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1. Homework 1

Exercise 1.1. Estimate the probability that 1000000 coin flips of fair coins will result in
more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e−t2/2dt/
√
2π = 1/2,

∫ 1

−∞ e−t2/2dt/
√
2π ≈ .8413,

∫ 2

−∞ e−t2/2dt/
√
2π ≈

.9772,
∫ 3

−∞ e−t2/2dt/
√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Solution. For any 1 ≤ 1, let Xi = 1 if the ith coin flip is heads and Xi = 0 otherwise. We
assume that X1, . . . are iid with P(X1 = 1) = 1/2, EX1 = 1/2 and var(X1) = 1/4. We want
to know the probability that

X1 + · · ·+X107 > 501000.

Equivalently, we want the probability of the event{
X1 + · · ·+X107 − 107/2 > 1000

}
=
{X1 + · · ·+X107 − 107/2√

106
√
1/4

> 2
}
=

Using the Central Limit Theorem as an approximation, we have the approximation

P

(
X1 + · · ·+X107 − 107/2√

106
√

1/4
> 2

)
≈
∫ ∞

2

e−x2/2dx/
√
2π

= 1−
∫ 2

∞
e−x2/2dx/

√
2π ≈ 1− .9772 = .0228.

□

Date: November 28, 2023 © 2023 Steven Heilman, All Rights Reserved.

1



Exercise 1.2 (Numerical Integration). In computer graphics in video games, etc., various
integrations are performed in order to simulate lighting effects. Here is a way to use random
sampling to integrate a function in order to quickly and accurately render lighting effects.
Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.

Solution. By definition ofXi we haveEf(Xi) =
∫ 1

0
f(t)dt for all i ≥ 1so thatE

(
1
n

∑n
i=1 f(Xi)

)
=

1
n
n
∫ 1

0
f(t)dt =

∫ 1

0
f(t)dt. Also, by independence we have

var

(
1

n

n∑
i=1

f(Xi)

)
=

1

n2

n∑
i=1

var(f(Xi)) =
1

n
var(f(X1)).

This quantity goes to zero as n → ∞. (Since f is continuous on [0, 1], f is bounded by some
constant c on [0, 1], i.e. |f(t)| ≤ c for all t ∈ [0, 1], so |f(X1)| ≤ c, so varf(Xi) ≤ E[f(Xi)]

2 ≤
c2 for all i ≥ 1.) □

Exercise 1.3. Let X := (X1, . . . , Xn) be a random sample of size n from a binomial dis-
tribution with parameters n and p. Here n is a positive (known) integer and 0 < p < 1
is unknown. (That is, X1, . . . , Xn are i.i.d. and X1 is a binomial random variable with
parameters n and p, so that P(X1 = k) =

(
n
k

)
pk(1− p)n−k for all integers 0 ≤ k ≤ n.)

You can freely use that EX1 = np and VarX1 = np(1− p).

• Computer the Fisher information IX(p) for any 0 < p < 1.
(Consider n to be fixed.)

• Let Z be an unbiased estimator of p2 (assume that Z is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for Z.

• Let W be an unbiased estimator of 1/p (assume that W is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for W .

Solution. Using that the information of independent random variables is the sum of the
informations, using the alternate definition of Fisher information using the variance, and
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using that the variance is unchanged by adding a constant inside the variance,

IX(p) = nIX1(p) = nVarp

( d

dp

[
log
(( n

X1

)
pX1(1− p)n−X1

)])
= nVarp

( d

dp

[
log

(
n

X1

)
+X1 log p+ (n−X1) log(1− p)

])
= nVarp

( d

dp

[
X1 log p+ (n−X1) log(1− p)

])
= nVarp

(1
p
X1 −

1

1− p
(n−X1)

)
= nVarp

([1
p
+

1

1− p

]
X1

)
= n

[1
p
+

1

1− p

]2
VarpX1 = n

[ 1

p(1− p)

]2
np(1− p) =

n2

p(1− p)

The Cramér-Rao inequality says, if g(p) := EpZ, then

Varp(Z) ≥
|g′(p)|2

IX(p)
.

If g(p) = p2, then g′(p) = 2p, so we get

Varp(Z) ≥
(2p)2

IX(p)
=

4p3(1− p)

n2
.

If g(p) = 1/p, then g′(p) = −p−2, so we get

Varp(Z) ≥
p−4

IX(p)
= p−31− p

n2
.

□

Exercise 1.4. Let X1, . . . , Xn be a random sample of size n from a Poisson distribution
with unknown parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

• Find an MLE (maximum likelihood estimator) for λ.
• Is the MLE you found unique? That is, could there be more than one MLE for this
problem?

Solution. The MLE of θ is a value of θ maximizing

log
n∏

i=1

θXie−θ/Xi! = log
(
θ
∑n

i=1 Xie−nθ

n∏
i=1

[Xi!]
)
=

n∑
i=1

log(Xi!)− nθ + log θ
n∑

i=1

Xi.

Taking a derivative in θ, we get −n + 1
θ

∑n
i=1 Xi. From the first derivative test, there is a

unique maximum value of θ when θ = 1
n

∑n
i=1 Xi, so the MLE for θ is 1

n

∑n
i=1 Xi. □

Exercise 1.5. Suppose X is a Gaussian distributed random variable with known variance
σ2 > 0 but unknown mean. Fix µ0, µ1 ∈ R. Assume that µ0 − µ1 > 0. We want to test the
hypothesis H0 that µ = µ0 versus the hypothesis H1 that µ = µ1. Fix α ∈ (0, 1). Explicitly
describe the UMP test for the class of tests whose significance level is at most α.
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Your description of the test should use the function Φ(t) :=
∫ t

−∞ e−x2/2dx/
√
2π, Φ: R →

(0, 1), and/or the function Φ−1 : (0, 1) → R. (Recall that Φ(Φ−1(s)) = s for all s ∈ (0, 1)
and Φ−1(Φ(t)) = t for all t ∈ R.)

Solution. From the Neyman-Pearson Lemma, the UMP is a likelihood ratio test (LRT).
Let k > 0. (Since Pθ0(fθ1(X) = kfθ0(X)) = Pθ1(fθ1(X) = kfθ0(X)) = 0, the UMP is non
randomized.) In this case, the LRT has rejection region

C := {x ∈ R : fθ1(x) > kfθ0(x)}.

More specifically,

C := {x ∈ R : fθ1(x) > kfθ0(x)}

= {x ∈ R :
1

σ
√
2π

e−
(x−µ1)

2

2σ2 > k
1

σ
√
2π

e−
(x−µ0)

2

2σ2 }

= {x ∈ R : − (x− µ1)
2

2σ2
> log(k)− (x− µ0)

2

2σ2
}

= {x ∈ R : (x− µ1)
2 < −2σ2 log(k) + (x− µ0)

2}
= {x ∈ R : (x− µ1)

2 − (x− µ0)
2 < −2σ2 log(k)}

= {x ∈ R : (2x− µ1 − µ0)(µ0 − µ1) < −2σ2 log(k)}

= {x ∈ R : 2x− µ1 − µ0 < −2σ2 log(k)

µ0 − µ1

}

= {x ∈ R : x < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
}.

The significance level of this test is

sup
θ∈Θ0

β(θ) = β(µ0) = Pµ0(X ∈ C) = Pµ0(X < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
)

= Pµ0(X − µ0 < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
− µ0)

= Pµ0

(X − µ0

σ
< −σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ

)
= Φ

(
− σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ

)
So, if we want a fixed significance level α ∈ (0, 1), then

Φ−1(α) = −σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ
.

That is, we choose k such that

−Φ−1(α) +
µ1 − µ0

2σ
=

σ log(k)

µ0 − µ1

.

i.e.

k = exp
(µ1 − µ0

σ
Φ−1(α)− (µ0 − µ1)

2

2σ2

)
.

□
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Exercise 1.6. This exercise demonstrates that a UMP might not always exists.
Let X1, . . . , Xn be i.i.d. Gaussian random variables with known variance and unknown

mean µ ∈ R. Fix µ0 ∈ R. Let H0 denote the hypothesis {µ = µ0} and let H1 denote the
hypothesis µ ̸= µ0. Fix 0 < α < 1. Let T denote the set of hypothesis tests with significance
level at most α. Show that no UMP class T test exists, using the following strategy.

