Please provide complete and well-written solutions to the following exercises.

Due October 6, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 3

Exercise 1. Let X_1, \ldots, X_n be i.i.d. Gaussian random variables with unknown mean and unknown variance.

- Find a real-valued pivotal quantity for $X = (X_1, \ldots, X_n)$.
- Using the pivotal quantity, construct a 1α confidence interval for the mean μ , for any $0 < \alpha < 1$.

Exercise 2. Let X_1, \ldots, X_n be a real-valued random sample of size n from a family of distributions $\{f_{\theta} \colon \theta \in \Theta\}$. Suppose $\Theta = \mathbf{R}$. Fix $\theta \in \mathbf{R}$. Denote $X := (X_1, \ldots, X_n)$. Consider a set of nonrandomized hypothesis tests with rejection regions $C_{\alpha} \subseteq \mathbf{R}^n$ for all $\alpha \in [0, 1]$. Suppose these rejection regions are nested in the sense that $C_{\alpha} \subseteq C_{\alpha'}$ for all $0 \leq \alpha < \alpha' \leq 1$. As usual, denote $\Theta = \Theta_0 \cup \Theta_1$ with $\Theta_0 \cap \Theta_1 = \emptyset$. Define also the *p*-valued $p(x) := \inf\{\alpha \in [0, 1] \colon x \in C_{\alpha}\}, \forall x \in \mathbf{R}^n$.

- Suppose $\sup_{\theta \in \Theta_0} \mathbf{P}_{\theta}(X \in C_{\alpha}) \le \alpha$ for all $0 \le \alpha \le 1$. Show that the *p*-valued satisfies $\mathbf{P}_{\theta}(p(X) \le c) \le c, \qquad \forall 0 \le c \le 1, \ \forall \theta \in \Theta_0.$
- Suppose $\mathbf{P}_{\theta}(X \in C_{\alpha}) = \alpha$ for all $0 \leq \alpha \leq 1$. Show that the *p*-valued satisfies

$$\mathbf{P}_{\theta}(p(X) \le c) = c, \qquad \forall \, 0 \le c \le 1, \; \forall \, \theta \in \Theta_0.$$

That is, p(X) is uniformly distributed in [0, 1].

Exercise 3. Let X_1, \ldots, X_n be a random sample from an exponential distribution with unknown location parameter $\theta > 0$, i.e. X_1 has density

$$g(x) := 1_{x \ge \theta} e^{-(x-\theta)}, \qquad \forall x \in \mathbf{R}.$$

Fix $\theta_0 \in \mathbf{R}$. Suppose we want to test that hypothesis H_0 that $\theta \leq \theta_0$ versus the alternative H_1 that $\theta > \theta_0$. That is, $\Theta = \mathbf{R}$, $\Theta_0 = \{\theta \in \mathbf{R} : \theta \leq \theta_0\}$ and $\Theta_0^c = \Theta_1 = \{\theta \in \mathbf{R} : \theta > \theta_0$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis. (Hint: it might be easier to describe the region using $x_{(1)} = \min(x_1, \ldots, x_n)$.)
- Prove that $X_{(1)} := \min(X_1, \ldots, X_n)$ is a sufficient statistic for θ .
- (Optional) If H_0 is true, then does

$$2\log\frac{\sup_{\theta\in\Theta}f_{\theta}(X_1,\ldots,X_n)}{\sup_{\theta\in\Theta_0}f_{\theta}(X_1,\ldots,X_n)}$$

converge in distribution to a chi-squared distribution as $n \to \infty$?

Exercise 4. Let X_1, \ldots, X_n be a random sample from a Gaussian random variable with unknown mean $\mu \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$.

Fix $\mu_0 \in \mathbf{R}$. Suppose we want to test that hypothesis H_0 that $\mu = \mu_0$ versus the alternative H_1 that $\mu \neq \mu_0$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis.
- Give an explicit formula for the *p*-value of this hypothesis test. (Hint: If S^2 denotes the sample variance and \overline{X} denotes the sample mean, you should then be able to use the statistic $\frac{(\overline{X}-\mu_0)^2}{S^2}$. Since we have an explicit formula for Snedecor's distribution, you should then be able to write an explicit integral formula for the *p*-value of this test.)