
Graduate Mathematical Statistics II Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 17, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 6

Exercise 1. Let f : R → [0,∞) be a PDF. Suppose you can sample (on a computer)
any number of i.i.d. real valued random variables X1, X2, . . ., each with PDF X. Let
g : R → [0,∞) be another PDF. Assume there exists some m > 0 such that g(x) ≤ mf(x)
∀ x ∈ R.

The goal of this exercise is to sample from a random variable with PDF g.

State a version of accept/reject sampling with these assumptions and goal.

Prove that your version of accept/reject sampling outputs some random variable Z with
PDF g.

Exercise 2. Let X1, . . . , Xn be i.i.d. Gaussian random variables with unknown mean µ ∈ R
and variance 1. Define Yi := max(Xi, 0), for all 1 ≤ i ≤ n. Without loss of generality (i.e.
by re-ordering the random variables), assume that Y1, . . . , Ym > 0 and Ym+1 = · · · = Yn = 0.

In this problem, we assume that we cannot access X1, . . . , Xn, but we can access Y1, . . . , Yn.

• Explain how you could use the EM algorithm to estimate µ from Y1, . . . , Ym. Give
details about the E and M steps. Let µk denote the estimate of µ from the kth

iteration of the EM algorithm. Show that

µk+1 =
1

n

m∑
i=1

Yi +
n−m

m
µk −

n−m

m

ϕ(µk)

Φ(−µk)
, ∀ k ≥ 1. (∗)

Here ϕ is the PDF of a standard Gaussian, and Φ is the CDF of a standard Gaussian.
• Find the log-likelihood function log ℓ(µ) based on the observed data Y1, . . . , Yn, and
use it to write down a (nonlinear) equation that the MLE Zn satisfies.

• Use the equation in the previous part to verify that Zn is a fixed point of the recursion
(∗).

• Prove that µk converges in distribution to µ as k → ∞, for any starting value of
µ0 ∈ R, assuming that m ≥ 1. Hint: Show that |µk − Yk| decreases as k → ∞. Hint:
Use the Mean Value Theorem, and you can also freely use the following inequality

0 <
ϕ(x)[ϕ(x)− xΦ(−x)]

[Φ(−x)]2
< 1, ∀x ∈ R.

Exercise 3. Let θ ∈ (0, 3/4) be unknown. Define

(p1, p2, p3, p4) := ((1 + θ)/2, (1− θ)/4, 1/4− θ/3, θ/12).
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Let X = (X1, X2, X3, X4) be a multinomial distribution, so that

P(X = x) =

(
200

x1, x2, x3, x4

) 4∏
i=1

pxi
i ,

for any x = (x1, x2, x3, x4) that are nonnegative integers with x1 + x2 + x3 + x4 = 200.

• Write an equation that would need to be solved in order to obtain an MLE for θ.
• Assume now that instead you have data from a multinomial distribution Y = (Y1, . . . , Y6),
but Y1, . . . , Y4 are not observed, and X1 = Y1 + Y2, X2 = Y3 + Y4 are both observed,
along with Y5 = X3 and Y6 = X4. (Choose convenient probabilities q1, . . . , q6 for the
multinomial Y1, . . . , Y6. For example, consider q1 = 1/2, q2 = θ/2, q3 = 1/4 − θ/3,
q4 = θ/12, q5 = 1/4 − θ/3, q6 = θ/12.) Write down the E and M steps of the EM
algorithm for estimating θ, under the above assumptions.

• Is the EM algorithm simpler than directly finding the MLE of θ?

Exercise 4. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of P ,

and find the eigenvalues of P . By writing any row vector x ∈ R2 as a linear combination of
eigenvectors of P (whenever possible), find an expression for xP n for any n ≥ 1. What is
limn→∞ xP n? Is it related to the vector π = (q/(p+ q), p/(p+ q))?

Exercise 5. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.

Exercise 6 (Knight Moves). Consider a standard 8 × 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V has 64 elements). Any two vertices
x, y ∈ V are connected by an edge if and only if a knight can move from x to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time ExTx for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)