• Let µ1 < µ0. You may take as given the following fact (that follows from the Karlin-
Rubin Theorem): the power at µ1 is maximized among class T tests by the hypothesis
test ϕ that rejects H0 when the sample mean satisfies X < c for an appropriate choice
of c ∈ R. Assume for the sake of contradiction that a UMP class T test ϕ′ exists.
Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing
µ = µ0 versus µ = µ1), conclude that ϕ′ must have the same rejection region as ϕ
(just by examining the power of the tests at µ1.)

• Consider now a test in T that rejects H0 when the sample mean satisfies X > c′ for
an appropriate choice of c′ ∈ R. Repeating the previous argument, conclude that ϕ′

must reject when X > c′, leading to a contradiction.
That is, let µ2 > µ0. You may take as given the following fact (that follows from

the Karlin-Rubin Theorem): the power at µ2 is maximized among class T tests by
the hypothesis test ϕ′′ that rejects H0 when the sample mean satisfies X > c′ for an
appropriate choice of c′ ∈ R. Then, using the necessity part of the Neyman-Pearson
Lemma (i.e. consider testing µ = µ0 versus µ = µ2), conclude that ϕ′ must have the
same rejection region as ϕ′′.

Solution. Since ϕ′ is UMP class T for testing H0 versus H1, we have β′(µ1) ≥ β(µ1). (Here
β is the power function of ϕ, and β′ is the power function of ϕ′.) From the remark about
the Karlin-Rubin Theorem, β′(µ1) ≤ β(µ1). Therefore, β

′(µ1) = β(µ1).
ConsiderH ′

1 = {µ = µ1}. Suppose we are testingH0 versusH
′
1. Since β(µ1) = β′(µ1), from

the Neyman-Pearson Lemma, we must have ϕ′ = ϕ except possibly on a set of probability zero
with respect to Pµ0 and Pµ1 . (Similarly it occurs with probability zero that fθ0(X) = kfθ1(X)

for a constant k > 0.) That is, up to probability zero changes to ϕ, both ϕ and ϕ′ are
nonrandomized hypothesis tests with the same rejection region.

Now, let µ2 > µ0. Since ϕ′ is UMP class T for testing H0 versus H1, we have β′(µ2) ≥
β′′(µ2). (Here β′ is the power function of ϕ′, and β′′ is the power function of ϕ′′.) From the
remark about the Karlin-Rubin Theorem, β′(µ2) ≤ β′′(µ2). Therefore, β

′′(µ2) = β′(µ2).
Consider H ′′

1 = {µ = µ2}. Suppose we are testing H0 versus H ′′
1 . Since β′(µ2) = β′′(µ2),

from the Neyman-Pearson Lemma, we must have ϕ′′ = ϕ′ except possibly on a set of prob-
ability zero with respect to Pµ0 and Pµ1 . (Similarly it occurs with probability zero that
fθ0(X) = kfθ1(X) for a constant k > 0.) That is, up to probability zero changes to ϕ′′, both
ϕ′′ and ϕ′ are nonrandomized hypothesis tests with the same rejection region.

We now have a contradiction, since ϕ′ must reject only when X > c, and ϕ′ must reject
only when X < c′.

□

Exercise 1.7. The rejection regions Cα for UMP hypothesis tests of significance level at
most α ∈ (0, 1) are often nested in the sense that Cα ⊆ Cα′ for all 0 < α < α′ < 1. This
exercise demonstrates an example of UMP tests where this nesting behavior does not occur.
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Let θ0, θ1 ∈ R be unequal parameters. Let H0 denote the hypothesis {θ = θ0} and let
H1 denote the hypothesis {θ = θ1}. Suppose X ∈ {1, 2, 3} is a random variable. If θ = θ0,
assume that X takes the values 1, 2, 3 with probabilities .85, .1, .05, respectively. If θ = θ1,
assume that X takes the values 1, 2, 3 with probabilities .7, .2, .1, respectively. Let T denote
the set of hypothesis tests with significance level at most α.

• Let 0 < α < .15. Show that a UMP class T test is not unique.
• When α = .05, show there is a unique nonrandomized hypothesis UMP class T test.
• When α = .1, show there is a unique nonrandomized hypothesis UMP class T test.
• Show that the α = .05 and α′ = .1 UMP nonrandomized tests from above do not
have nested rejection regions.

• However, when α = .05 and α′ = .1, there are randomized UMP tests ϕ, ϕ′ : Rn →
[0, 1] respectively, that are nested in the sense that ϕ ≤ ϕ′.

Solution. We have

fθ1(1)

fθ0(1)
=

.7

.85
=

14

17
,

fθ1(2)

fθ0(2)
=

.2

.1
= 2,

fθ1(3)

fθ0(3)
=

.1

.05
= 2.

The Neyman-Pearson Lemma says that likelihood ratio tests ϕ : {1, 2, 3} → R of the following
form are UMP

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

? , if fθ1(x) = kfθ0(x).

So, let us examine those tests for all possible k > 0. After examining these different tests,
we realize that the case k = 2 is of particular interest for this problem, so let us focus on
that case.

If k = 2, then we have two points x = 2, 3 such that we can specify the value of ϕ
arbitrarily, while maintaining the UMP property. That is,

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

? , if fθ1(x) = kfθ0(x)

=

{
0 , if x = 1

? , ifx = 2, 3.

More specifically, for any 0 ≤ a, b ≤ 1, ϕ : {1, 2, 3} → R is UMP where

ϕ(x) :=


0 , ifx = 1

a , if x = 2

b , if x = 3

A test of this form has power function

β(θ) = Eθϕ(X).

The significance level of this test is

sup
θ∈Θ0

β(θ) = β(θ0) = .1ϕ(2) + .05ϕ(3) = (.1)a+ (.05)b.

If 0 < α < .15 is our desired significance level, then any choice of 0 ≤ a, b ≤ 1 satisfying

(.1)a+ (.05)b = α
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is a UMP with significance level α. (The Neyman-Pearson Lemma guarantees this holds.)
For a fixed 0 < α < .15, infinitely many such a, b exist. So, the UMP tests in this case are
non-unique.

If α = .05, then the set

{(a, b) : (.1)a+ (.05)b = .05, 0 ≤ a, b ≤ 1}

has a unique element where one of a, b is zero, occurring when a = 0 and b = 1. So, when
α = .05, there is a unique nonrandomized UMP test. This test rejects H0 when X = 3.

If α = .1, then the set

{(a, b) : (.1)a+ (.05)b = .1, 0 ≤ a, b ≤ 1}

has a unique element where one of a, b is zero, occurring when a = 1 and b = 0. So, when
α = .1, there is a unique nonrandomized UMP test. This test rejects H0 when X = 2.

The above rejection regions are not nested, since the events {X = 3} and {X = 2} are
disjoint.

However, there is are randomized hypothesis tests ϕ, ϕ′ with significance level α = .05, α′ =
.1 respectively, such that ϕ ≤ ϕ′. For example, we could use

ϕ(x) :=


0 , ifx = 1

1/4 , if x = 2

1/2 , if x = 3

, ϕ′(x) :=


0 , ifx = 1

1/2 , ifx = 2

1 , ifx = 3

□

2. Homework 2

Exercise 2.1. Prove the following version of the Karlin-Rubin Theorem, with the inequali-
ties reversed in the definition of the hypotheses.

Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued
statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
H0 = {θ ≥ θ0} and the hypothesis H1 = {θ < θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


0 , if t(x) > c

1 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.

(i) ϕ is UMP class T .
(iii) β, the power function of ϕ, is nonincreasing and strictly decreasing when it takes

values in (0, 1).

Proof. We first prove (iii). Let θ1 > θ0 and consider the function r : Rn → R defined by

r(x) :=
fθ1(x)

fθ0(x)
, ∀x ∈ Rn.
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By assumption, r is a strictly increasing function of t(x). Let k ∈ R such that r(x) = k
when t(x) = c. Since r is a strictly increasing function of t(x), we can rewrite ϕ as

ϕ(x) =


0 , if r(x) > k

1 , if r(x) < k

γ , if r(x) = k.

