
3: SPECIAL FUNCTIONS

STEVEN HEILMAN

1. Introduction

If you understand exponentials, the key to many of the secrets of the Universe
is in your hand.

Carl Sagan, Billions and Billions

Surprisingly, in spite of the abundant data to the contrary, many people believe
that human population grows exponentially. It probably never has and probably
never will

Joel E. Cohen, How Many People Can The Earth Support?

We now understand derivatives and continuity, so we will soon be able to apply our knowl-
edge to various problems. Before moving onto these applications, we are going to expand
our vocabulary of functions. To borrow an analogy from Percy Deift, just as language only
requires a few sounds, the applications of mathematics typically only involve combinations
of a few special functions. So, we will now discuss in detail a few of the functions that arise
most often. Particular attention will be given to the exponential and logarithmic functions,
since they appear to be the most elemental.

We begin with the exponential function. We essentially know how to define 21/2, 41/3, and
any positive number to some rational power. However, how do we define 2π? The textbook
defines 2π and the exponential function by using a limiting argument. That is, we define
2π as the the limit of the following sequence of rational exponents: 23, 23.1, 23.14, 23.141, . . ..
Assuming that this limit exists, properties of the exponential function are then derived.

We will begin by defining the exponential function in a different way, and we will try to
include all details about the existence of limits. The key observation is that, once the natural
logarithm is defined, we can then easily define the exponential of any number, as we will
see in Definition 2.9. For example, in order to define (2.354)x for x ∈ R, we just need to
carefully define ex and the natural logarithm.

2. An Alternative Treatment of the Exponential Function

Definition 2.1. Let n ∈ Z. We define the constant e by the following formula

e = lim
n→∞

(
1 +

1

n

)n
.

In order for this definition to make sense, we need to know that this limit exists.
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Proof that the limit in Definition 2.1 exists. Let n ∈ Z, n > 0. Using the binomial theorem,
we have (

1 +
1

n

)n
=

n∑
j=0

(
1

n

)j
n!

j!(n− j)!

= 1 +
1

n
n+

1

n2

n(n− 1)

2!
+

1

n3

n(n− 1)(n− 2)

3!
+ · · ·+ 1

nn

= 1 + 1 +
n− 1

2n
+

(n− 1)(n− 2)

n23!
+ · · ·+ 1

nn
.

Note that, for j ∈ Z, j ≥ 0, we have 2j ≤ (j + 1)!, since

2j = 2 · 2 · · · 2︸ ︷︷ ︸
j times

≤ 2 · 3 · 4 · · · (j + 1) = (j + 1)!

So, for j ∈ Z, j ≥ 1, we have 1/(j!) ≤ 2−j+1. Therefore,(
1 +

1

n

)n
=

n∑
j=0

(
1

n

)j
n!

j!(n− j)!
=

n∑
j=0

1

nj
n(n− 1)(n− 2) · · · (n− j + 1)

j!

≤
n∑
j=0

1

nj
nj

j!
=

n∑
j=0

1

j!
= 1 +

n∑
j=1

1

j!
≤ 1 +

n∑
j=1

2−j+1 = 1 +
n−1∑
j=0

2−j ≤ 1 + 2 = 3.

Here we summed the last geometric series. Recall that if r < 1, and S = 1 + r + · · · + rn,
then rS = r + r2 + · · ·+ rn+1, so S − rS = 1− rn+1, so S = (1− rn+1)/(1− r) ≤ 1/(1− r).
So, letting r = 1/2 shows that

∑n−1
j=0 2−j ≤ 2.

We now show that, as n increases, (1 + 1/n)n increases. Let k ∈ Z, 0 ≤ k ≤ n. We first
claim that

n+ 1− k
n+ 1

≥ n− k
n

. (∗)

To see this, note that k ≥ 0 implies 0 ≥ −k, so n2 + n − nk ≥ n2 + n − nk − k, i.e.
n(n+ 1− k) ≥ (n+ 1)(n− k), proving (∗). Now,(

1 +
1

n+ 1

)n+1

−
(

1 +
1

n

)n
=

n+1∑
j=0

(
1

n+ 1

)j
(n+ 1)!

j!(n+ 1− j)!
−

n∑
j=0

(
1

n

)j
n!

j!(n− j)!

=
1

(n+ 1)n+1
+

n∑
j=0

[
1

(n+ 1)j
(n+ 1)!

(n+ 1− j)!
− 1

nj
n!

(n− j)!

]
1

j!

=
1

(n+ 1)n+1
+

n∑
j=0

[
(n+ 1)n(n− 1) · · · (n+ 2− j)

(n+ 1)j
− 1

nj
n!

