Please provide complete and well-written solutions to the following exercises.
Due November 3, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 5

Exercise 1. Let $n>m$ be integers. Let A be an $n \times m$ real matrix of known (deterministic) constants. Let $\beta \in \mathbf{R}^{m}$ be an unknown vector of (deterministic) constants. And let $\varepsilon \in \mathbf{R}^{n}$ be a random vector with $\mathbf{E} \varepsilon=0$ and such that ε is a vector of i.i.d. random variables. Define $Y \in \mathbf{R}^{n}$ by $Y=A \beta+\varepsilon$. Assume that $A^{T} A$ is invertible. Define $Z:=\left(A^{T} A\right)^{-1} A^{T} Y$.

Show that the estimator

$$
\left(\frac{1}{n-m} \sum_{i=1}^{n}\left(Y_{i}-(A Z)_{i}\right)^{2}\right)\left(A^{T} A\right)^{-1}
$$

is an unbiased estimator of the covariance matrix of $Z:=\left(A^{T} A\right)^{-1} A^{T} Y$.
Exercise 2. Assume the one-way ANOVA assumptions. Consider the null hypothesis H_{0} that $\beta_{1}=\cdots=\beta_{p}$. Recall that, under this assumption, the F statistic takes the form

$$
F=\frac{1}{S^{2}} \sum_{j=1}^{p} n_{i}\left(\overline{Y_{j}}-\bar{Y}\right)^{2} .
$$

The alternative hypothesis H_{1} is that $\beta_{i} \neq \beta_{j}$ for some $1 \leq i<j \leq p$. We can therefore reject H_{0} when F is large.

Show that the generalized likelihood ratio test of H_{0} versus H_{1} coincides with the hypothesis test we just described. (The likelihood function should just use the Gaussian assumptions for the random variables Y_{1}, Y_{2}, \ldots) (Also, you should assume that $\sigma>0$ is unknown.) (When you form the generalized likelihood ratio, the exponential terms from the Gaussian distribution should eventually become constants.)

Exercise 3. In statistics and other applications, we can be presented with data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We would like to find the line $y=m x+b$ which lies "closest" to all of these data points. Such a line is known as a linear regression. There are many ways to define the "closest" such line. The standard method is to use least squares minimization. A line which lies close to all of the data points should make the quantities $\left(y_{i}-m x_{i}-b\right)$ all very small. We would like to find numbers m, b such that the following quantity is minimized:

$$
f(m, b)=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

Using the second derivative test, show that the minimum value of f is achieved when

$$
\begin{aligned}
m=\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{j=1}^{n} y_{j}\right)-n\left(\sum_{k=1}^{n} x_{k} y_{k}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}-n\left(\sum_{j=1}^{n} x_{j}^{2}\right)} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}} . \\
b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-m \sum_{j=1}^{n} x_{j}\right) & =\bar{y}-m \bar{x} .
\end{aligned}
$$

Briefly explain why this is actually the minimum value of $f(m, b)$. (You are allowed to use the inequality $\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n\left(\sum_{i=1}^{n} x_{i}^{2}\right)$.)

Exercise 4. Let

$$
h(x):=\frac{1}{1+e^{-x}}, \quad \forall x \in \mathbf{R}
$$

Fix $x \in \mathbf{R}$ and $y \in[0,1]$. Define $t: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by

$$
t(a, b):=\log \left([h(a x+b)]^{y}[1-h(a x+b)]^{1-y}\right), \quad \forall a, b \in \mathbf{R} .
$$

Show that t is concave. Conclude that t has at most one global maximum.