That is, 1−ϕ is a likelihood ratio test of the hypothesis {θ = θ0} versus {θ = θ1}. Corollary
3.15 from the notes says 1− β(θ1) = Eθ1(1− ϕ(X)) > 1− α = Eθ0(1− ϕ(X)) = 1− β(θ0),
if Pθ0 ̸= Pθ1 . (If Pθ0 = Pθ1 , then Eθ1ϕ(X) = Eθ0ϕ(X) ∈ {0, 1} since ϕ is either zero or one
with probability one in this case, i.e. α ∈ {0, 1}.) Assertion (iii) follows.
We now prove (i). First, note that α = Eθ0ϕ(X) = supθ≥θ0 Eθϕ(X) from (iii), so that ϕ

is in class T . Now let θ1 < θ0, and let ϕ′ be a class T hypothesis test. By definition of
T , Eθ0ϕ

′ ≤ supθ≥θ0 Eθϕ
′(X) ≤ α. So, from the Neyman-Pearson Lemma (sufficiency), ϕ is

UMP (in the context of that Lemma), i.e. Eθ1ϕ(X) ≥ Eθ1ϕ
′(X). Since this inequality holds

for all θ1 < θ0, we conclude that ϕ is UMP class T , i.e. (i) holds. □

Exercise 2.2. Prove the following one-sided version of the Karlin-Rubin Theorem.
Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued

statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
H0 = {θ = θ0} and the hypothesis H1 = {θ > θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.

Then ϕ is UMP class T .

Proof. Let θ1 > θ0. From the Karlin-Rubin Theorem itself (part (iii)), we already know
that the power function β of ϕ is nondecreasing. Also, as we proved in the Karlin-Rubin
Theorem, if

r(x) :=
fθ1(x)

fθ0(x)
, ∀x ∈ Rn,

then by assumption, r is a strictly increasing function of t(x). Let k ∈ R such that r(x) = k
when t(x) = c. Since r is a strictly increasing function of t(x), we can rewrite ϕ as

ϕ(x) =


1 , if r(x) > k

0 , if r(x) < k

γ , if r(x) = k.

Note that α = Eθ0ϕ(X) from (iii), so that ϕ is in class T . Let ϕ′ be a class T hypothesis
test. By definition of T , Eθ0ϕ

′ ≤ α. So, from the Neyman-Pearson Lemma (sufficiency), ϕ is
UMP (in the context of that Lemma), i.e. Eθ1ϕ(X) ≥ Eθ1ϕ

′(X). Since this inequality holds
for all θ1 > θ0, we conclude that ϕ is UMP class T . □
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Exercise 2.3. Let X1, . . . , Xn be i.i.d. random variables. Let X = (X1, . . . , Xn). Let θ > 0.
Assume that X1 is uniformly distributed in the interval [0, θ]. Fix θ0 > 0. Fix 0 < α < 1.
Let T denote the set of hypothesis tests with significance level at most α.

• Suppose we test H0 = {θ ≤ θ0} versus H1 = {θ > θ0}. Identify the set of all UMP
class T hypothesis tests.

• Suppose we test H0 = {θ = θ0} versus H1 = {θ ̸= θ0}. Show there is a unique UMP
class T hypothesis test in this case.

(Hint: first consider testing {θ = θ0} versus {θ = θ1} with θ1 > θ0, and apply the Neyman-
Pearson Lemma. That is, mimic the argument of the Karlin-Rubin Theorem.) (As an aside,
observe that, if you näıvely apply the Karlin-Rubin Theorem, you will not find all UMP
tests, i.e. a non-strict MLR property version of the Karlin-Rubin Theorem will neglect some
UMP tests.)

Solution. The joint distribution of X1, . . . , Xn satisfies, for any x = (x1, . . . , xn) ∈ Rn,

fθ(x) =
n∏

i=1

θ−11[0,θ](xi) = θ−n10≤max1≤i≤n xi≤θ.

Let θ1 > θ0. Then

fθ1(x)

fθ0(x)
=
(θ1
θ0

)−n

·
10≤max1≤i≤n xi≤θ1

10≤max1≤i≤n xi≤θ0

.

Since θ1 > θ0, evidently this likelihood ratio has the (non-strict) MLR property with respect
to t(x) := max1≤i≤n xi. (As t(x) increases from 0, the ratio of indicator functions is 1, then
∞, then of the form 0/0, and the latter case is not considered for the MLR property.)

For the moment, suppose we instead test {θ = θ0} versus {θ = θ1}. Then the Neyman-
Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood ratio test of the
form

ϕ(x) :=

{
1 , if θ0 < x(n) < θ1
arbitrary , if x(n) ≤ θ0 or x(n) ≥ θ1.

(We find these tests by considering different thresholds k in the likelihood ratio tests that
reject when fθ1(x) > kfθ0(x).) The tests of this form that do not depend on θ1 are of the
form

ϕ(x) :=

{
1 , if θ0 < x(n)

arbitrary , if θ0 ≥ x(n).
(∗)

Since this test does not depend on θ1, we conclude that it is UMP for testing {θ = θ0}
versus {θ > θ0} (as in the proof of the Karlin-Rubin Theorem). Again, as in the proof of
the Karlin-Rubin Theorem, we conclude that this test is UMP for testing {θ ≤ θ0} versus
{θ > θ0}. Conversely, any test that is UMP for {θ ≤ θ0} versus {θ > θ0} must be UMP for
testing {θ = θ0} versus {θ = θ1} when θ1 > θ0. Consequently, any UMP for {θ ≤ θ0} versus
{θ > θ0} must be of the form (∗). The first part of the proof is concluded.

We now prove the second part. If ϕ is UMP for {θ = θ0} versus {θ ̸= θ0}, then ϕ must
be UMP for testing {θ = θ0} versus {θ > θ0}, as in the Karlin-Rubin Theorem. That is, ϕ
must be of the form (∗).

9



Moreover, ϕ must be UMP for testing {θ = θ0} versus {θ = θ1} with θ1 < θ0. In this case,
the Neyman-Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood
ratio test of the form

ϕ(x) :=

{
0 , if θ1 < x(n) < θ0
arbitrary , if x(n) ≤ θ1 or x(n) ≥ θ1.

(∗∗)

or

ϕ(x) :=

{
1 , if x(n) < θ1
arbitrary , if x(n) ≥ θ1.

(∗ ∗ ∗)

(We find these tests by considering different thresholds k in the likelihood ratio tests that
reject when fθ1(x) > kfθ0(x). The first type of test occurs when k = (θ0/θ1)

n. The second
type of test occurs when k = 0.)
If additionally ϕ is of the form (∗), (and ϕ does not depend on θ1) then ϕ must satisfy (for

some constant c)

ϕ(x) :=

{
1 , if θ0 < x(n) or x(n) < c

0 otherwise.

(For this particular test ϕ, note that, for any θ1 satisfying 0 < θ1 < θ0, either ϕ is of the form
(∗∗) or (∗ ∗ ∗). More specifically, if c < θ1 < θ0, then ϕ is of the form (∗∗) and if 0 < θ1 < c,
then ϕ is of the form (∗ ∗ ∗).)

As c changes, so does the significance level α. So, for fixed α, ϕ is unique, as desired.
□

Exercise 2.4. Let X1, . . . , Xn be i.i.d. random variables that are uniformly distributed in
the interval [θ, θ + 1], where θ ∈ R is an unknown parameter. Fix θ0 ∈ R. Suppose we
want to test the hypothesis that θ ≤ θ0 versus θ > θ0. For any 0 ≤ α ≤ 1, show that there
exists a UMP test among tests with significance level at most α, and this test rejects the
null hypothesis when X(1) > θ0 + c(α) or X(n) > θ0 + 1.

On the other hand, show that the joint density of X1, . . . , Xn does not have the MLR
property with respect to any statistic (when n > 1). (Hint: if it did have the MLR property,
what would the Karlin-Rubin Theorem imply about the UMP rejection regions?)

Solution.
The joint distribution of X1, . . . , Xn is

fθ(x) =
n∏

i=1

1Xi∈[θ,θ+1] = 1X(1),X(n)∈[θ,θ+1].

Let θ1 > θ0. Then
fθ1(x)

fθ0(x)
=

1X(1),X(n)∈[θ1,θ1+1]

1X(1),X(n)∈[θ0,θ0+1]

.

Observe that this ratio can be 0, 1 or ∞. More specifically, on the set where at least one of
these densities is nonzero, we have

• fθ1(x) > fθ0(x) when x(n) > θ0 + 1,
• fθ1(x) = fθ0(x) when θ1 ≤ x(1) ≤ x(n) ≤ θ0 + 1, and
• fθ1(x) < fθ0(x) when x(1) < θ1.
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For the moment, suppose we instead test {θ = θ0} versus {θ = θ1}. Then the Neyman-
Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood ratio test of the
form

ϕ(x) :=


1 , if x(n) > θ0 + 1

arbitrary , if θ1 ≤ x(1) ≤ x(n) ≤ θ0 + 1

0 , if x(1) < θ1.
or

ϕ(x) :=

{
1 , if θ1 ≤ x(1)

arbitrary , if x(1) < θ1.

