541B Final Solutions¹

1. Question 1

Let U be a random variable uniform on the interval (0,1).

- Describe in detail a function $g:(0,1) \to \{1,2,3\}$ such that g(U) is uniformly distributed in $\{1,2,3\}$. Prove your assertion.
- Describe in detail a function $h: (0,1) \to \mathbf{R}$ such that h(U) has a standard Gaussian distribution (i.e. h(U) has PDF given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, $\forall x \in \mathbf{R}$.) Prove your assertion.

Solution. Define g := 1 if U < 1/3, g := 2 if $1/3 \le U < 2/3$ and g := 3 if $U \ge 2/3$. Then $\mathbf{P}(g(U) = 1) = (1/3) - 0 = 1/3$, $\mathbf{P}(g(U) = 2) = 2/3 - 1/3 = 1/3$ and $\mathbf{P}(g(U) = 3) = 1 - 2/3 = 1/3$, all by definition of g.

Let $\Phi(t) := \int_{-\infty}^{t} e^{-x^2/2} dx / \sqrt{2\pi} \, \forall t \in \mathbf{R}$. Then $\Phi \colon \mathbf{R} \to (0,1)$ and Φ is invertible since it is strictly increasing. Define $h := \Phi^{-1}$. Then for any $t \in \mathbf{R}$

$$P(h(U) \le t) = P(\Phi^{-1}(U) \le t) = P(U \le \Phi(t)) = \Phi(t).$$

The last equality follows by definition of U. We therefore conclude that h(U) has PDF f.

2. Question 2

Suppose $\Theta = \{\theta_0, \theta_1\}$, $\Theta_0 = \{\theta_0\}$, $\Theta_1 = \{\theta_1\}$. Let H_0 be the hypothesis $\{\theta = \theta_0\}$ and let H_1 be the hypothesis $\{\theta = \theta_1\}$. Let $\{f_{\theta_0}, f_{\theta_1}\}$ be two multivariable probability densities on \mathbf{R}^n . Fix $k \geq 0$. Define a **likelihood ratio test** $\phi \colon \mathbf{R}^n \to [0, 1]$ to be

$$\phi(x) := \begin{cases} 1 & \text{, if } f_{\theta_1}(x) > k f_{\theta_0}(x) \\ 0 & \text{, if } f_{\theta_1}(x) < k f_{\theta_0}(x) \\ \text{(unspecified)} & \text{, if } f_{\theta_1}(x) = k f_{\theta_0}(x). \end{cases}$$
 (*)

Define

$$\alpha := \sup_{\theta \in \Theta_0} \beta(\theta) = \beta(\theta_0) = \mathbf{E}_{\theta_0} \phi(X). \quad (**)$$

Let \mathcal{T} be the class of all randomized hypothesis tests with significance level at most α .

Prove the following:

Any randomized hypothesis test satisfying (*) is a UMP class \mathcal{T} test.

Solution.

As we already noted in (**), Θ_0 consists of a single point, so the supremum appearing in (**) is just $\beta(\theta_0)$, and we will repeatedly use this fact below without further mention.

Let $\beta(\theta)$ be the power function of the test corresponding to ϕ . Let ϕ' another test in \mathcal{T} , and let $\beta'(\theta)$ be the power function of this test. By definition of ϕ , we have

$$[\phi(x) - \phi'(x)][f_{\theta_1}(x) - kf_{\theta_0}(x)] \ge 0, \qquad \forall x \in \mathbf{R}^n.$$

Therefore,

$$0 \le \int_{\mathbf{R}^n} [\phi(x) - \phi'(x)] [f_{\theta_1}(x) - k f_{\theta_0}(x)] dx = \beta(\theta_1) - \beta'(\theta_1) - k [\beta(\theta_0) - \beta'(\theta_0)]. \tag{***}$$

¹December 10, 2025, © 2025 Steven Heilman, All Rights Reserved.

Since ϕ has significance level α and ϕ' has significance level at most α , we have $\beta(\theta_0) - \beta'(\theta_0) \geq 0$. So, $k \geq 0$ and (***) imply that $\beta(\theta_1) - \beta'(\theta_1) \geq 0$. That is, the ϕ test is UMP class \mathcal{T} .