(n− j)!

]
1

j!

≥ 1

(n+ 1)n+1
+

n∑
j=0

[
n(n− 1) · · · (n+ 1− j)

nj
− 1

nj
n!

(n− j)!

]
1

j!
, by (∗)

=
1

(n+ 1)n+1
+

n∑
j=0

[
1

nj
n!

(n− j)!
− 1

nj
n!

(n− j)!

]
1

j!
=

1

(n+ 1)n+1
+

n∑
j=0

[0]
1

j!
> 0.
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In summary, for n ∈ Z, n > 0, we have (1+1/(n+1))n+1 > (1+1/n)n, and (1+1/n)n ≤ 3.
Therefore, the limit limn→∞(1 + 1/n)n actually exists. �

Proposition 2.2. Let x be a rational number, i.e. let x ∈ Q. Then

e = lim
x→∞

(
1 +

1

x

)x
.

Remark 2.3. Proposition 2.2 differs from Definition 2.1, since in Definition 2.1 we only
consider x ∈ Z, but in Proposition 2.2 we allow x ∈ Q. Also, we cannot yet allow x ∈ R in
Proposition 2.2, since we do not yet have a suitable definition for an irrational exponent.

Proof. Fix x ∈ Q, x > 1. Let n = n(x) ∈ Z such that n ≤ x < n + 1. Then 1/n ≥ 1/x ≥
1/(n+ 1), so 1 + 1/n ≥ 1 + 1/x ≥ 1 + 1/(n+ 1). Using this inequality and n+ 1 ≥ x ≥ n,(

1 +
1

n

)n+1

≥
(

1 +
1

x

)x
≥
(

1 +
1

n+ 1

)n
. (∗)

We now wish to apply the Squeeze Theorem. As x→∞, n→∞, so

lim
x→∞

(
1 +

1

n

)n+1

= lim
n→∞

(
1 +

1

n

)n+1

=

(
lim
n→∞

(
1 +

1

n

)n)(
lim
n→∞

(
1 +

1

n

))
= e · 1 = e.

Similarly,

lim
x→∞

(
1 +

1

n+ 1

)n
= lim

n→∞

(
1 +

1

n+ 1

)n
=

(
lim
n→∞

(
1 +

1

n+ 1

)n+1
)(

lim
n→∞

(
1 +

1

n+ 1

)−1)
= e · 1 = e.

Finally, applying the Squeeze Theorem to (∗), we see that e = limx→∞ (1 + 1/x)x. �

Now that we know the limit in Proposition 2.2 exists, we can define the exponential
function for any x ∈ R.

Definition 2.4. (The Exponential Function) Let x ∈ R and let y ∈ Q. Then ex is
defined by the following formula

ex = lim
y→∞

(
1 +

x

y

)y
.

Proof that the limit of Definition 2.4 exists. By repeating the proofs of existence for Defini-
tion 2.1 and Proposition 2.2, the limit of Definition 2.4 exists for x ≥ 0. We therefore show
that the limit of Definition 2.4 exists also exists for negative values. Let x ≥ 0. Then(

1− x

y

)y
=

(
1− x

y

)y (
1 + x

y

)y
(

1 + x
y

)y =

(
1− x2

y2

)y
(

1 + x
y

)y . (‡)

Now,(
1− x2

n2

)n
=

(
n∑
j=0

(−1)jx2j

n2j

n!

j!(n− j)!

)
=

(
1 +

n∑
j=1

(−1)jx2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
.
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So,

lim
n→∞

(
1−

n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)

≤ lim
n→∞

(
1 +

n∑
j=1

(−1)jx2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)

≤ lim
n→∞

(
1 +

n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
. (∗)

We now want to apply the Squeeze Theorem. Let k ∈ Z, k > 1, and assume that x > 1. If
n > x2k, then nj > x2kj, so n−j < x−2kj, so x2j/nj < x2j(1−k), so −x2j/nj > −x2j(1−k). Then(

1−
n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
≥

(
1−

n∑
j=1

x2j

nj
1

j!

)
≥

(
1−

n∑
j=1

x2j(1−k)
1

j!

)

≥

(
1− x1−k

n∑
j=1

1

j!

)
≥ 1− 3x1−k.

Similarly,(
1 +

n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
≤

(
1 +

n∑
j=1

x2j

nj
1

j!

)
≤

(
1 +

n∑
j=1

x2j(1−k)
1

j!

)

≤

(
1 + x1−k

n∑
j=1

1

j!

)
≤ 1 + 3x1−k.