The tests of this form that do not depend on θ1 are of the following form, where c ∈ R is a
constant:

ϕ(x) :=

{
1 , if x(1) > θ0 + c or x(n) > θ0 + 1

0 , otherwise.

Since this test does not depend on θ1, we conclude that it is UMP for testing {θ = θ0}
versus {θ > θ0} (as in the proof of the Karlin-Rubin Theorem). Again, as in the proof of
the Karlin-Rubin Theorem, we conclude that this test is UMP for testing {θ ≤ θ0} versus
{θ > θ0}.

When n > 1, the joint density of X1, . . . , Xn does not have the MLR property. If it did,
then the Karlin-Rubin Theorem would imply that there is a UMP test defined by a single
real-valued statistic, but we just showed this is not true.

□

Exercise 2.5. Let {fθ : θ ∈ R} be a family of positive, single-variable PDFs, i.e. fθ : R →
(0,∞) for all θ ∈ R. Assume that fθ(x) is twice continuously differentiable in the parameters
θ, x.

Show that {fθ} has the MLR property with respect to the statistic t(x) = x (x ∈ R) if
and only if

∂2

∂θ∂x
log fθ(x) > 0, ∀x, θ ∈ R.

Exercise 2.6. SupposeX is a binomial distributed random variable with parameters n = 100
and θ ∈ [0, 1] where θ is unknown. Suppose we want to test the hypothesis H0 that θ = 1/2
versus the hypothesis H1 that θ ̸= 1/2. Consider the hypothesis test that rejects the null
hypothesis if and only if |X − 50| > 10.
Using e.g. the central limit theorem, do the following:

• Give an approximation to the significance level α of this hypothesis test
• Plot an approximation of the power function β(θ) as a function of θ.
• Estimate p values for this test when X = 50, and also when X = 70 or X = 90.

Solution. We have α = β(1/2) = P1/2(X ∈ C) = P1/2(|X − 50| > 10). From The Central
Limit Theorem, we have the approximation

P1/2(|X − 50| > 10) = P1/2(
|X − 50|
(1/2)(10)

> 2) ≈ P(|Z| > 2) ≈ .05.

Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-2,2) to
get the last probability. So, the significance level of the test is approximately .05. The
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p-values for this test are roughly

p(50) = P1/2(|X − 50| > |50− 50|) ≈ 1.

p(70) = P1/2(|X − 50| > |70− 50|) = P1/2(|X − 50| > 20) = P1/2(
|X − 50|
(1/2)(10)

> 4)

≈ P(|Z| > 4) ≈ 7 · 10−5.

Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-4,4) to
get the last probability.

p(90) = P1/2(|X − 50| > |90− 50|) = P1/2(|X − 50| > 40) = P1/2(
|X − 50|
(1/2)(10)

> 8)

≈ P(|Z| > 8) ≈ 5 · 10−7.

Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-8,8) to
get the last probability. (I think the actual value of P(|Z| > 8) is much smaller than this,
closer to 10−13 though.)

More generally, we have the approximation

β(θ) = Pθ(X − 50 > 10) +Pθ(X − 50 < −10)

= Pθ

( X − 100θ

10
√

θ(1− θ)
>

1 + 5− 10θ√
θ(1− θ)

)
+Pθ

( X − 100θ

10
√

θ(1− θ)
<

−1 + 5− 10θ√
θ(1− θ)

)
≈ Pθ

(
Z >

6− 10θ√
θ(1− θ)

)
+P

(
Z <

4− 10θ√
θ(1− θ)

)
= 1−P

(
Z <

6− 10θ√
θ(1− θ)

)
+P

(
Z <

4− 10θ√
θ(1− θ)

)
= 1− Φ

( 6− 10θ√
θ(1− θ)

)
+ Φ

( 4− 10θ√
θ(1− θ)

)
Here we used Φ(t) = P(Z ≤ t). We can then use following plot in Matlab

theta=linspace(0,1,1000);

plot(theta,1-normcdf((6-10*theta)./sqrt(theta.*(1-theta)),0,1)...

+normcdf((4-10*theta)./sqrt(theta.*(1-theta)),0,1));

xlabel(’theta’);

ylabel(’beta(theta)’);

□

Exercise 2.7. Let X1, . . . , Xn be a real-valued random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Suppose Θ = R. Fix θ ∈ R. Denote X := (X1, . . . , Xn). Consider
a set of hypothesis tests ϕα : Rn → [0, 1], for any α ∈ [0, 1]. Assume that these tests are
nested in the sense that ϕα ≤ ϕα′ for all 0 ≤ α < α′ ≤ 1. Suppose we are testing the
hypothesis H0 that {θ ≤ θ0} versus H1 that {θ > θ0}. Suppose also that {fθ} has the
monotone likelihood ratio property with respect to a statistic Y = t(X) that is a continuous
random variable.

• Show that the family of UMP tests with significance level at most α satisfies the
nested property mentioned above (for all α ∈ [0, 1]).
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• Show that, if X = x, then the p-value p(x) satisfies

p(x) = Pθ0(t(X) > t(x)).

Solution. The Karlin-Rubin Theorem implies that the UMP tests with significance level at
most α are of the form

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Since we assume that Y = t(X) is continuous, t(X) = c occurs with probability zero, i.e. we
may assume that

ϕ(x) :=

{
1 , if t(x) > c

0 , if t(x) ≤ c.

The nested property then follows, since as α increases, c decreases.
Denote cα as the constant c = cα in the above definition when ϕ = ϕα has significance

level α. Recall that significance level α means that

α = sup
θ∈Θ0

Eθϕ(X) = sup
θ≤θ0

Pθ(t(X) > cα)

Since the Karlin-Rubin Theorem implies that the power function is nondecreasing in θ, we
have

α = Pθ0(t(X) > cα). (∗)
We also have

p(x) = inf{α ∈ [0, 1] : ϕα(x) = 1} = inf{α ∈ [0, 1] : t(x) > cα}.
The nested property implies that {α ∈ [0, 1] : t(x) > c} is an interval, so that the infimum
of this set is the smaller endpoint of that interval. That is, there exists some α ∈ [0, 1] such
that p(x) = α and t(x) = cα. So, from (∗),

α = p(x) = Pθ0(t(X) > cα) = Pθ0(t(X) > t(x)).
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□

Exercise 2.8. We defined the MLR property so that the likelihood ratio is a strictly in-
creasing function of the statistic. Suppose we instead defined the MLR property so that the
likelihood ratio is an increasing function of the statistic. In this case, where does our proof
of the Karlin-Rubin Theorem not work correctly? Explain.

Solution. In our proof of the Karlin-Rubin Theorem, we first showed that hypothesis tests
that are UMP class T for testing {θ = θ0} versus {θ = θ1} are likelihood ratio tests, by
the Neyman-Pearson Lemma (when θ1 > θ0, and T is the set of tests with significance level
at most α). If ϕ is UMP class T for testing {θ < θ0} versus {θ ≥ θ0}, then ϕ is UMP for
testing {θ = θ0} versus {θ = θ1}, when θ1 > θ0. So, if ϕ is UMP class T for testing {θ < θ0}
versus {θ ≥ θ0}, then ϕ is a likelihood ratio test for testing {θ = θ0} versus {θ = θ1}, for
any θ1 > θ0. However, if the likelihood ratio is only an increasing function of t(x), then
the set {x ∈ Rn : t(x) > c} can not necessarily be written as fθ1(x) > kfθ0(x) for any
θ1 > θ0. (It is still true that {t(x) > c} could be written as fθ1(x) > kfθ0(x) for some
θ1 > θ0, but it could even occur that no such θ1 ∈ Θ exists satisfying {x ∈ Rn : t(x) > c} =
{x ∈ Rn : fθ1(x) > kfθ0(x)}, in which case the Karlin-Rubin Theorem becomes vacuous.)
Likewise, as we observed e.g. in Exercises 2.3 and 2.4, a näıve application of the Karlin-
Rubin Theorem would not find all UMP class T tests. So, although the textbook’s proof
of the Karlin-Rubin Theorem might technically not be incorrect, having a non-strict MLR
assumption in the Karlin-Rubin Theorem might not find all UMP tests, i.e. the Theorem
might be deficient in its purpose of finding UMP class T tests. Then, as in Exercise 2.3, it is
best to just repeat the proof, i.e. apply the Neyman-Pearson Lemma to find all UMP class
T tests. □

3. Homework 3

Exercise 3.1. Let X1, . . . , Xn be i.i.d. Gaussian random variables with unknown mean and
unknown variance.