3. Question 3

Suppose X is a binomial distributed random variable with parameters 2 and $\theta \in \{1/4, 3/4\}$. (That is, X is the number of heads that result from flipping two coins, where each coin has probability θ of landing heads.)

We want to test the hypothesis H_0 that $\theta = 1/4$ versus the hypothesis H_1 that $\theta = 3/4$.

Let \mathcal{T} be the set of hypothesis tests with significance level at most 1/80.

(Recall that the significance level of a hypothesis test $\phi \colon \mathbf{R} \to [0,1]$ is $\sup_{\theta \in \Theta_0} \mathbf{E}_{\theta} \phi(X)$.)

You may take it as given that the hypothesis test

$$\phi(x) := \begin{cases} 0 & \text{, if } x \neq 2\\ 1/5 & \text{, if } x = 2. \end{cases}$$

is UMP class \mathcal{T} .

Is ϕ unique? That is, is there another hypothesis test ψ with $\psi \neq \phi$ such that ψ is UMP class \mathcal{T} ? Explain in detail.

Solution. The Neyman-Pearson Lemma says that, since ϕ is UMP class \mathcal{T} , ϕ is uniquely defined, up to changes on a set $D \subseteq \mathbf{R}$ where $\mathbf{P}_{\theta_0}(X \in D) = \mathbf{P}_{\theta_1}(X \in D) = 0$. For each $i \in \{0, 1, 2\}$ and for each $\theta \in \{\theta_0, \theta_1\}$, we have $\mathbf{P}_{\theta}(X = i) > 0$. So, ϕ is uniquely defined on the set $\{0, 1, 2\}$. However, if $D = \mathbf{R} \setminus \{0, 1, 2\}$, then $\mathbf{P}_{\theta}(X \in D) = 0$ for each $\theta \in \{\theta_0, \theta_1\}$. So, ϕ is not uniquely defined on the set D.

4. Question 4

- Give an example of a Markov Chain that is not reversible. Prove your assertion.
- Give an example of a Markov Chain where every state has period 3. Prove your assertion.

Solution.

Consider

$$P := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Suppose π is stationary for P, i.e. $\pi = \pi P$. Denote $\pi = (a, b, c)$ with $0 \le a, b, c \le 1$, a+b+c=1. Then $\pi = \pi P$ says a=c, a=b and b=c, i.e. the unique stationary distribution for P is $\pi = (1/3, 1/3, 1/3)$. However, π does not satisfy the detailed balance condition since, if we denote $\Omega = \{1, 2, 3\}$, we have

$$\pi(1)P(1,2) = (1/3)(1) \neq 0 = (1/3) \cdot 0 = \pi(2)P(2,1)$$

If P were reversible, then P would have a stationary distribution satisfying the detailed balance condition. However, we just showed the unique stationary distribution for P does not satisfy the detailed balance condition. We conclude that P is not reversible.

5. Question 5

Let $f: [0,5] \to [0,3]$ be the PDF of a real-valued random variable X with maximum value m := 3. Let $(X_1, Y_1), (X_2, Y_2), \ldots$ be i.i.d random variables uniformly distributed in the rectangle $[0,5] \times [0,3]$.

Using accept/reject sampling, describe how to sample a random variable Z such that the PDF of Z is f.

Prove that the random variable Z has PDF f.

Solution. Define $I := \inf\{n \ge 1 : Y_n \le f(X_n)\}$. Output $Z := X_I$. We show that Z has PDF f.

Let $z \in \mathbf{R}$. Define $\varepsilon := \frac{1}{m(b-a)} \int_a^b f(x) dx = \frac{1}{m(b-a)}$. Then

$$\begin{split} \mathbf{P}(Z \leq z) &= \sum_{i=1}^{\infty} \mathbf{P}(Z \leq z, I = i) = \sum_{i=1}^{\infty} \mathbf{P}(X_i \leq z, Y_i \leq f(X_i)) \prod_{j=1}^{i-1} \mathbf{P}(Y_j > f(X_j)) \\ &= \sum_{i=1}^{\infty} \frac{\int_{-\infty}^{z} f(x) dx}{m(b-a)} (1-\varepsilon)^{i-1} = \int_{-\infty}^{z} f(x) dx \sum_{i=1}^{\infty} \varepsilon (1-\varepsilon)^{i-1} = \int_{-\infty}^{z} f(x) dx. \end{split}$$