Now, as n→∞, we can take k →∞, since k can satisfy n > x2k. So, (∗) becomes

lim
k→∞

(1− 3x1−k) ≤ lim
n→∞

(
1− x2

n2

)n
≤ lim

k→∞
(1 + 3x1−k).

Since x1−k → 0 as k →∞, we conclude from the Squeeze Theorem that limn→∞

(
1− x2

n2

)n
=

1. So, by (‡),

lim
n→∞

(
1− x

n

)n
=

limn→∞

(
1− x2

n2

)n
limn→∞

(
1 + x

n

)n =
1

ex
.

Then, by repeating the proof of Proposition 2.2, the following limit exists: limy→∞ (1− x/y)y,
y ∈ Q.

Finally, we get the same conclusion for 0 ≤ x ≤ 1, since then(
1−

n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
≥

(
1−

n∑
j=1

x2j

nj
1

j!

)
≥

(
1−

n∑
j=1

1

nj
1

j!

)

=

(
1− 1

n
−

n∑
j=2

1

nj
1

j!

)
≥ 1− 1

n
− 1

n
.
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Similarly,(
1 +

n∑
j=1

x2j

n2j

n(n− 1) · · · (n− j + 1)

j!

)
≤

(
1 +

n∑
j=1

x2j

nj
1

j!

)
≤

(
1 +

n∑
j=1

1

nj
1

j!

)

≤

(
1 +

1

n
+

n∑
j=2

1

nj
1

j!

)
≤ 1 +

1

n
+

1

n
.

Then (∗) becomes limn→∞(1− 2/n) ≤ limn→∞ (1− x2/n2)
n ≤ limn→∞(1 + 2/n), so

lim
n→∞

(
1− x

n

)n
=

limn→∞

(
1− x2

n2

)n
limn→∞

(
1 + x

n

)n =
1

ex
.

Then, by repeating the proof of Proposition 2.2, the following limit exists: limy→∞ (1− x/y)y,
y ∈ Q. �

Remark 2.5. From the Definition 2.4 for x ≥ 0, we see that ex ≥ 1 and e0 = 1. Since
exe−x = 1, we see that e−x > 0. So, ex > 0 for all x ∈ R. Also, since ex = limn→∞(1+x/n)n =

limn→∞
∑n

j=0
xj

nj
n!

j!(n−j)! ≥ 1 + x, we see that

lim
x→∞

ex =∞.

Since exe−x = 1, we have e−x = 1/ex, so

lim
x→−∞

ex = lim
x→∞

e−x = lim
x→∞

1/ex = 1/( lim
x→∞

ex) = 0.

By modifying the proof after Definition 2.1, we see that ex is a continuous, strictly increas-
ing function. So, by the Intermediate Value Theorem, the range of the exponential function
is (0,∞). Now, ex is continuous and strictly increasing with domain R and range (0,∞).
So, for any y ∈ (0,∞), there exists a unique x ∈ R such that ex = y. If there were x, x′ ∈ R
with x 6= x′ and ex = ex

′
, then it would be impossible to define the inverse function of ex.

There would be an ambiguity, since the inverse function evaluated at ex could be set to x or
x′. Since there exists a unique x ∈ R such that ex = y, we can actually define the inverse
function of the exponential.

Definition 2.6. (The Natural Logarithm) Let x > 0. Then the natural logarithm log(x)
is defined to be the inverse of ey. That is, y = log(x) if and only if ey = x.

Remark 2.7. In the notation of the book, we have log(x) = ln(x).

Proposition 2.8. For x, y ∈ R, ex+y = exey.
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Proof. Let x, y, w, q, r ∈ Q. Then

ex+y = lim
w→∞

(
1 +

x+ y

w

)w
=

(
lim
w→∞

(
1 +

x+ y

w

)w/(x+y))x+y

=

(
lim
w→∞

(
1 +

x+ y

w

)w/(x+y))x(
lim
w→∞

(
1 +

x+ y

w

)w/(x+y))y

=

(
lim
q→∞

(
1 +

1

q

)q)x(
lim
q→∞

(
1 +

1

q

)q)y
=

(
lim
q→∞

(
1 +

1

q

)qx)(
lim
q→∞

(
1 +

1

q

)qy)
=
(

lim
r→∞

(
1 +

x

r

)r)(
lim
r→∞

(
1 +

y

r

)r)
= exey.

Since the exponential function is continuous, and the identity exey = ex+y holds for rational
x, y, we conclude that the identity exey = ex+y therefore holds for all x, y ∈ R. �

Definition 2.9. Let x, y ∈ R, y > 0. Then the exponential function yx is defined by

yx = ex log(y).

