lie in
the other bins, i.e. this probability is (4/5)20. Combining the above, we have

E(N |A) =
5∑
i=1

(4/5)30 = 5(4/5)30, E(N |Ac) =
5∑
i=1

(4/5)20 = 5(4/5)20.

EN = (1/2)[E(N |A) + E(N |Ac)] = (1/2)[5(4/5)30 + 5(4/5)20].

4. Question 4

Let X, Y be independent standard Gaussian random variables. (That is, X has PDF

fX(x) = 1√
2π
e−x

2/2, ∀ x ∈ R.)

Let Z := X/ |Y |.
Find the PDF of Z. (Justify your answer.) (Simplify your answer to the best of your

ability.) (PDF is an acronym for: Probability Density Function.)
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Solution. For any t ∈ R, let At := {(x, y) ∈ R2 : x ≤ t |y|}. Then, using polar coordinates,
if t ≥ 0 we have

P(Z ≤ t) = P(X ≤ t |Y |) = P((X, Y ) ∈ At) =
1

2π

∫
At

e−(x
2+y2)/2dxdy

=

∫ y=∞

y=−∞

∫ x=t|y|

x=−∞
e−(x

2+y2)/2dxdy

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

∫ r=∞

r=0

re−r
2/2drdθ

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

dθ = 1− 1

π
tan−1(1/t).

So, from the Chain rule, if t > 0, then

fZ(t) =
d

dt

(
1− 1

π
tan−1(1/t).

)
= − 1

π

1

1 + (1/t)2
· (−t−2) =

1

π(t2 + 1)
, ∀ t > 0.

Similarly, if t < 0, then P(Z ≤ t) = 1
π

tan−1(1/ |t|), and

fZ(t) =
d

dt

( 1

π
tan−1(−1/t).

)
=

1

π

1

1 + (1/t)2
· (t−2) =

1

π(t2 + 1)
, ∀ t < 0.

In conclusion,

fZ(t) =
1

π(t2 + 1)
, ∀ t ∈ R.

5. Question 5

Let X1, X2, . . . be independent random variables, each with exponential distribution with
parameter λ = 1. (That is, X1 has PDF fX(x) = e−x when x ≥ 0, and fX(x) = 0 for x < 0.)

For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let 0 < a < 1 < b.

• Show that limn→∞P(Yn ≤ a log n) = 0 and limn→∞P(Yn ≤ b log n) = 1.
• Conclude that, for all ε > 0, limn→∞P(|Yn/ log n− 1| > ε) = 0

Solution. Since X1, . . . , Xn are i.i.d.

P(Yn ≤ t) = P(max(X1, . . . , Xn) ≤ t) = P(X1 ≤ t)n = [

∫ t

0

e−xdx] = [1− e−t]n.

So, choosing t = a log n, we have

P(Yn ≤ t) = [1− e−a logn]n = [1− n−a]n.

Taking logs, and using the power series expansion log(1− x) = −x+ o(x) as x→ 0,

logP(Yn ≤ a log n) = n log(1− n−a) = n(n−a + o(n−a)) = n1−a + o(n1−a)

So, if a < 1, this quantity goes to ∞ as n → ∞, and if a > 1, this quantity goes to
zero as n → ∞. We conclude that limn→∞P(Yn ≤ a log n) = limn→∞ e

n1−a
= ∞ and

limn→∞P(Yn ≤ b log n) = limn→∞ e
n1−b

= e0 = 1.
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Finally, let ε > 0. Then, using P(A ∪B) ≤ P(A) + P(B),

P(|Yn/ log n− 1| > ε) = P(Yn/ log n < 1− ε or Yn/ log n > 1 + ε)

≤ P(Yn/ log n < 1− ε) + P(Yn/ log n > 1 + ε)

= P(Yn/ log n < 1− ε) + 1−P(Yn/ log n ≤ 1 + ε).

From what we already did, the first probability goes to zero as n → ∞, and the last
probability goes to 1 as n→∞. We therefore conclude that

lim
n→∞

P(|Yn/ log n− 1| > ε) = 0

6. Question 6

Suppose you flip a fair coin 120 times. During each coin flip, this coin has probability 1/2
of landing heads, and probability 1/2 of landing tails.

Let A be the event that you get more than 90 heads in total. Show that

P(A) ≤ 1

60
.

Solution 1. For any n ≥ 1, define Xn so that

Xn =

{
1 , if the nth coin flip is heads

0 , if the nth coin flip is tails.

By its definition EXn = 1/2 and var(Xn) = (1/2)(1/4) + (1/2)(1/4) = 1/4.
Let S := X1 + · · · + X120 be the number of heads that are flipped. Then ES = 60, and

var(S) = 120var(X1) = 30. Markov’s inequality says, for any t > 0

P(S > t) ≤ ES/t = 60/t.

This is not helpful. Instead, we use Chebyshev’s inequality. This says, for any t > 0,

P(|S − 60| > t) ≤ t−2var(S) = 30t−2.

Choosing t = 30 shows that P(|S − 60| > 10) ≤ 1/30. Now, using symmetry of S (inter-
changing the roles of heads and tails),

P(|S − 60| > 30) = P(S < 30) + P(S > 90) = 2P(S > 90).

So,
2P(S > 90) = P(|S − 60| > 30) ≤ 1/30.

Solution 2. We use the notation of Solution 1, but instead of Chebyshev’s inequality, we
use the Chernoff bound. Since S is a sum of 120 independent identically distributed random
variables, Proposition 2.43 from the notes says

MS(t) = (MX1(t))
120, ∀ t ∈ R.