6. Question 6

Let G = (V, E) be a finite graph. (So V is a finite vertex set, and $E \subseteq \{\{x, y\} : x, y \in V, x \neq y\}$.) Let A denote the set of all elements of $\xi \in \{0, 1\}^V$ such that, if $\{v, w\} \in E$ then $\xi(v), \xi(w)$ are not both equal to 1. The **hard core model** μ is a probability measure on the set $\{0, 1\}^V$ that is uniform on the set A. That is, $\mu(\xi) = 1/|A|$ for all $\xi \in A$, and $\mu(\xi) = 0$ for all $\xi \in \{0, 1\}^V \setminus A$.

Define a Markov chain X_0, X_1, \ldots with state space A as follows. Initialize X_0 to be the zero function on V. For any $n \geq 0$, we will define X_{n+1} using X_n . For each integer $n \geq 0$, repeat the following procedure.

- Select one $v \in V$ uniformly at random.
- Let Y_n be uniformly distributed in $\{0,1\}$ and independent of all previously defined random variables.
- If $Y_n = 1$, and if all vertices $w \in V$ adjacent to v satisfy $X_n(w) = 0$, then set $X_{n+1}(v) := 1$. Otherwise, set $X_{n+1}(v) := 0$.
- For all $w \in V$ with $w \neq v$, define $X_{n+1}(w) := X_n(w)$.

You may take it as given that this stochastic process X_0, X_1, \ldots is a Markov Chain with state space A that is irreducible and aperiodic.

Show: X_0, X_1, \ldots has unique stationary distribution μ .

Solution. It suffices to show that μ satisfies the detailed balance condition. We know the Markov chain is irreducible, so we know the stationary distribution exists and is unique. If we show that μ satisfies the detailed balance condition, then μ is the (unique) stationary distribution for the Markov chain, by a proposition in the notes. So let us verify the detailed balance condition holds. That is, it remains to show that

$$\mu(\xi)P(\xi,\zeta) = \mu(\zeta)P(\zeta,\xi), \qquad \forall \, \xi,\zeta \in A, \qquad (*)$$

where P is the transition matrix of the Markov chain P. Let d be the number of $v \in V$ such that $\xi(v) \neq \zeta(v)$. If d = 0, then $\xi = \zeta$, so both sides of (*) are equal. If $d \geq 2$,

then $P(\xi,\zeta) = P(\zeta,\xi) = 0$ by definition of the Markov chain, so both sides of (*) are zero. To prove (*) holds, it therefore remains to consider the case d=1. If d=1, then there exists exactly one vertex $v \in V$ such that $\xi(v) \neq \zeta(z)$, i.e. $\xi(w) = \zeta(w)$ for all other $w \in V$. Without loss of generality, assume $\xi(v) = 1$. Since $\xi \in A$, each neighbor w of v satisfies $\xi(w) = 0$, so that $\mu(\xi) = \mu(\zeta) > 0$ (recalling $\xi, \zeta \in A$), and $P(\xi, \zeta) = P(\zeta, \xi)$ since $\xi(w) = \zeta(w) = 0$ for all neighbors w of v, so (*) holds.

7. Question 7

Let $X_0, X_1, \ldots, Y_0, Y_1, \ldots$ be a Hidden Markov Model. Prove: for any $y_0, \ldots, y_{n-1} \in T$, and for any $x, z \in \Omega$,

$$P(X_n = x | X_{n-1} = z, Y_0 = y_0, \dots, Y_{n-1} = y_{n-1}) = P(z, x).$$

Solution. We use the definition of conditional probability, then the definition of an HMM (for n and n-1 separately), then sum over y and use that Q is a stochastic matrix,

