Please provide complete and well-written solutions to the following exercises.
Due September 1, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 1

Exercise 1. Estimate the probability that 1000000 coin flips of fair coins will result in more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals may be relevant: $\int_{-\infty}^{0} e^{-t^{2} / 2} d t / \sqrt{2 \pi}=1 / 2, \int_{-\infty}^{1} e^{-t^{2} / 2} d t / \sqrt{2 \pi} \approx .8413, \int_{-\infty}^{2} e^{-t^{2} / 2} d t / \sqrt{2 \pi} \approx$.9772, $\int_{-\infty}^{3} e^{-t^{2} / 2} d t / \sqrt{2 \pi} \approx .9987$.) (Hint: use Bernoulli random variables.)

Exercise 2 (Numerical Integration). In computer graphics in video games, etc., various integrations are performed in order to simulate lighting effects. Here is a way to use random sampling to integrate a function in order to quickly and accurately render lighting effects. Let $\Omega=[0,1]$, and let \mathbf{P} be the uniform probably law on Ω, so that if $0 \leq a<b \leq 1$, we have $\mathbf{P}([a, b])=b-a$. Let X_{1}, \ldots, X_{n} be independent random variables such that $\mathbf{P}\left(X_{i} \in[a, b]\right)=b-a$ for all $0 \leq a<b \leq 1$, for all $i \in\{1, \ldots, n\}$. Let $f:[0,1] \rightarrow \mathbf{R}$ be a continuous function we would like to integrate. Instead of integrating f directly, we instead compute the quantity

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)
$$

Show that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbf{E}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)=\int_{0}^{1} f(t) d t \\
\lim _{n \rightarrow \infty} \operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)=0
\end{gathered}
$$

That is, as n becomes large, $\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$ is a good estimate for $\int_{0}^{1} f(t) d t$.
Exercise 3. Let $X:=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample of size n from a binomial distribution with parameters n and p. Here n is a positive (known) integer and $0<p<1$ is unknown. (That is, X_{1}, \ldots, X_{n} are i.i.d. and X_{1} is a binomial random variable with parameters n and p, so that $\mathbf{P}\left(X_{1}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for all integers $0 \leq k \leq n$.)

You can freely use that $\mathbf{E} X_{1}=n p$ and $\operatorname{Var} X_{1}=n p(1-p)$.

- Computer the Fisher information $I_{X}(p)$ for any $0<p<1$.
(Consider n to be fixed.)
- Let Z be an unbiased estimator of p^{2} (assume that Z is a function of X_{1}, \ldots, X_{n}). State the Cramér-Rao inequality for Z.
- Let W be an unbiased estimator of $1 / p$ (assume that W is a function of X_{1}, \ldots, X_{n}). State the Cramér-Rao inequality for W.

Exercise 4. Let X_{1}, \ldots, X_{n} be a random sample of size n from a Poisson distribution with unknown parameter $\lambda>0$. (So, $\mathbf{P}\left(X_{1}=k\right)=e^{-\lambda} \lambda^{k} / k$! for all integers $k \geq 0$.)

- Find an MLE (maximum likelihood estimator) for λ.
- Is the MLE you found unique? That is, could there be more than one MLE for this problem?

Exercise 5. Suppose X is a Gaussian distributed random variable with known variance $\sigma^{2}>0$ but unknown mean. Fix $\mu_{0}, \mu_{1} \in \mathbf{R}$. Assume that $\mu_{0}-\mu_{1}>0$. We want to test the hypothesis H_{0} that $\mu=\mu_{0}$ versus the hypothesis H_{1} that $\mu=\mu_{1}$. Fix $\alpha \in(0,1)$. Explicitly describe the UMP test for the class of tests whose significance level is at most α.