Definition 2.10. Let x, y > 0. Then logy(x) is defined by

logy(x) =
log(x)

log(y)
.

Proposition 2.11. Let x, y > 0. Then log(xy) = log(x) + log(y). Also, log(xy) = y log(x),
and log(x/y) = log(x)− log(y).

Proof. For z > 0, elog(z) = z, since the exponential and logarithmic functions are inverses.
Using this property and also Proposition 2.8,

elog(xy) = xy = elog(x)elog(y) = elog(x)+log(y).

Taking the logarithm of both sides and applying the identity log(ew) = w for w ∈ R, we get
log(xy) = log(x) + log(y). For the third property, we use the following identity.

elog(x/y) = x/y = elog(x)e− log(y) = elog(x)−log(y).

For the second property, use Definition 2.9 to get

log(xy) = log(ey log(x)) = y log(x).

�

In order to differentiate exponential functions, we will need the following proposition.

Proposition 2.12. Let f : (0,∞)→ R be a differentiable function such that: for all a ∈ R,
there exists a unique x ∈ (0,∞) such that f(x) = a. Assume also that f ′(x) 6= 0 for all
x ∈ (0,∞), and that f is strictly increasing. Then the inverse function f−1 : R → (0,∞)
exists and is differentiable. Moreover,

d

da
(f−1)(a) =

1

f ′(f−1(a))
.
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Proof. Let c, d ∈ (0,∞) with c < d. We first show that f−1 is continuous. By Lemma 6.3 of
the first set of notes, it suffices to show that f(c, d) is an open interval. By the Intermediate
Value Theorem, f(c, d) contains (f(c), f(d)). Since f is increasing, f(c, d) is contained in
(f(c), f(d)). Combining these two containments, we conclude that f(c, d) = (f(c), f(d)), so
f(c, d) is indeed an open interval. And Lemma 6.3 of the first set of notes shows that f−1 is
therefore continuous.

Now, as b → a, the continuity of f−1 shows that f−1(b) → f−1(a). That is, as b → a we
have d→ c. So,

lim
b→a

f−1(a)− f−1(b)
a− b

= lim
b→a

1
a−b

f−1(a)−f−1(b)

= lim
d→c

1
f(c)−f(d)

c−d

=
1

f ′(c)
=

1

f ′(f−1(a))
.

�

Now that we have our definitions and key properties accounted for, we can finally prove
some things about the derivatives of exponential and logarithmic functions.

Proposition 2.13. Let x, y ∈ R, y > 0.

(a) (d/dx)(ex) = ex.
(b) (d/dx)(yx) = yx log(y).
(c) (d/dy)(log(y)) = 1/y.

Proof of (c). We first prove that

lim
u→0

(1 + u)1/u = e. (∗)

To see this, first apply Proposition 2.2 to get

lim
u→0+

(1 + u)1/u = lim
x→∞

(1 + 1/x)x = e.

Then, apply Definition 2.4 to get

lim
u→0−

(1 + u)1/u = lim
x→−∞

(1 + 1/x)x = 1/( lim
x→∞

(1 + (−1)/x)x) = 1/(e−1) = e.

Since both the left and right limits agree, statement (∗) is proven.
We now prove that log : (0,∞)→ R is continuous. Let f(x) = ex and let c, d ∈ (−∞,∞)

with c < d. By Lemma 6.3 of the first set of notes, it suffices to show that f(c, d) is an open
interval. Since f is continuous by Remark 2.5, the Intermediate Value Theorem says f(c, d)
contains (f(c), f(d)). Since f is increasing by Remark 2.5, we get that f(c, d) is contained
in (f(c), f(d)). Combining these two containments, we conclude that f(c, d) = (f(c), f(d)),
so f(c, d) is indeed an open interval. And Lemma 6.3 of the first set of notes shows that
log = f−1 is therefore continuous.

Now,

lim
h→0

log(y + h)− log(y)

h
= lim

h→0

[
1

h
log

(
y + h

y

)]
, by Proposition 2.11

=
1

y
lim
h→0

[
y

h
log

(
1 +

h

y

)]
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=
1

y
lim
h→0

log

[(
1 +

h

y

)y/h]
, by Proposition 2.11

=
1

y
lim
u→0

log
[
(1 + u)1/u

]
=

1

y
log
[
lim
u→0

(1 + u)1/u
]

, since log is continuous

=
1

y
, by (∗)

�

Proof of (a). Let f(y) = log(y). As described in Remark 2.5, the exponential function is
increasing. That is, a > b if and only if ea > eb. Applying this to a = log(x) and b = log(y),
we have log(x) > log(y) if and only if x > y, i.e. f(y) is also increasing. From part (a), f is
differentiable and f ′(y) 6= 0 for all y > 0. Therefore, we can apply Proposition 2.12, to get

d

dx
(ex) =

d

dx
(f−1(x)) =

1

f ′(f−1(x))
= f−1(x) = ex.