• Find a real-valued pivotal quantity for X = (X1, . . . , Xn).
• Using the pivotal quantity, construct a 1− α confidence interval for the mean µ, for
any 0 < α < 1.

Solution. Recall that X1+···+Xn−nµ
σ
√
n

is a mean zero variance one Gaussian, so for any a > 0,

P
(
− a ≤ X1 + · · ·+Xn − nµ

σ
√
n

≤ a
)
=

∫ a

−a

e−t2/2dt/
√
2π =: Ψ(a).

That is,

P
(X1 + · · ·+Xn

n
− aσ/

√
n ≤ µ ≤ X1 + · · ·+Xn

n
+ aσ/

√
n
)
= Ψ(a).

Setting a := Ψ−1(1− α), we then have

P
(X1 + · · ·+Xn

n
−Ψ−1(1− α)σ/

√
n ≤ µ ≤ X1 + · · ·+Xn

n
+Ψ−1(1− α)σ/

√
n
)
= 1− α.

□
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Exercise 3.2. Let X1, . . . , Xn be a real-valued random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Suppose Θ = R. Fix θ ∈ R. Denote X := (X1, . . . , Xn).
Consider a set of nonrandomized hypothesis tests with rejection regions Cα ⊆ Rn for all
α ∈ [0, 1]. Suppose these rejection regions are nested in the sense that Cα ⊆ Cα′ for all
0 ≤ α < α′ ≤ 1. As usual, denote Θ = Θ0 ∪Θ1 with Θ0 ∩Θ1 = ∅. Define also the p-valued
p(x) := inf{α ∈ [0, 1] : x ∈ Cα}, ∀ x ∈ Rn.

• Suppose supθ∈Θ0
Pθ(X ∈ Cα) ≤ α for all 0 ≤ α ≤ 1. Show that the p-valued satisfies

Pθ(p(X) ≤ c) ≤ c, ∀ 0 ≤ c ≤ 1, ∀ θ ∈ Θ0.

• Suppose Pθ(X ∈ Cα) = α for all 0 ≤ α ≤ 1. Show that the p-valued satisfies

Pθ(p(X) ≤ c) = c, ∀ 0 ≤ c ≤ 1, ∀ θ ∈ Θ0.

That is, p(X) is uniformly distributed in [0, 1].

Solution. Let 0 < c < 1. By definition of p, if p(X) ≤ c, then X ∈ Ca for all a > c (by the
nested property). That is, Pθ(p(X) ≤ c) ≤ Pθ(X ∈ Ca). The nested property of the sets
together with continuity of the probability law allows us to let a approach c with a > c, so
that

Pθ(p(X) ≤ c) ≤ lim
a→c+

Pθ(X ∈ Ca) = Pθ(X ∈ Cc).

If θ ∈ Θ0, the right probability is at most c by assumption, i.e.

Pθ(p(X) ≤ c) ≤ c, ∀ θ ∈ Θ0.

In the last case, note that X ∈ Ca implies that p(X) ≤ a, so that

Pθ(p(X) ≤ c) ≥ Pθ(X ∈ Cc).

So, by assumption we have

Pθ(p(X) ≤ c) ≥ c, ∀ 0 < c < 1.

This inequality together with the first part completes the proof. □

Exercise 3.3. Let X1, . . . , Xn be a random sample from an exponential distribution with
unknown location parameter θ > 0, i.e. X1 has density

g(x) := 1x≥θe
−(x−θ), ∀x ∈ R.

Fix θ0 ∈ R. Suppose we want to test that hypothesis H0 that θ ≤ θ0 versus the alternative
H1 that θ > θ0. That is, Θ = R, Θ0 = {θ ∈ R : θ ≤ θ0} and Θc

0 = Θ1 = {θ ∈ R : θ > θ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for
this hypothesis. (Hint: it might be easier to describe the region using x(1) =
min(x1, . . . , xn).)

• Prove that X(1) := min(X1, . . . , Xn) is a sufficient statistic for θ.
• (Optional) If H0 is true, then does

2 log
supθ∈Θ fθ(X1, . . . , Xn)

supθ∈Θ0
fθ(X1, . . . , Xn)

converge in distribution to a chi-squared distribution as n → ∞?
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Solution. We can write

fθ(x) =
n∏

i=1

fθ(xi) = 1{min1≤i≤n xi≥θ} ·
n∏

i=1

e−(xi−θ) = enθ1{min1≤i≤n xi≥θ} ·
n∏

i=1

e−(xi).

As a function of θ, this function is strictly increasing, but when θ > min1≤i≤n xi, we have
fθ(x) = 0. So, the MLE is min1≤i≤n Xi, i.e.

sup
θ∈Θ

fθ(x) = fmin1≤i≤n xi
(x).

Similarly since Θ0 = {θ ∈ R : θ ≤ θ0}, the supremum over Θ0 occurs at the minimum of θ0
and min1≤i≤n xi:

sup
θ∈Θ

fθ(x) = fmin(θ0,min1≤i≤n xi)(x).

So, for any k ≤ 1, we have

C := {x ∈ Rn : sup
θ∈Θ

fθ(x) ≥ k sup
θ∈Θ0

fθ(x)}

=
{
x ∈ Rn : sup

θ∈Θ
fθ(x) ≥ k sup

θ∈Θ0

fθ(x), and min
1≤i≤n

xi ≤ θ0

}
∪
{
x ∈ Rn : sup

θ∈Θ
fθ(x) ≥ k sup

θ∈Θ0

fθ(x), and min
1≤i≤n

xi > θ0

}
=
{
x ∈ Rn : 1 ≥ k, and min

1≤i≤n
xi ≤ θ0

}
∪
{
x ∈ Rn : fmin1≤i≤n xi

(x) ≥ kfθ0(x), and min
1≤i≤n

xi > θ0

}
=
{
x ∈ Rn : min

1≤i≤n
xi ≤ θ0

}
∪
{
x ∈ Rn : fmin1≤i≤n xi

(x) ≥ kfθ0(x), and min
1≤i≤n

xi > θ0

}
=
{
x ∈ Rn : min

1≤i≤n
xi ≤ θ0

}
∪
{
x ∈ Rn : en[min1≤i≤n xi(x)−θ0] ≥ k, and min

1≤i≤n
xi > θ0

}
=
{
x ∈ Rn : min

1≤i≤n
xi ≤ θ0

}
∪
{
x ∈ Rn : min

1≤i≤n
xi(x)− θ0 ≥

1

n
log k, and min

1≤i≤n
xi > θ0

}
=
{
x ∈ Rn : min

1≤i≤n
xi ≤ θ0

}
∪
{
x ∈ Rn : min

1≤i≤n
xi(x) ≥ θ0 +

1

n
log k

}

Theorem 4.7 in the notes answers the last question affirmatively. (If H0 is true, then
min(θ0, X(1)) = θ0 with probability one, so from the discussion above, supθ∈Θ0

fθ(X) =
fθ0(X) with probability one, so Theorem 4.7 applies.) □

Exercise 3.4. Let X1, . . . , Xn be a random sample from a Gaussian random variable with
unknown mean µ ∈ R and unknown variance σ2 > 0.

Fix µ0 ∈ R. Suppose we want to test that hypothesis H0 that µ = µ0 versus the alternative
H1 that µ ̸= µ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for this
hypothesis.
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• Give an explicit formula for the p-value of this hypothesis test. (Hint: If S2 denotes
the sample variance and X denotes the sample mean, you should then be able to use

the statistic (X−µ0)2

S2 . Since we have an explicit formula for Snedecor’s distribution,
you should then be able to write an explicit integral formula for the p-value of this
test.)

Solution. For any x = (x1, . . . , xn) ∈ Rn,

fµ,σ2(x) =
n∏

i=1

1

σ
√
2π

e−
(xi−µ)2

2σ2 .

