
Graduate Mathematical Statistics II Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due September 1, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 1

Exercise 1. Estimate the probability that 1000000 coin flips of fair coins will result in more
than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e−t2/2dt/
√
2π = 1/2,

∫ 1

−∞ e−t2/2dt/
√
2π ≈ .8413,

∫ 2

−∞ e−t2/2dt/
√
2π ≈

.9772,
∫ 3

−∞ e−t2/2dt/
√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)

Exercise 2 (Numerical Integration). In computer graphics in video games, etc., various
integrations are performed in order to simulate lighting effects. Here is a way to use random
sampling to integrate a function in order to quickly and accurately render lighting effects.
Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.

Exercise 3. Let X := (X1, . . . , Xn) be a random sample of size n from a binomial dis-
tribution with parameters n and p. Here n is a positive (known) integer and 0 < p < 1
is unknown. (That is, X1, . . . , Xn are i.i.d. and X1 is a binomial random variable with
parameters n and p, so that P(X1 = k) =

(
n
k

)
pk(1− p)n−k for all integers 0 ≤ k ≤ n.)

You can freely use that EX1 = np and VarX1 = np(1− p).

• Computer the Fisher information IX(p) for any 0 < p < 1.
(Consider n to be fixed.)

• Let Z be an unbiased estimator of p2 (assume that Z is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for Z.

• Let W be an unbiased estimator of 1/p (assume that W is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for W .
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Exercise 4. Let X1, . . . , Xn be a random sample of size n from a Poisson distribution with
unknown parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

• Find an MLE (maximum likelihood estimator) for λ.
• Is the MLE you found unique? That is, could there be more than one MLE for this
problem?

Exercise 5. Suppose X is a Gaussian distributed random variable with known variance
σ2 > 0 but unknown mean. Fix µ0, µ1 ∈ R. Assume that µ0 − µ1 > 0. We want to test the
hypothesis H0 that µ = µ0 versus the hypothesis H1 that µ = µ1. Fix α ∈ (0, 1). Explicitly
describe the UMP test for the class of tests whose significance level is at most α.

Your description of the test should use the function Φ(t) :=
∫ t

−∞ e−x2/2dx/
√
2π, Φ: R →

(0, 1), and/or the function Φ−1 : (0, 1) → R. (Recall that Φ(Φ−1(s)) = s for all s ∈ (0, 1)
and Φ−1(Φ(t)) = t for all t ∈ R.)

Exercise 6. This exercise demonstrates that a UMP might not always exists.

Let X1, . . . , Xn be i.i.d. Gaussian random variables with known variance and unknown mean
µ ∈ R. Fix µ0 ∈ R. LetH0 denote the hypothesis {µ = µ0} and letH1 denote the hypothesis
µ ̸= µ0. Fix 0 < α < 1. Let T denote the set of hypothesis tests with significance level at
most α. Show that no UMP class T test exists, using the following strategy.

• Let µ1 < µ0. You may take as given the following fact (that follows from the Karlin-
Rubin Theorem): the power at µ1 is maximized among class T tests by the hypothesis
test ϕ that rejects H0 when the sample mean satisfies X < c for an appropriate choice
of c ∈ R. Assume for the sake of contradiction that a UMP class T test ϕ′ exists.
Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing
µ = µ0 versus µ = µ1), conclude that ϕ′ must have the same rejection region as ϕ
(just by examining the power of the tests at µ1.)

• Consider now a test in T that rejects H0 when the sample mean satisfies X > c′ for
an appropriate choice of c′ ∈ R. Repeating the previous argument, conclude that ϕ′

must reject when X > c′, leading to a contradiction.
That is, let µ2 > µ0. You may take as given the following fact (that follows from

the Karlin-Rubin Theorem): the power at µ2 is maximized among class T tests by
the hypothesis test ϕ′′ that rejects H0 when the sample mean satisfies X > c′ for an
appropriate choice of c′ ∈ R. Then, using the necessity part of the Neyman-Pearson
Lemma (i.e. consider testing µ = µ0 versus µ = µ2), conclude that ϕ′ must have the
same rejection region as ϕ′′.

Exercise 7. The rejection regions Cα for UMP hypothesis tests of significance level at most
α ∈ (0, 1) are often nested in the sense that Cα ⊆ Cα′ for all 0 < α < α′ < 1. This exercise
demonstrates an example of UMP tests where this nesting behavior does not occur.

Let θ0, θ1 ∈ R be unequal parameters. Let H0 denote the hypothesis {θ = θ0} and let H1

denote the hypothesis {θ = θ1}. Suppose X ∈ {1, 2, 3} is a random variable. If θ = θ0,
assume that X takes the values 1, 2, 3 with probabilities .85, .1, .05, respectively. If θ = θ1,
assume that X takes the values 1, 2, 3 with probabilities .7, .2, .1, respectively. Let T denote
the set of hypothesis tests with significance level at most α.
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• Let 0 < α < .15. Show that a UMP class T test is not unique.
• When α = .05, show there is a unique nonrandomized hypothesis UMP class T test.
• When α = .1, show there is a unique nonrandomized hypothesis UMP class T test.
• Show that the α = .05 and α′ = .1 UMP nonrandomized tests from above do not
have nested rejection regions.

• However, when α = .05 and α′ = .1, there are randomized UMP tests ϕ, ϕ′ : Rn →
[0, 1] respectively, that are nested in the sense that ϕ ≤ ϕ′.


