Analysis 1 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 6, in the discussion section.

## Assignment 5

**Exercise 1.** Let  $(a_n)_{n=m}^{\infty}$ ,  $(b_n)_{n=m}^{\infty}$  be sequences of real numbers such that  $\limsup_{n\to\infty} a_n$  and  $\limsup_{n\to\infty} b_n$  are finite. Prove:

$$\limsup_{n \to \infty} (a_n + b_n) \le (\limsup_{n \to \infty} a_n) + (\limsup_{n \to \infty} b_n).$$

**Exercise 2.** Let  $(a_n)_{n=m}^{\infty}$ ,  $(b_n)_{n=m}^{\infty}$  be sequences of real numbers. Assume that  $a_n \leq b_n$  for all  $n \geq m$ . Prove:

- $\sup(a_n)_{n=m}^{\infty} \le \sup(b_n)_{n=m}^{\infty}$ .
- $\inf(a_n)_{n=m}^{\infty} \le \inf(b_n)_{n=m}^{\infty}$ .
- $\limsup_{n\to\infty} a_n \le \limsup_{n\to\infty} b_n$ .
- $\liminf_{n\to\infty} a_n \leq \liminf_{n\to\infty} b_n$ .

**Exercise 3.** Let  $(a_n)_{n=m}^{\infty}$ ,  $(b_n)_{n=m}^{\infty}$ ,  $(c_n)_{n=m}^{\infty}$  be sequences of real numbers such that there exists a natural number M such that, for all  $n \geq M$ ,

$$a_n < b_n < c_n$$
.

Assume that  $(a_n)_{n=m}^{\infty}$  and  $(c_n)_{n=m}^{\infty}$  converge to the same limit L. Prove that  $(b_n)_{n=m}^{\infty}$  converges to L. (Hint: use the previous exercise.)

**Exercise 4.** Let x, y > 0 be positive real numbers, and let  $n, m \ge 1$  be positive integers. Prove:

- (i) If  $y = x^{1/n}$ , then  $y^n = x$ .
- (ii) If  $y^n = x$ , then  $y = x^{1/n}$ .
- (iii)  $x^{1/n}$  is a positive real number.
- (iv) x > y if and only if  $x^{1/n} > y^{1/n}$ .
- (v) If x > 1 then  $x^{1/n}$  decreases when n increases. If x < 1, then  $x^{1/n}$  increases when n increases. If x = 1, then  $x^{1/n} = 1$  for all positive integers n.
- (vi)  $(xy)^{1/n} = x^{1/n}y^{1/n}$ .
- (vii)  $(x^{1/n})^{1/m} = x^{1/(nm)}$ .

**Exercise 5.** Let x, y > 0 be positive real numbers, and let q, r be rational numbers. Prove:

- (i)  $x^q$  is a positive real number.
- (ii)  $x^{q+r} = x^q x^r$  and  $(x^q)^r = x^{qr}$ .
- (iii)  $x^{-q} = 1/x^q$ .
- (iv) If q > 0, then x > y if and only if  $x^q > y^q$ .
- (v) If x > 1, then  $x^q > x^r$  if and only if q > r. If x < 1, then  $x^q > x^r$  if and only if q < r.

**Exercise 6.** Let -1 < x < 1. Show that  $\lim_{n\to\infty} x^n = 0$ . Using the identity  $(1/x^n)x^n = 1$  for x > 1, conclude that  $x^n$  does not converge as  $n \to \infty$  for x > 1.

**Exercise 7.** For any x > 0, show that  $\lim_{n \to \infty} x^{1/n} = 1$ . (Hint: first, given any  $\varepsilon > 0$ , show that  $(1+\varepsilon)^n$  has no real upper bound M, as  $n \to \infty$ . To prove this claim, set  $x = 1/(1+\varepsilon)$  and use Exercise 6. Now, with this preliminary claim, show that for any  $\varepsilon > 0$  and for any real M, there exists a positive integer n such that  $M^{1/n} < 1 + \varepsilon$ . Now, use these two claims, and consider the cases x > 1 and x < 1 separately.)

**Exercise 8.** Let  $m \le n < p$  be integers, let  $(a_i)_{i=m}^n$ ,  $(b_i)_{i=m}^n$  be a sequences of real numbers, let k be an integer, and let c be a real number. Prove:

$$\sum_{i=m}^{n} a_i + \sum_{i=n+1}^{p} a_i = \sum_{i=m}^{p} a_i.$$

$$\sum_{i=m}^{n} a_i = \sum_{j=m+k}^{n+k} a_{j-k}.$$

$$\sum_{i=m}^{n} (a_i + b_i) = (\sum_{i=m}^{n} a_i) + (\sum_{i=m}^{n} b_i).$$

$$\sum_{i=m}^{n} (ca_i) = c(\sum_{i=m}^{n} a_i).$$

$$\left|\sum_{i=m}^{n} a_i\right| \le \sum_{i=m}^{n} |a_i|.$$

$$\text{If } a_i \le b_i \text{ for all } m \le i \le n, \text{ then } \sum_{i=m}^{n} a_i \le \sum_{i=m}^{n} b_i.$$

**Exercise 9.** Let X be a finite set of cardinality  $n \in \mathbb{N}$ . Let  $f: X \to \mathbb{R}$  be a function. Then for any two bijections  $g, h: \{1, 2, ..., n\} \to X$ , show that  $\sum_{i=1}^{n} f(g(i)) = \sum_{i=1}^{n} f(h(i))$ .