Your description of the test should use the function $\Phi(t):=\int_{-\infty}^{t} e^{-x^{2} / 2} d x / \sqrt{2 \pi}, \Phi: \mathbf{R} \rightarrow$ $(0,1)$, and/or the function $\Phi^{-1}:(0,1) \rightarrow \mathbf{R}$. (Recall that $\Phi\left(\Phi^{-1}(s)\right)=s$ for all $s \in(0,1)$ and $\Phi^{-1}(\Phi(t))=t$ for all $t \in \mathbf{R}$.)
Exercise 6. This exercise demonstrates that a UMP might not always exists.
Let X_{1}, \ldots, X_{n} be i.i.d. Gaussian random variables with known variance and unknown mean $\mu \in \mathbf{R}$. Fix $\mu_{0} \in \mathbf{R}$. Let H_{0} denote the hypothesis $\left\{\mu=\mu_{0}\right\}$ and let H_{1} denote the hypothesis $\mu \neq \mu_{0}$. Fix $0<\alpha<1$. Let \mathcal{T} denote the set of hypothesis tests with significance level at most α. Show that no UMP class \mathcal{T} test exists, using the following strategy.

- Let $\mu_{1}<\mu_{0}$. You may take as given the following fact (that follows from the KarlinRubin Theorem): the power at μ_{1} is maximized among class \mathcal{T} tests by the hypothesis test ϕ that rejects H_{0} when the sample mean satisfies $\bar{X}<c$ for an appropriate choice of $c \in \mathbf{R}$. Assume for the sake of contradiction that a UMP class \mathcal{T} test ϕ^{\prime} exists. Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing $\mu=\mu_{0}$ versus $\mu=\mu_{1}$), conclude that ϕ^{\prime} must have the same rejection region as ϕ (just by examining the power of the tests at μ_{1}.)
- Consider now a test in \mathcal{T} that rejects H_{0} when the sample mean satisfies $\bar{X}>c^{\prime}$ for an appropriate choice of $c^{\prime} \in \mathbf{R}$. Repeating the previous argument, conclude that ϕ^{\prime} must reject when $\bar{X}>c^{\prime}$, leading to a contradiction.

That is, let $\mu_{2}>\mu_{0}$. You may take as given the following fact (that follows from the Karlin-Rubin Theorem): the power at μ_{2} is maximized among class \mathcal{T} tests by the hypothesis test $\phi^{\prime \prime}$ that rejects H_{0} when the sample mean satisfies $\bar{X}>c^{\prime}$ for an appropriate choice of $c^{\prime} \in \mathbf{R}$. Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing $\mu=\mu_{0}$ versus $\mu=\mu_{2}$), conclude that ϕ^{\prime} must have the same rejection region as $\phi^{\prime \prime}$.
Exercise 7. The rejection regions C_{α} for UMP hypothesis tests of significance level at most $\alpha \in(0,1)$ are often nested in the sense that $C_{\alpha} \subseteq C_{\alpha^{\prime}}$ for all $0<\alpha<\alpha^{\prime}<1$. This exercise demonstrates an example of UMP tests where this nesting behavior does not occur.

Let $\theta_{0}, \theta_{1} \in \mathbf{R}$ be unequal parameters. Let H_{0} denote the hypothesis $\left\{\theta=\theta_{0}\right\}$ and let H_{1} denote the hypothesis $\left\{\theta=\theta_{1}\right\}$. Suppose $X \in\{1,2,3\}$ is a random variable. If $\theta=\theta_{0}$, assume that X takes the values $1,2,3$ with probabilities $.85, .1, .05$, respectively. If $\theta=\theta_{1}$, assume that X takes the values $1,2,3$ with probabilities $.7, .2, .1$, respectively. Let \mathcal{T} denote the set of hypothesis tests with significance level at most α.

- Let $0<\alpha<.15$. Show that a UMP class \mathcal{T} test is not unique.
- When $\alpha=.05$, show there is a unique nonrandomized hypothesis UMP class \mathcal{T} test.
- When $\alpha=.1$, show there is a unique nonrandomized hypothesis UMP class \mathcal{T} test.
- Show that the $\alpha=.05$ and $\alpha^{\prime}=.1$ UMP nonrandomized tests from above do not have nested rejection regions.
- However, when $\alpha=.05$ and $\alpha^{\prime}=.1$, there are randomized UMP tests $\phi, \phi^{\prime}: \mathbf{R}^{n} \rightarrow$ $[0,1]$ respectively, that are nested in the sense that $\phi \leq \phi^{\prime}$.

