Please provide complete and well-written solutions to the following exercises.
Due October 6, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 3

Exercise 1. Let X_{1}, \ldots, X_{n} be i.i.d. Gaussian random variables with unknown mean and unknown variance.

- Find a real-valued pivotal quantity for $X=\left(X_{1}, \ldots, X_{n}\right)$.
- Using the pivotal quantity, construct a $1-\alpha$ confidence interval for the mean μ, for any $0<\alpha<1$.
Exercise 2. Let X_{1}, \ldots, X_{n} be a real-valued random sample of size n from a family of distributions $\left\{f_{\theta}: \theta \in \Theta\right\}$. Suppose $\Theta=\mathbf{R}$. Fix $\theta \in \mathbf{R}$. Denote $X:=\left(X_{1}, \ldots, X_{n}\right)$. Consider a set of nonrandomized hypothesis tests with rejection regions $C_{\alpha} \subseteq \mathbf{R}^{n}$ for all $\alpha \in[0,1]$. Suppose these rejection regions are nested in the sense that $C_{\alpha} \subseteq C_{\alpha^{\prime}}$ for all $0 \leq \alpha<\alpha^{\prime} \leq 1$. As usual, denote $\Theta=\Theta_{0} \cup \Theta_{1}$ with $\Theta_{0} \cap \Theta_{1}=\emptyset$. Define also the p-valued $p(x):=\inf \left\{\alpha \in[0,1]: x \in C_{\alpha}\right\}, \forall x \in \mathbf{R}^{n}$.
- Suppose $\sup _{\theta \in \Theta_{0}} \mathbf{P}_{\theta}\left(X \in C_{\alpha}\right) \leq \alpha$ for all $0 \leq \alpha \leq 1$. Show that the p-valued satisfies

$$
\mathbf{P}_{\theta}(p(X) \leq c) \leq c, \quad \forall 0 \leq c \leq 1, \forall \theta \in \Theta_{0}
$$

- Suppose $\mathbf{P}_{\theta}\left(X \in C_{\alpha}\right)=\alpha$ for all $0 \leq \alpha \leq 1$. Show that the p-valued satisfies

$$
\mathbf{P}_{\theta}(p(X) \leq c)=c, \quad \forall 0 \leq c \leq 1, \forall \theta \in \Theta_{0}
$$

That is, $p(X)$ is uniformly distributed in $[0,1]$.
Exercise 3. Let X_{1}, \ldots, X_{n} be a random sample from an exponential distribution with unknown location parameter $\theta>0$, i.e. X_{1} has density

$$
g(x):=1_{x \geq \theta} e^{-(x-\theta)}, \quad \forall x \in \mathbf{R} .
$$

Fix $\theta_{0} \in \mathbf{R}$. Suppose we want to test that hypothesis H_{0} that $\theta \leq \theta_{0}$ versus the alternative H_{1} that $\theta>\theta_{0}$. That is, $\Theta=\mathbf{R}, \Theta_{0}=\left\{\theta \in \mathbf{R}: \theta \leq \theta_{0}\right\}$ and $\Theta_{0}^{c}=\Theta_{1}=\left\{\theta \in \mathbf{R}: \theta>\theta_{0}\right.$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis. (Hint: it might be easier to describe the region using $x_{(1)}=$ $\min \left(x_{1}, \ldots, x_{n}\right)$.)
- Prove that $X_{(1)}:=\min \left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ.
- (Optional) If H_{0} is true, then does

$$
2 \log \frac{\sup _{\theta \in \Theta} f_{\theta}\left(X_{1}, \ldots, X_{n}\right)}{\sup _{\theta \in \Theta_{0}} f_{\theta}\left(X_{1}, \ldots, X_{n}\right)}
$$

converge in distribution to a chi-squared distribution as $n \rightarrow \infty$?

Exercise 4. Let X_{1}, \ldots, X_{n} be a random sample from a Gaussian random variable with unknown mean $\mu \in \mathbf{R}$ and unknown variance $\sigma^{2}>0$.

Fix $\mu_{0} \in \mathbf{R}$. Suppose we want to test that hypothesis H_{0} that $\mu=\mu_{0}$ versus the alternative H_{1} that $\mu \neq \mu_{0}$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis.
- Give an explicit formula for the p-value of this hypothesis test. (Hint: If S^{2} denotes the sample variance and \bar{X} denotes the sample mean, you should then be able to use the statistic $\frac{\left(\bar{X}-\mu_{0}\right)^{2}}{S^{2}}$. Since we have an explicit formula for Snedecor's distribution, you should then be able to write an explicit integral formula for the p-value of this test.)