�

Proof of (b). Let f(x) = yx = ex log(y). From the Chain Rule and part (b), f ′(x) =
ex log(y) log(y) = yx log(y). �

We can now prove the power law for derivatives

Proposition 2.14. Let x > 0, y ∈ R. Let f(x) = xy. Then f ′(x) = yxy−1.

Proof. From the Chain Rule and Proposition 2.13(c),

f ′(x)

f(x)
=

d

dx
[log(f(x))] =

d

dx
[y log(x)] =

y

x
.

So,

f ′(x) =
y

x
f(x) = yxy−1.

�

3. A Proof of L’Hôpital’s Rule

Theorem 3.1. (Extreme Value Theorem) Let f : [a, b] → R be a continuous function.
Then f achieves its minimum and maximum values. More specifically, there exist c, d ∈ [a, b]
such that: for all x ∈ [a, b], f(c) ≤ f(x) ≤ f(d).

Proof. Let g(t) = f(t(b − a) + (1 − t)a), so that g : [0, 1] → R is continuous. We will show
that g achieves its maximum and minimum values, implying that f achieves its maximum
and minimum values. First of all, by the Intermediate Value Theorem, we know that g[0, 1]
is an interval. We just do not know whether or not g[0, 1] contains the endpoints of that
interval. Suppose the endpoints of this interval are y, z with y < z. In particular, suppose
g[0, 1] ⊇ (y, z). Now, let x1, x2, x3, . . . ∈ [0, 1] such that g(xi) → z as i → ∞. Since
[0, 1] = [0, 1/2] ∪ [1/2, 1], we can find xj1 , xj2 , . . . ∈ [0, 1/2] or xj1 , xj2 , . . . ∈ [1/2, 1] such
that g(xji) → z as i → ∞. Suppose we have xj1 , xj2 , . . . ∈ [0, 1/2] such that g(xji) → z
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as i → ∞. Since [0, 1/2] = [0, 1/4] ∪ [1/4, 1/2], we can find xjk1 , xjk2 , . . . ∈ [0, 1/4] or
xjk1 , xjk2 , . . . ∈ [1/4, 1/2] such that g(xjki ) → z as i → ∞. By repeating this procedure an

infinite number of times, there exist d1, d2, . . . ∈ [0, 1] and there exists d ∈ [0, 1] such that
di → d as i → ∞ and g(di) → z as i → ∞. Since g is continuous, g(di) → g(d) as i → ∞.
Combining these two statements, we see that g(d) = z. By repeating this argument, we can
also find c such that g(c) = y. In conclusion, g[0, 1] = [y, z], as desired. �

Remark 3.2. This Theorem is not true if f is discontinuous. For example, consider

f(x) =


x+ 1 , x < 0

x− 1 , x > 0

0 , x = 1

.

Consider f on the interval [−1, 1]. Then f(−1) = 0, f(1) = 0, f(x) < 1 for x ∈ [−1, 1] and
f(x) > −1 for x ∈ [−1, 1]. However, limx→0− f(x) = 1 and limx→0+ f(x) = −1. And by the
Intermediate Value Theorem, f [−1, 0) = [0, 1) and f(0, 1] = (−1, 0]. So, f [−1, 1] = (−1, 1).
And we cannot find c, d ∈ [−1, 1] with f(c) = −1 and f(d) = 1.

Theorem 3.3. (Rolle’s Theorem) Let f : [a, b]→ R be continuous function that is differ-
entiable on (a, b) with f(a) = f(b) = 0. Then there exists c with c ∈ (a, b) and f ′(c) = 0.

Proof. If f = 0 everywhere there is nothing to prove, so we assume otherwise. Without loss
of generality, assume that there exists a point d ∈ [a, b] such that f(d) > 0. By the Extreme
Value Theorem, Theorem 3.1, let c ∈ [a, b] be such that, for all x ∈ [a, b] f(c) ≥ f(x). In
particular, f(c) ≥ f(d) > 0. Also, since f(a) = f(b) = 0, we must have c ∈ (a, b). Let h > 0
so that h is less than the minimum of |c− a| /2 and |c− b| /2. By our choice of c, we have
f(c+ h) ≤ f(c) and f(c− h) ≤ f(c). Therefore, by the Squeeze Theorem,

0 ≥ lim
h→0+

f(c+ h)− f(c)

h
= f ′(c) = lim

h→0+

f(c)− f(c− h)

h
≥ 0.