Also, Θ = {(µ, σ) : µ ∈ R, σ > 0} and Θ0 = {(µ0, σ) : σ > 0}.
As we computed in 541A, the MLE is the sample mean and sample variance (dividing by

n instead of n− 1), i.e. for any x ∈ Rn, if we denote x := 1
n

∑n
i=1 xi, v := 1

n

∑n
i=1(xi − x)2

sup
(µ,σ)∈Θ

fµ,σ2(x) = fx,v(x).

Similarly,

sup
(µ,σ)∈Θ0

fµ,σ2(x) = fµ0,v′(x).

Here v′ := 1
n

∑n
i=1(xi − µ0)

2. Therefore,

C := {x ∈ Rn : sup
(µ,σ2)∈Θ

fµ,σ2(x) ≥ k sup
(µ,σ2)∈Θ0

fµ,σ2(x)}

=
{
x ∈ Rn : (v/v′)−n/2

n∏
i=1

e−
(xi−

1
n

∑n
j=1 xj)

2

2v
+

(xi−µ0)
2

2v′ ≥ k
}

=
{
x ∈ Rn : (v/v′)−n/2 ≥ k

}
=
{
x ∈ Rn : v/v′ ≤ k−2/n

}
Note that

v′ =
1

n

n∑
i=1

(xi − µ0)
2 =

1

n

n∑
i=1

(xi − x+ x− µ0)
2

=
1

n

n∑
i=1

[(xi − x)2 + (x− µ0)
2] = v +

1

n

n∑
i=1

(x− µ0)
2 = v + (x− µ0)

2

Using this fact, and that the inverse of x 7→ 1/(1 + x) is x 7→ −1 + 1/x,

C =
{
x ∈ Rn :

v

v + (x− µ0)2
≤ k−2/n

}
=
{
x ∈ Rn :

1

1 + (x−µ0)2
1
n

∑n
i=1(xi−x)2

≤ k−2/n
}

=
{
x ∈ Rn :

1
n

∑n
i=1(xi − x)2

(x− µ0)2
− 1 ≥ k2/n − 1

}
=
{
x ∈ Rn :

1
n

∑n
i=1(xi − x)2

(x− µ0)2
≥ k2/n

}
.

If the null hypothesis holds, then 1
n

∑n
j=1Xj − µ0 is a mean zero Gaussian with variance

σ2/n where σ2 is unknown. Also, n−1
σ2

∑n
i=1(Xi −X)2 is a chi squared random variable with
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n − 1 degrees of freedom, that is independent of 1
n

∑n
j=1Xj by Proposition 2.15 from the

notes. So,

Y :=
1
n

∑n
i=1(Xi −X)2(

1
n

∑n
j=1Xj − µ0

)2 =
n−1
σ2

1
n

∑n
i=1(Xi −X)2

n−1
σ2

(
1
n

∑n
j=1 Xj − µ0

)2 =
n−1
σ2

∑n
i=1(Xi −X)2

(n− 1)
(

1
σ
√
n

∑n
j=1Xj − µ0

)2
By Proposition 2.16 in the notes, this is Snedecor’s distribution with n− 1 and 1 degrees of
freedom. Since this density does not depend on σ, a p-value for the test is p(X) where

t(x) :=
1
n

∑n
i=1(xi − x)2(

1
n

∑n
j=1 xj − µ0

)2
p(x) = Pµ0(t(X) ≥ t(x)) =

∫ ∞

t(x)

fY (y)dy

=
Γ(n/2)

Γ((n− 1)/2)Γ(1/2)
(n− 1)(n−1)/2

∫ ∞

t(x)

y((n−1)/2)−1(1 + y(n− 1))−n/2dy.

□

4. Homework 4

Exercise 4.1. Write down the generalized likelihood ratio estimate for the following alpha
particle data, as we did in class for a slightly different data set. The corresponding test
treats individual counts of alpha particles as independent Poisson random variables, versus
the alternative that the probability of a count appearing in each box of data is a sequence of
nonnegative numbers that sum to one. (In doing so, you should need to compute a maximum
likelihood estimate using a computer.)

m 0, 1 or 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
# of Intervals 16 26 58 102 125 146 163 164 120 100 72 54 20 12 10 4

Plot the MLE for the Poisson statistic (i.e. plot the denominator of the generalized

likelihood ratio test statistic
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

) as a function of λ.

Finally, compute the value s of Pearson’s chi-squared statistic S, and compute the proba-
bility that S ≥ s. Does the probability P(S ≥ s) give you confidence that the null hypothesis
is true?

Solution.
We compute the value of Pearson’s chi-squared statistic to be approximately 10.8, with a

p-value of about .7, giving us reasonable confidence in accepting the null hypothesis. □

Exercise 4.2. Let X1, . . . , Xn be i.i.d. random variables. Let 0 < α < 1/2. Define the
α-trimmed sample mean to be

X
(α)

n :=
1

n− 2⌊nα⌋

n−⌊nα⌋∑
i=⌊nα⌋+1

X(i).
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Figure 1. Plot of the Poisson-based MLE, to the 1/200 power, demonstrating
a maximum value of λ ≈ 8.353

For any w = (w1, . . . , wn) ∈ {1, . . . , n}n, define the Winsorized sample mean to be

X
(w)

n :=
1

n

n∑
i=1

X(wi).

• Show that the jackknife estimator of X
(α)

n is

1

1− 2α
(X

(w)

n − 2αX
(α)

n ),

for some vector w.
• Show that the jackknife variance estimator of X

(α)

n is

1

n(n− 1)(1− 2α)2

n∑
i=1

(X(wi) −X
(w)

n )2,

for some vector w.

Exercise 4.3. Let X1, X2, X3 be i.i.d. continuous random variables such that X1 has PDF
{fθ : θ ∈ Θ}. Let W1,W2,W3 be a bootstrap sample from X1, X2, X3. Let Y denote the
sample median of X1, X2, X3. (That is, Y is the middle value among X1, X2, X3, which is
unique with probability one since the random variables are continuous.)

• Describe the distribution of (W(1),W(2),W(3)).
• Describe the bootstrap estimator of Y .
• Describe the bootstrap estimator of the variance of Y .

Solution. Since X1, X2, X3 are all distinct with probability one, we have

P(W1 = Xi,W2 = Xj,W3 = Xk |X1, X2, X3) = (1/3)3, ∀ 1 ≤ i, j, k ≤ 3.
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That is, in describing the distribution of (W(1),W(2),W(3)), we may as well assume that
X(1) = 1, X(2) = 2, X(3) = 3, and W1,W2,W3 are i.i.d. uniform in {1, 2, 3}. (We are satisfied
with this description of the distribution of (W(1),W(2),W(3)).)
Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number

of indices 1 ≤ j ≤ 3 such that Wj ≤ X(i), we have

P(W(2) ≤ X(i) |X1, X2, X3) =
3∑

k=2

(
3

k

)
pki (1− pi)

n−k,

where pi = i/3 for all 1 ≤ i ≤ 3. (This follows since Y is a binomial random variable with
parameters 3 and pi.) That is,

P(W(2) ≤ X(i) |X1, X2, X3) =
3∑

k=2

(
3

k

)
(i/3)k(1− i/3)n−k,

Therefore, for all 1 ≤ i ≤ 3, we have

P(W(2) = X(i) |X1, X2, X3) = P(W(2) ≤ X(i) |X1, X2, X3)−P(W(2) ≤ X(i−1) |X1, X2, X3)

=
3∑

k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

The bootstrap estimator of Y is then

E[W(2) |X1, X2, X3] =
3∑

i=1

X(i)P(W(2) = X(i) |X1, X2, X3)

=
3∑

i=1

X(i)

3∑
k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

And the bootstrap estimator of the variance is

Var(W(2) |X1, X2, X3) = E[(W(2) − E[W(2) |X1, X2, X3])
2 |X1, X2, X3]

= E[W 2
(2) |X1, X2, X3]− (E[W(2) |X1, X2, X3])

2

=
3∑

i=1

X2
(i)

3∑
k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
−
( 3∑

i=1

X(i)

3∑
k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

))2
.

Here we used

E[W 2
(2) |X1, X2, X3] =

3∑
i=1

X2
(i)P(W(2) = X(i) |X1, X2, X3)

=
3∑

i=1

X2
(i)

3∑
k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

□
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Exercise 4.4. Let µ ∈ R and let 0 < σ < ∞. Let X1, . . . , Xn be i.i.d. real-valued random
variables each with mean µ and variance σ2. Let h : R → R be a function such that h′ exists
and is continuous. Let Xn := (X1 + · · ·+Xn)/n. Let Yn := h(Xn).
Show that the jackknife estimator of the variance of Yn converges almost surely to the

same estimate of the variance you get by applying the Delta Method to Yn.