$$\begin{split} &\mathbf{P}(X_{n}=x\,|\,X_{n-1}=z,Y_{0}=y_{0},\ldots,Y_{n-1}=y_{n-1})\\ &=\frac{\mathbf{P}(X_{n}=x,X_{n-1}=z,Y_{0}=y_{0},\ldots,Y_{n-1}=y_{n-1})}{\mathbf{P}(X_{n-1}=z,Y_{0}=y_{0},\ldots,Y_{n-1}=y_{n-1})}\\ &=\frac{\sum_{x_{0},\ldots,x_{n-2}\in\Omega,y\in T}\mu(x_{0})Q(x_{0},y_{0})\prod_{i=1}^{n-2}Q(x_{i},y_{i})P(x_{i-1},x_{i})\cdot Q(z,y_{n-1})P(x_{n-2},z)Q(x,y)P(z,x)}{\sum_{x_{0},\ldots,x_{n-2}\in\Omega}\mu(x_{0})Q(x_{0},y_{0})\prod_{i=1}^{n-2}Q(x_{i},y_{i})P(x_{i-1},x_{i})\cdot Q(z,y_{n-1})P(x_{n-2},z)}\\ &=\frac{\sum_{x_{0},\ldots,x_{n-2}\in\Omega}\mu(x_{0})Q(x_{0},y_{0})\prod_{i=1}^{n-2}Q(x_{i},y_{i})P(x_{i-1},x_{i})\cdot Q(z,y_{n-1})P(x_{n-2},z)P(z,x)}{\sum_{x_{0},\ldots,x_{n-2}\in\Omega}\mu(x_{0})Q(x_{0},y_{0})\prod_{i=1}^{n-2}Q(x_{i},y_{i})P(x_{i-1},x_{i})\cdot Q(z,y_{n-1})P(x_{n-2},z)P(z,x)}\\ &=P(z,x). \end{split}$$

8. Question 8

Let $X_0, X_1, \ldots, Y_0, Y_1, \ldots$ be a Hidden Markov Model.

Fix $y_0, \ldots, y_n \in T$.

For all $x \in \Omega$, define $v_0(x) := \mathbf{P}(X_0 = x, Y_0 = y_0) = \mu(x)Q(x, y_0)$.

For any $1 \le j \le n$, define iteratively

$$v_j(x) = \left(\max_{z \in \Omega} v_{j-1}(z)P(z,x)\right) \cdot Q(x,y_j), \quad \forall x \in \Omega.$$

Define also $w_0(x) := v_0(x)$ for all $x \in \Omega$, and for any $1 \le j \le n$, define

$$w_j(x) := \max_{x_0,\dots,x_{j-1}\in\Omega} \mathbf{P}(X_0 = x_0,\dots,X_{j-1} = x_{j-1},X_j = x,Y_0 = y_0,\dots,Y_j = y_j).$$

Prove by induction that: for all $1 \leq j \leq n$, and for all $x \in \Omega$,

$$w_j(x) = v_j(x).$$

Solution. The base case j=0 follows by definition of v_0, w_0 . We then prove the inductive step. Suppose the assertion holds for all $x \in \Omega$ and for all $1 \le j \le n-1$. We then consider

the case j = n. By the HMM definition,

$$\mathbf{P}(X_0 = x_0, \dots, X_n = x_n, Y_0 = y_0, \dots, Y_n = y_n)$$

$$= \mu(x_0)Q(x_0, y_0) \prod_{i=1}^n Q(x_i, y_i)P(x_{i-1}, x_i)$$

$$= \mathbf{P}(X_0 = x_0, \dots, X_j = x_{n-1}, Y_0 = y_0, \dots, Y_{n-1} = y_{n-1}) \cdot Q(x_n, y_n)P(x_{n-1}, x_n)$$

Taking the maximum over $x_0, \ldots, x_{n-1} \in \Omega$ and applying the inductive hypothesis, we get $w_n(x_n)$

$$= \max_{x_{n-1} \in \Omega} \max_{x_0, \dots, x_{n-2} \in \Omega} \mathbf{P}(X_0 = x_0, \dots, X_j = x_{n-1}, Y_0 = y_0, \dots, Y_{n-1} = y_{n-1}) Q(x_n, y_n) P(x_{n-1}, x_n)$$

$$= \max_{x_{n-1} \in \Omega} w_{n-1}(x_{n-1}) \cdot Q(x_n, y_n) P(x_{n-1}, x_n)$$

$$= \left(\max_{x_{n-1} \in \Omega} v_{n-1}(x_{n-1}) P(x_{n-1}, x_n) \right) Q(x_n, y_n).$$

The right side is $v_n(x_n)$, by definition of v_n . Having completed the inductive step, the proof is done.