We conclude that f ′(c) = 0. �

Theorem 3.4. (Mean Value Theorem) Let f : [a, b]→ R be continuous function that is
differentiable on (a, b). Then there exists c with c ∈ (a, b) and

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let g(x) = f(x)− f(a)− (x− a)((f(b)− f(a))/(b− a)). Then g(a) = g(b) = 0. So,
by applying Rolle’s Theorem, Theorem 3.3, to g, there exists c ∈ (a, b) such that

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
.

That is, f ′(c) = (f(b)− f(a))/(b− a). �

Theorem 3.5. (Cauchy’s Mean Value Theorem) Let f, g : [a, b] → R be continuous
functions that are differentiable on (a, b) with g′(x) 6= 0 for x ∈ (a, b). Then there exists
c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.
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Proof. First, note that g(b) − g(a) 6= 0, because if g(b) − g(a) = 0, then the Mean Value
Theorem would imply that there exists d ∈ (a, b) such that g′(d) = 0. But we have assumed
that g′(x) 6= 0 for x ∈ (a, b). Now, let

h(x) = f(x)− f(a)− (g(x)− g(a))
f(b)− f(a)

g(b)− g(a)
.

By applying Rolle’s Theorem, Thm. 3.3, to h, there exists c ∈ (a, b) such that

0 = h′(c) = f ′(c)− g′(c)f(b)− f(a)

g(b)− g(a)
.

That is, f ′(c)/g′(c) = (f(b)− f(a))/(g(b)− g(a)). �

Theorem 3.6. (L’Hôpital’s Rule) Let c < a < d. f, g : (c, a)∪(a, d)→ R be differentiable.
Assume that g′(x) 6= 0 for x ∈ (c, a) ∪ (a, d). Alternately, let a = ∞, let f, g : (c, a) → R
be differentiable with g′(x) 6= 0 for x ∈ (c, a). Also, assume that one of the two following
possibilities occurs

(1) limx→a f(x) = 0 and limx→a g(x) = 0.
(2) limx→a |f(x)| =∞ and limx→a |g(x)| =∞.

Moreover, assume that limx→a
f ′(x)
g′(x)

exists. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. Let c < x < y < a. If there exists x ∈ (c, a) such that g(x) = 0, then all other
x′ ∈ (x, a) must satisfy g(x′) 6= 0. To see this, assume that x′ ∈ (x, a) satisfies g(x′) = 0.
Then we would have g(x) − g(x′) = 0, which would imply the existence of r ∈ (x, a) such
that g′(r) = 0. However, we assumed that g′(x) 6= 0 for x ∈ (c, a). Therefore, by choosing c
to be larger if necessary, we may assume that c < x < y < a and g(x) 6= 0 for all x ∈ (c, a).

By Cauchy’s Mean Value Theorem, Theorem 3.5, there exists z ∈ (x, y) such that

f ′(z)

g′(z)
=
f(x)− f(y)

g(x)− g(y)
. (∗)

Suppose Case (1) occurs. We rewrite (∗) as

f ′(z)

g′(z)
=
f(x)− f(y)

g(x)− g(y)
=

f(x)
g(x)
− f(y)

g(x)

1− g(y)
g(x)

. (∗∗)

Let y → a. Then g(y)→ 0 and f(y)→ 0 since we are in Case (1), so (∗∗) says

min
z∈(x,a)

f ′(z)

g′(z)
≤ f(x)

g(x)
≤ max

z∈(x,a)

f ′(z)

g′(z)
.

Finally, letting x→ a and using that limx→a
f ′(x)
g′(x)

exists, the Squeeze Theorem implies

lim
x→a

f ′(x)

g′(x)
= lim

x→a

f(x)

g(x)
.

Case (1) is complete.
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Suppose Case (2) occurs. Then

f ′(z)

g′(z)
=
f(x)− f(y)

g(x)− g(y)
=

f(x)
g(y)
− f(y)

g(y)

g(x)
g(y)
− 1

.

Let y → a. Then 1/g(y)→ 0, so

min
z∈(x,a)

f ′(z)

g′(z)
≤ min

z∈(x,a)

f(z)

g(z)
≤ max

z∈(x,a)

f(z)

g(z)
≤ max

z∈(x,a)

f ′(z)

g′(z)
.