Solution. Theorem 5.8 in the notes implies that the jackknife variance estimator Vn is
consistent, i.e. (when d = 1), we have that

Vn

1
n
(h′(µ))2Cov(X1, X1)

=
Vn

1
n
(h′(µ))2σ2

converges almost surely to 1 as n → ∞.
On the other hand, the Delta Method implies that

√
n(h(Xn) − h(µ)) converges in dis-

tribution to a mean zero Gaussian with variance σ2(h′(µ))2 as n → ∞. Consequently, the
variance of h(Xn) is approximately σ2(h′(µ))2/n, asymptotically agreeing with the jackknife
variance estimate. □

Exercise 4.5. Suppose X1, . . . , Xn is a random sample from a Gaussian random variable X
with unknown mean µX ∈ R and unknown variance σ2 > 0. Suppose Y1, . . . , Ym is a random
sample from a Gaussian random variable Y with unknown mean µY ∈ R and unknown
variance σ2 > 0.

Assume that X1, . . . , Xn is independent of Y1, . . . , Ym, i.e. assume that X, Y are indepen-
dent.

Assume that n+m > 2. Define

X :=
1

n

n∑
i=1

Xi, Y :=
1

m

m∑
i=1

Yi,

S2
X :=

1

n− 1

n∑
i=1

(Xi −X)2, S2
Y :=

1

m− 1

m∑
i=1

(Yi − Y )2,

S2 :=
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
.

Show that

X − Y − µX + µY

S
√

1
n
+ 1

m

has Student’s t-distribution with n+m− 2 degrees of freedom. Deduce the following confi-
dence intervals for the difference of the means

P
(
X − Y − tS

√
1

n
+

1

m
< µX − µY < X − Y + tS

√
1

n
+

1

m

)
=

Γ(p+1
2
)

√
p
√
πΓ(p/2)

∫ t

−t

(
1 +

s2

p

)−(p+1)/2

ds,

where p = n+m− 2.
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5. Homework 5

Exercise 5.1. Let n > m be integers. Let A be an n×m real matrix of known (deterministic)
constants. Let β ∈ Rm be an unknown vector of (deterministic) constants. And let ε ∈ Rn

be a random vector with Eε = 0 and such that ε is a vector of i.i.d. random variables. Define
Y ∈ Rn by Y = Aβ + ε. Assume that ATA is invertible. Define Z := (ATA)−1ATY .

Show that the estimator ( 1

n−m

n∑
i=1

(Yi − (AZ)i)
2
)
(ATA)−1

is an unbiased estimator of the covariance matrix of Z := (ATA)−1ATY .

Solution. As shown in class, Cov(Z) = σ2(ATA)−1. We then have

E
n∑

i=1

(Yi − (AZ)i)
2 = E

n∑
i=1

Y 2
i − 2Yi(AZ)i + (AZ)2i

= E
n∑

i=1

(Aβ + ε)2i − 2(Aβ + ε)i(A(A
TA)−1AT (Aβ + ε))i + (A(ATA)−1AT (Aβ + ε))2i

= n+ E
n∑

i=1

−2(Aβ + ε)i(A(A
TA)−1AT (Aβ + ε))i + (A(ATA)−1AT (Aβ + ε))2i

= n+
n∑

i=1

−2[A(ATA)−1AT ]ii + (A(ATA)−1AT )2ii

= n− 2Tr[A(ATA)−1AT ] + Tr[(A(ATA)−1AT )2]

= n− 2m+m = n−m.

Here we used that, since ATA is an invertible m×m matrix, we have

Tr[A(ATA)−1AT ] = Tr[ATA(ATA)−1] = Tr(Im) = m.

And similarly

Tr[(A(ATA)−1AT )2] = Tr[A(ATA)−1ATA(ATA)−1AT ] = Tr[A(ATA)−1AT ] = Tr(Im) = m.

□

Exercise 5.2. Assume the one-way ANOVA assumptions. Consider the null hypothesis H0

that β1 = · · · = βp. Recall that, under this assumption, the F statistic takes the form

F =
1

S2

p∑
j=1

ni(Yj − Y )2.

The alternative hypothesis H1 is that βi ̸= βj for some 1 ≤ i < j ≤ p. We can therefore
reject H0 when F is large.

Show that the generalized likelihood ratio test of H0 versus H1 coincides with the hypoth-
esis test we just described.
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Solution. For any y = (y1, . . . , ymp) ∈ Rmp ,

fβ1,...,βp,σ2(y) =

p∏
j=1

mj∏
i=mj−1+1

1

σ
√
2π

e−
(yi−βj)

2

2σ2 .

Also,

Θ = {(β1, . . . , βp, σ
2) : βi ∈ R, ∀ 1 ≤ i ≤ p, σ > 0}.

Θ0 = {(β1, . . . , βp, σ
2) : β1 = · · · = βp}.

As we computed in 541A, the MLE is the sample mean and sample variance (dividing
by n instead of n − 1), i.e. for any y ∈ Rmp , if we denote yj := 1

nj

∑mj

i=mj−1+1 yi, v :=
1
mp

∑p
j=1

∑mj

i=mj−1+1(yi − yj)
2

sup
(β1,...,βp,σ2)∈Θ

fβ1,...βp(y) = fy1,...,yp,v(y).

Similarly,

sup
(β1,...,βp,σ2)∈Θ0

fβ1,...βp(y) = fy,...,y,v′(y).

Here

y :=
1

mp

mp∑
i=1

yi =
1

mp

p∑
j=1

njyj

v′ :=
1

mp

p∑
j=1

mj∑
i=mj−1+1

(yi − y)2 =
1

mp

p∑
j=1

mj∑
i=mj−1+1

(yi − yj + yj − y)2

=
1

mp

p∑
j=1

mj∑
i=mj−1+1

[(yi − yj)
2 + (yj − y)2] = v +

1

mp

p∑
j=1

mj∑
i=mj−1+1

(yj − y)2.

Therefore,

C := {y ∈ Rmp : sup
(β1,...,βp,σ2)∈Θ

fβ1,...βp(y) ≥ k sup
(β1,...,βp,σ2)∈Θ0

fβ1,...βp(y)}

= {y ∈ Rmp : fy1,...,yp,v(y) ≥ kfy,...,y,v′(y)}

= {y ∈ Rmp :

p∏
j=1

mj∏
i=mj−1+1

1√
v2π

e−
(yi−yj)

2

2v ≥ k

p∏
j=1

mj∏
i=mj−1+1

1√
v′2π

e−
(yi−y)2

2v′ }

= {y ∈ Rmp : (v/v′)−mp/2

p∏
j=1

mj∏
i=mj−1+1

e−
(yi−yj)

2

2v ≥ k

p∏
j=1

mj∏
i=mj−1+1

e−
(yi−y)2

2v′ }
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By definition of v and v′, both of the exponential terms simplify to the same constant, i.e.

C = {y ∈ Rmp : (v/v′)−mp/2 ≥ k}

= {y ∈ Rmp :
v

v + 1
mp

∑p
j=1

∑mj

i=mj−1+1(yj − y)2
≤ k−2/mp}

=

y ∈ Rmp :
1

1 +
1

mp

∑p
j=1

∑mj
i=mj−1+1(yj−y)2

1
mp

∑p
j=1

∑mj
i=mj−1+1(yi−yj)

2

≤ k−2/mp


Evidently, the last quantity is a monotone function of F , as desired.

□

Exercise 5.3. In statistics and other applications, we can be presented with data points
(x1, y1), . . . , (xn, yn). We would like to find the line y = mx+ b which lies “closest” to all of
these data points. Such a line is known as a linear regression. There are many ways to define
the “closest” such line. The standard method is to use least squares minimization. A line
which lies close to all of the data points should make the quantities (yi −mxi − b) all very
small. We would like to find numbers m, b such that the following quantity is minimized:

f(m, b) =
n∑

i=1

(yi −mxi − b)2.

Using the second derivative test, show that the minimum value of f is achieved when

m =
(
∑n

i=1 xi)
(∑n

j=1 yj

)
− n (

∑n
k=1 xkyk)

(
∑n

i=1 xi)
2 − n

(∑n
j=1 x

2
j

) =

∑n
i=1(xi − x)(yi − y)∑n

j=1(xj − x)2
.

b =
1

n

(
n∑

i=1

yi −m
n∑

j=1

xj

)
= y −mx.

