Please provide complete and well-written solutions to the following exercises.
Due December 1, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 7

Exercise 1 (Birth-and-Death Chains). A birth-and-death chain can model the size of some population of organisms. Fix a positive integer k. Consider the state space $\Omega=$ $\{0,1,2, \ldots, k\}$. The current state is the current size of the population, and at each step the size can increase or decrease by at most 1 . We define $\left\{\left(p_{n}, r_{n}, q_{n}\right)\right\}_{n=0}^{k}$ such that $p_{n}+r_{n}+q_{n}=1$ and $p_{n}, r_{n}, q_{n} \geq 0$ for each $0 \leq n \leq k$, and

- $P(n, n+1)=p_{n}>0$ for every $0 \leq n<k$.
- $P(n, n-1)=q_{n}>0$ for every $0<n \leq k$.
- $P(n, n)=r_{n} \geq 0$ for every $0 \leq n \leq k$.
- $q_{0}=p_{k}=0$.

Show that the birth-and-death chain is reversible.
Exercise 2. Show that the Markov Chain with state space A defined in our discussion of the hard core model is actually a Markov chain that is irreducible and aperiodic.

Exercise 3. Show that the Gibbs Sampling Algorithm for a probability distribution π on Ω creates an aperiodic Markov Chain and π is reversible with respect to this Markov Chain. Conclude that π is a stationary distribution for the Markov Chain.

If it occurs that the Markov Chain is irreducible, conclude that π is the unique stationary distribution, so that the Gibbs Sampling Algorithm is a Markov Chain Monte Carlo Algorithm for simulating π.

Exercise 4. Let $G=(V, E)$ be a finite graph. Let $\lambda>0$. The generalized hard core model μ_{λ} is a probability measure on the set $\{0,1\}^{V}$. Let A denote the set of all elements of $\xi \in\{0,1\}^{V}$ such that, if $(v, w) \in E$ then $\xi(v), \xi(w)$ are not both equal to 1 . Then μ is defined so that $\mu(\xi):=0$ for any $\xi \notin A$, and

$$
\mu(\xi):=\frac{\lambda^{\sum_{v \in V} \xi(v)}}{z}, \quad z:=\sum_{\xi \in A} \lambda^{\sum_{v \in V} \xi(v)} .
$$

- Show that, if $\xi \in\{0,1\}^{V}$, and if $v \in V$ is fixed with $\xi(w)=0$ for all neighboring vertices w of v, then the probability that $\xi(v)=1$ is $\lambda /(\lambda+1)$.
- Construct an MCMC algorithm for the generalized hard cord model.

Exercise 5. Show that the transition matrix P constructed by the general case of the Metropolis Algorithm is reversible. Conclude that π is a stationary distribution for P.