Finally, letting x→ a and using that limx→a
f ′(x)
g′(x)

exists, the Squeeze Theorem implies

lim
x→a

f ′(x)

g′(x)
= lim

x→a

f(x)

g(x)
.

Case (2) is complete. �

4. Selected Exercises

Exercise 4.1. Let f(x) = 10x. What is (d/dx)f(x)?

Exercise 4.2. (page 178 from the textbook) Scientists can determine the age of ancient
objects by the method of radiocarbon dating. The bombardment of the upper atmosphere
by cosmic rays converts nitrogen to a radioactive isotope of Carbon-14, with a half-life of
about 5730 years. Vegetation absorbs carbon dioxide through the atmosphere and animal life
assimilates Carbon-14 through food chains. When a plant or animal dies, it stops replacing its
carbon and the amount of Carbon-14 begins to decrease through radioactive decay. Therefore
the level of radioactivity of the carbon must also decay exponentially.

A parchment fragment was discovered that had about 74% as much Carbon-14 radioac-
tivity as does plant material on the earth today. Estimate the age of the parchment.

Exercise 4.3. Suppose I put 100 dollars in my bank account, and the interest rate is 6 per-
cent, compounded annually. Then in one year, I will have 100(1+ .06) dollars. If the interest
is compounded daily, then after one year, I will have 100(1+ .06/365)365 dollars. If the inter-
est is compounded every second, then after one year, I will have 100(1+.06/31536000)31536000

dollars. Suppose the unit of time over which the interest is computed goes to zero. In this
scenario, we say that the interest is computed “continuously.” After a year of 6% interest
computed continuously, how much money will I have?

Exercise 4.4. Let n be a positive integer. Prove that

lim
x→∞

ex

xn
=∞.

Exercise 4.5. (Chemistry 101) In chemistry class, we learn two basic formulas for chemical
kinetics. Here we will investigate these formulas. Let f(t) be the concentration of a chemical
in a reaction at time t. Let k > 0, let a > 0, and assume that f(0) = a.

(a) A “first-order” reaction satisfies the following equation

df

dt
= −kf(t), f(0) = a (∗)

Show that f(t) = ae−kt satisfies (∗).
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(b) A “second-order” reaction satisfies the following equation

df

dt
= −k(f(t))2, f(0) = a (∗∗)

Show that f(t) = 1
a−1+kt

satisfies (∗∗).

Exercise 4.6. (Drug Concentration) Suppose a human body contains 2 gallons of blood,
and a therapeutic drug has 2% concentration in the blood. Suppose we administer IV fluids
into the bloodstream at a rate of 1/4 gallon per hour. Assume also that the kidneys filter the
drug out of the blood at a rate of 1/4 gallon of blood per hour. Let y(t) be the concentration
of the drug, where t is a unit in hours, and suppose y(0) = .02. By our assumption, the rate
of change of the concentration y(t) is given by dy/dt = −y(t)/4. Show that y(t) = .02e−t/4

satisfies y(0) = .02 and dy/dt = −y(t)/4.

Exercise 4.7. (A speeding ticket?) Suppose I am driving in a car, and there are police
cameras that are stationed at certain mile markers. The first camera spots my license plate
at 10 AM. Five miles down the road, the second camera spots my license plate at 10 : 04 AM.
If my speed exceeded 74 miles per hour at any particular point in time, I will automatically
be issued a ticket in the mail. Will I be issued a ticket?

Exercise 4.8. What is limx→0+ x log(x)? What is limx→0+ x
1/10 log(x)?

Exercise 4.9. (The shape of hanging cables and chains) Suppose we have a cable
hanging between two poles of equal height. We will derive the shape of the hanging cable.
That is, we will find a function y = f(x), with x = 0 the midpoint of the cable, such that
the cable follows the curve y = f(x). At the outset, we assume that the function y = f(x)
is differentiable.

Consider a segment of the cable from x = 0 to x = b > 0. We consider this segment of
cable as a single body. Then there are three distinct forces acting on this segment of cable.
At x = 0, we assume that the curve y = f(x) has a horizontal tangent. First, there is a
tension force T0 pulling the cable in the negative x direction at x = 0, so that this force is
tangent to the curve at x = 0. Second, there is a tension force T pulling the cable at x = b,
and this force is also tangent to the curve at x = b. Third, the force of gravity of the segment
of chain from x = 0 to x = b pulls straight down. This third force is denoted −ρgs(b), where
g is the force of gravity, ρ is a constant, and s(b) is the length of the chain from x = 0 to
x = b.