Briefly explain why this is actually the minimum value of f(m, b). (You are allowed to use
the inequality (

∑n
i=1 xi)

2 ≤ n(
∑n

i=1 x
2
i ).)

Solution. Let X =
∑n

i=1 xi, Y =
∑n

j=1 yj, A =
∑n

k=1 xkyk, S =
∑n

j=1 x
2
j . We have

∇f(m, b) = (
∑n

i=1 2(yi − mxi − b)(−xi),−
∑n

i=1 2(yi − mxi − b)). So, ∇f(m, b) = (0, 0)
when

∑n
i=1(yi − mxi − b)) = 0 and

∑n
i=1(yi − mxi − b)xi = 0. We want to solve for m

and b. We have Y − mX − nb = 0 and A − mS − bX = 0. So, b = (Y − mX)/n,
and then A − mS − (Y − mX)X/n = 0. So, m(−S + X2/n) = −A + XY/n, and
m = (XY − An)/(X2 − Sn).
Finally, strict convexity of f implies that the only critical point we found is the global

minimum of f . (If x1 = · · · = xn, then the minimum will not be unique. For example, if
n = 1, then the function f(m, b) = (1−m− b)2 has a minimum on the line m+ b = 1.) □

Exercise 5.4. Let

h(x) :=
1

1 + e−x
, ∀x ∈ R.
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Fix x ∈ R and y ∈ [0, 1]. Define t : R2 → R by

t(a, b) := log
(
[h(ax+ b)]y[1− h(ax+ b)]1−y

)
, ∀ a, b ∈ R.

Show that t is concave. Conclude that t has at most one global maximum.

6. Homework 6

Exercise 6.1. Let f : R → [0,∞) be a PDF. Suppose you can sample (on a computer) any
number of i.i.d. real valued random variables X1, X2, . . ., each with PDF f . Let g : R →
[0,∞) be another PDF. Assume there exists some m > 0 such that g(x) ≤ mf(x) ∀ x ∈ R.

The goal of this exercise is to sample from a random variable with PDF g.
State a version of accept/reject sampling with these assumptions and goal.
Prove that your version of accept/reject sampling outputs some random variable Z with

PDF g.

Solution.
Here is the algorithm. Let (X1, Y1), (X2, Y2), . . . be i.i.d random variables uniformly dis-

tributed under the curve {(x, y) ∈ R2 : 0 ≤ y ≤ mf(x)}. Define I := inf{n ≥ 1: Yn ≤
g(Xn)}.

Output Z := XI .
Claim. Z has PDF g.

Proof of Claim. Let z ∈ R. Define ε :=
∫
R g(x)dx∫

R mf(x)dx
= 1

m
. (Since g ≤ mf and

∫
R g =

∫
R f = 1,

it follows that m ≥ 1.) Then

P(Z ≤ z) =
∞∑
i=1

P(Z ≤ z, Z = Xi) =
∞∑
i=1

P(Xi ≤ z, Yi ≤ g(Xi))
i−1∏
j=1

P(Yj > g(Xj))

=
∞∑
i=1

∫ z

−∞ g(x)dx∫
R mf(x)dx

(1− ε)i−1 =

∫ z

−∞
g(x)dx

∞∑
i=1

ε(1− ε)i−1 =

∫ z

−∞
g(x)dx.

□

□

Exercise 6.2. Let X1, . . . , Xn be i.i.d. Gaussian random variables with unknown mean µ ∈
R and variance 1. Define Yi := max(Xi, 0), for all 1 ≤ i ≤ n. Without loss of generality (i.e.
by re-ordering the random variables), assume that Y1, . . . , Ym > 0 and Ym+1 = · · · = Yn = 0.
In this problem, we assume that we cannot accessX1, . . . , Xn, but we can access Y1, . . . , Yn.

• Explain how you could use the EM algorithm to estimate µ from Y1, . . . , Ym. Give
details about the E and M steps. Let µk denote the estimate of µ from the kth

iteration of the EM algorithm. Show that

µk+1 =
1

n

m∑
i=1

Yi +
n−m

m
µk −

n−m

m

ϕ(µk)

Φ(−µk)
, ∀ k ≥ 1. (∗)

Here ϕ is the PDF of a standard Gaussian, and Φ is the CDF of a standard Gaussian.
• Find the log-likelihood function log ℓ(µ) based on the observed data Y1, . . . , Yn, and
use it to write down a (nonlinear) equation that the MLE Zn satisfies.
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• Use the equation in the previous part to verify that Zn is a fixed point of the recursion
(∗).

• Prove that µk converges in distribution to µ as k → ∞, for any starting value of
µ0 ∈ R, assuming that m ≥ 1. Hint: Show that |µk − Yk| decreases as k → ∞. Hint:
Use the Mean Value Theorem, and you can also freely use the following inequality

0 <
ϕ(x)[ϕ(x)− xΦ(−x)]

[Φ(−x)]2
< 1, ∀x ∈ R.

Exercise 6.3. Let θ ∈ (0, 3/4) be unknown. Define

(p1, p2, p3, p4) := ((1 + θ)/2, (1− θ)/4, 1/4− θ/3, θ/12).

Let X = (X1, X2, X3, X4) be a multinomial distribution, so that

P(X = x) =

(
200

x1, x2, x3, x4

) 4∏
i=1

pxi
i ,

for any x = (x1, x2, x3, x4) that are nonnegative integers with x1 + x2 + x3 + x4 = 200.

• Write an equation that would need to be solved in order to obtain an MLE for θ.
• Assume now that instead you have data from a multinomial distribution Y = (Y1, . . . , Y6),
but Y1, . . . , Y4 are not observed, and X1 = Y1 + Y2, X2 = Y3 + Y4 are both observed,
along with Y5 = X3 and Y6 = X4. (Choose convenient probabilities q1, . . . , q6 for the
multinomial Y1, . . . , Y6. For example, consider q1 = 1/2, q2 = θ/2, q3 = 1/4 − θ/3,
q4 = θ/12, q5 = 1/4 − θ/3, q6 = θ/12.) Write down the E and M steps of the EM
algorithm for estimating θ, under the above assumptions.

• Is the EM algorithm simpler than directly finding the MLE of θ?

Exercise 6.4. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of

P , and find the eigenvalues of P . By writing any row vector x ∈ R2 as a linear combination
of eigenvectors of P (whenever possible), find an expression for xP n for any n ≥ 1. What is
limn→∞ xP n? Is it related to the vector π = (q/(p+ q), p/(p+ q))?

Solution. To find the eigenvalues λ of P , we solve the equation det(P − λ) = 0, i.e.

det

(
1− p− λ p

q 1− q − λ

)
= 0, i.e. (1− p− λ)(1− q − λ)− pq = 0, i.e.

λ2 − λ(2− p− q) + 1− p− q = 0.

Solving form λ, we get λ = 1 and

λ =
2− p− q −

√
(2− p− q)2 − 4(1− p− q)

2

=
2− p− q −

√
(2− p− q)2 − 4(1− p− q)

2

=
2− p− q − (p+ q)

2
= 1− p− q.

When λ = 1, the matrix (
1− p− λ p

q 1− q − λ

)
=

(
−p p
q −q

)
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has the row vector (1,−p/q) in its (left) null space. When λ = 1− p− q, the matrix(
1− p− λ p

q 1− q − λ

)
=

(
−q p
q −p

)
has the row vector (1, 1) in its (left) null space. As long as p ̸= q, these vectors form a basis,

and limn→∞ P n =

(
π
π

)
. □

Exercise 6.5. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.

Solution. □

Exercise 6.6 (Knight Moves). Consider a standard 8 × 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V has 64 elements). Any two vertices
x, y ∈ V are connected by an edge if and only if a knight can move from x to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time ExTx for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)

Solution. From Example 9.60, the SRW on a graph has stationary distribution π(x) =
deg(x)/(2 |E|). We can write the degrees of vertices as the following matrix

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2


.

The sum of degrees is 336. So, π(x) = (deg)(x)/336 for all x ∈ V . From Corollary 9.47,
ExTx = 1/π(x), i.e. we can plot ExTx as values in the following matrix

168 112 84 84 84 84 112 168
112 84 56 56 56 56 84 112
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
112 84 56 56 56 56 84 112
168 112 84 84 84 84 112 168


.

□
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