So, the Chernoff bound says, for any r, t > 0,

P(S > r) ≤ e−tr(MX1(t))
120 = e−tr((1/2)(1 + et))120 (∗).

Setting f(t) = e−rt(1 + et)120 and solving f ′(t) = 0 for t shows that t = log(3) minimizes the
quantity f(t). So, choosing r = 90 and t = log(3) in (∗) gives

P(S > 90) ≤ e−tr((1/2)(1 + 4))120 = (3)−90(5/2)120 ≤ .0006 < 1/60.
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Solution 3. (The following solution based on the Central Limit Theorem only received
partial credit, since it only approximately shows that P(A) < 1/10.) We use the notation
of Solution 1, but instead of Chebyshev’s inequality, we use the Central Limit Theorem.
Since X1, X2, . . . are independent identically distributed random variables with mean 1/2
and variance 1/4, the Central Limit Theorem implies that

lim
n→∞

P

(
X1 + · · ·+Xn − n/2√

(1/4)
√
n

> t

)
=

∫ ∞
t

e−x
2/2dx/

√
2π.

So, choosing n = 120 and t =
√

30, we have the approximation

P

(
X1 + · · ·+X120 − 60√

(1/4)
√

120
>
√

30

)
≈
∫ ∞
√
30

e−x
2/2dx/

√
2π.

Simplifying a bit,

P (S − 60 > 30) ≈
∫ ∞
√
30

e−x
2/2dx/

√
2π.

Using
√

30 > 3 and the approximation
∫∞
3
e−x

2/2dx/
√

2π ≈ .0014, we have

P(S > 50) ≈
∫ ∞
√
5

e−x
2/2dx/

√
2π ≤

∫ ∞
2

e−x
2/2dx/

√
2π ≈ .0014 < 1/60.

7. Question 7

Let X1, X2, . . . be i.i.d. (independent identically distributed) random variables. Assume
that E |X1| <∞ and Var(X1) = 0. Denote µ := EX1.

Does the random variable
X1 + · · ·+Xn − nµ√

n

converge in distribution to some random variable Z as n → ∞? If so, what is the CDF of
Z? (Here CDF denotes cumulative distribution function.)

(Justify your answer.)
Solution. Since Var(X1) = 0, X1 is constant. Since X1, X2, . . . are i.i.d., all of these

random variables are equal to the same constant, so that X1 + · · · + Xn − nEX1 = 0. So,
for any n ≥ 1,

X1 + · · ·+Xn − nµ√
n

= 0.

So, as n→∞, this random variable converges in distribution to the random variable Z = 0.
Z has CDF given by P(Z ≤ t) = 0 if t < 0 and P(Z ≤ t) = 1 if t ≥ 1.

8. Question 8

Let X1, X2, . . . be i.i.d. (independent identically distributed) random variables. Fix a real

number 0 < α ≤ 2. Assume X1 has a characteristic function given by

φX1(t) = E
√
−1 tX1 = e−|t|

α
, ∀ t ∈ R
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• Prove that

φ(X1+···+Xn
n1/α

)(t) = φX1
(t), ∀ t ∈ R.

• For what values of 0 < α ≤ 2 does the random variable

X1 + · · ·+Xn√
n

converge in distribution to a Gaussian random variable with positive variance, as
n→∞? (Justify your answer.)

Solution. Since X1, . . . , Xn are i.i.d. we have

φ(
X1+···+Xn

n1/α

)(t) =
n∏
i=1

φXi/n1/α(t) =
n∏
i=1

EeitX1/n1/α

=
n∏
i=1

φX1(t/n
1/α)

=
(
e−|t/n1/α|α

)n
=
(
e−|t|

α/n
)n

= e−|t|
α

= φX1(t).

Since X1+···+Xn
n1/α has the same characteristic function as X1, we conclude from the Lévy

Continuity Theorem that X1+···+Xn
n1/α has the same CDF as X1. So, we can write (using

0 < α ≤ 2, so 1/α ≥ 1/2, so 1/2− 1/α ≤ 0)

X1 + · · ·+Xn

n1/2
=

1

n1/2−1/α
X1 + · · ·+Xn

n1/α
= n1/α−1/2 · X1 + · · ·+Xn

n1/α

For any t > 0, we write

P
(
− t ≤ X1 + · · ·+Xn

n1/2
≤ t
)

= P
(
− t ≤ n1/α−1/2 · X1 + · · ·+Xn

n1/α
≤ t
)

= P
(
− tn1/2−1/α ≤ X1 + · · ·+Xn

n1/α
≤ tn1/2−1/α

)
If α < 2, 1/α− 1/2 > 0. So, as n→∞, using Continuity of the Probability Law,

lim
n→∞

P
(
− t ≤ X1 + · · ·+Xn

n1/2
≤ t
)

= P
(X1 + · · ·+Xn

n1/α
= 0
)

That is, as n→∞, X1+···+Xn
n1/2 converges in distribution to a constant random variable (with

variance zero), unless α = 2. In the remaining case α = 2, we know from the Lévy Continuity

Theorem that, if φX1(t) = e−t
2
, then X1 is a mean zero Gaussian random variable, and

likewise the same holds for X1+···+Xn
n1/2 . so, X1+···+Xn

n1/2 is a mean zero Gaussian (with the same
nonzero variance), for all n ≥ 1.
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