Adding all three forces together, we must get zero, since the cable is hanging in equilibrium.
Suppose at x = b that the tangent line to y = f(x) makes an angle θ with the x-axis. Then
the sum of forces in the x-direction is −T0 + T cos(θ), and the sum of forces in the y-
direction is −ρgs(b) + T sin(θ). So, T0 = T cos(θ) and ρgs(b) = T sin(θ). Since (df/dx)(b) =
sin(θ)/ cos(θ), we have

df

dx
(b) =

ρgs(b)

T0
. (∗)

Now, s(b) is the length of f(x) from x = 0 to x = b. Let h > 0, and assume that s
is differentiable. From the linear approximation of the derivative, we have f(b + h) ≈
f(b) + hf ′(b). Consider the right triangle with vertices (b, f(b)), (b + h, f(b + h)), and
(b + h, f(b)). The length of the hypotenuse of this triangle is approximately s(b + h) −
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s(b). Also, from the Pythagorean Theorem, the length of the hypoteuse of this triangle is√
h2 + (f(b+ h)− f(b))2. Combining these facts,

s(b+ h)− s(b) ≈
√
h2 + (f(b+ h)− f(b))2 ≈

√
h2 + h2(f ′(b))2.

So, dividing both sides by h > 0 we have (s(b + h) − s(b))/h ≈
√

1 + (f ′(b))2. Letting
h→ 0+, and then taking a derivative of (∗), we have derived the following equation

d2f

dx2
(b) =

ρg

T0

√
1 +

df

dx
(b). (∗∗)

We can now solve for f . Show that the shape of the cable is described by

y = f(x) =
T0
ρg

cosh

(
ρgx

T0

)
.

The shape of the hanging cable, known as a catenary curve, also appears in architecture,
such as the St. Louis Gateway Arch. The idea is to freeze the hanging cable in its position,
and then flip it upside down to produce an arch. Then we can repeat the derivation above
to see that the forces of the arch are all the same as in the case of the chain (though the
signs of the forces are flipped). Also, for a very small segment of the arch, we can essentially
neglect the gravitational force exerted on this segment. So, by reviewing the above analysis,
the force on any particular point in the arch will be directed along the arch itself. Therefore,
the arch is very stable.

5. Selected Problems

y

x
(1, 0)

Exercise 5.1. (Towing an unconstrained object, Thomas’ Calculus, p. 544) Suppose I
am standing on the shore of a straight river, and I am pulling on a rope of length 1 connected
to the front of a canoe. I am walking at a constant speed in the positive y-direction. Suppose
the canoe is in the river, and the canoe’s front is at a distance x from the river shore. Suppose
the initial position of the canoe is (1, 0). As I move in the positive y-direction, the canoe’s
front is pulled along a curve denoted by y = f(x). If the rope is taut, it will always be
tangent to the curve f(x). Consider the right triangle formed by: me on the shore, the
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point (x, f(x)) and the y-axis. Then the height of this triangle in the y-direction is
√

1− x2.
Therefore,

df

dx
= −
√

1− x2
x

Show that f(x) = sech−1(x)−
√

1− x2 satisfies df
dx

= −
√
1−x2
x

.

Problem 5.2. -(MIT 18.01SC, Final Exam, 3b) What is

lim
x→
√
3

tan−1(x)− π/3
x−
√

3
?

Problem 5.3. What is limx→0+ x
x? (Hint: use the second part of Proposition 2.11.)

Problem 5.4. Let f(x) = xx. What is (d/dx)f(x)? (Hint: use Definition 2.10.)

Problem 5.5. In the above Exercises and Problems, and in many applications, we are given
a set of equations of the form

df

dt
= g(f(t)), f(0) = a (‡)

Here g : R→ R, a ∈ R are given. And we want to find an f that satisfies (‡). Given such a
set of equations (‡), do you think it is always possible to find an f satisfying (‡)? If so, this
would be very nice, since finding f means that we better understand whatever application
gave us (‡). For example, in Exercise 4.5, our mathematical model of the chemical reaction
is at least sensible, since the solution f of the equation (‡) exists. If we could not find an
f satisfying (‡), we might need to question the correctness of the reaction model that gave
us (‡). Or, we would need to create more mathematical tools to understand when we can or
cannot find an f satisfying (‡).

It turns out that, for “reasonable” g, the answer to our question is yes. We can find f
satisfying (‡). However, we will not learn why this is so in this class. Nevertheless, the
answer to this question is extremely important, and it has ramifications for an extremely
large number of applications of mathematics to the real world.

Courant Institute, New York University, New York NY 10012
E-mail address: heilman@cims.nyu.edu
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