Final Exam

This exam contains 7 pages (including this cover page) and 6 problems. Enter all requested information on the top of this page.

You may use your books, notes, or a calculator on this exam. You may not use the internet or any internet-enabled device. You cannot consult with any person, other than yourself, when completing the exam.

The following rules apply:

- This exam is due at 10:00 AM PST, December 7, 2023 (72 hours to complete the exam).
- Your final submission of the exam will be a single pdf file, submitted in blackboard, under the Assignments tab. (No zip files, no folders, just a single .pdf file.) This file should be named LastnameFirstname.pdf . For example, if I submitted the final, the filename would be HeilmanSteven.pdf .
- Lateness will be severely penalized.
- If you do not follow the rules on this page correctly, your grade could be severely penalized.
- I am not answering any questions less than 24 hours before the due date.

Problem	Points	Score
1	10	
2	10	
3	20	
4	10	
5	10	
6	10	
Total:	70	

- Good luck! ${ }^{a}$
${ }^{a}$ December 6, 2023, © 2022 Steven Heilman, All Rights Reserved.

1. (10 points) Suppose X is a binomial distributed random variable with parameters 2 and $\theta \in\{1 / 4,3 / 4\}$. (That is, X is the number of heads that result from flipping two coins, where each coin has probability θ of landing heads.)
We want to test the hypothesis H_{0} that $\theta=1 / 4$ versus the hypothesis H_{1} that $\theta=3 / 4$. Let \mathcal{T} be the set of hypothesis tests with significance level at most $1 / 10$.
(Recall that the significance level of a hypothesis test $\phi: \mathbf{R} \rightarrow[0,1]$ is $\sup _{\theta \in \Theta_{0}} \mathbf{E}_{\theta} \phi(X)$.)
Find a uniformly most powerful (UMP) class \mathcal{T} hypothesis test $\phi: \mathbf{R} \rightarrow[0,1]$.
Compute all constants that appear in the definition of ϕ. Justify your answer.
2. (10 points) Let X_{1}, \ldots, X_{n} be a random sample from a Gaussian random variable with unknown mean $\mu \in \mathbf{R}$ variance one.
Fix $\mu_{0} \in \mathbf{R}$. Suppose we want to test that hypothesis H_{0} that $\mu=\mu_{0}$ versus the alternative H_{1} that $\mu \neq \mu_{0}$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis.
- Give an explicit formula for the p-value of this hypothesis test.

3. (20 points) Let P be the transition matrix of a finite Markov chain.

All eigenvectors and eigenvalues discussed below are left eigenvectors and left eigenvalues.

- Let $\lambda \in \mathbf{C}$ be an eigenvalue of P. Show that $|\lambda| \leq 1$.
- Given an example of a transition matrix P with at least one eigenvalue λ such that λ is not a real number.
- If P is irreducible and aperiodic, show that -1 is not an eigenvalue of P.
- If P is reversible, show that all eigenvalues of P are real.
(Hint: show that $\langle f, P g\rangle=\langle P f, g\rangle$, where $\langle f, g\rangle:=\sum_{x \in \Omega} f(x) g(x) \pi(x)$ for all $f, g: \Omega \rightarrow \mathbf{R}$, where π is stationary. To define $P f$, we think of f as a column vector, so the matrix P applied to f is well-defined. You can then freely use the spectral theorem for self-adjoint matrices, which implies that all eigenvalues of a self adjoint matrix are real. Also, as a hint for the next part of the problem, P has an orthonormal basis of eigenvectors.)
- Let $\gamma:=1-\max \{|\lambda|: \lambda$ is an eigenvalue of P and $\lambda \neq 1\}$. Suppose P is irreducible and reversible with stationary distribution π. Show that, for all $n \geq 1$ and for all $f: \Omega \rightarrow \mathbf{R}$, we have

$$
\operatorname{Var}_{\pi}\left(P^{n} f\right) \leq(1-\gamma)^{2 n} \operatorname{Var}_{\pi}(f)
$$

Here $\operatorname{Var}_{\pi}(f):=\mathbf{E}_{\pi}\left(f-\mathbf{E}_{\pi} f\right)^{2}$ and $\mathbf{E}_{\pi} f=\sum_{x \in \Omega} f(x) \pi(x)$.
(You don't need to show this, but this inequality leads to a bound on the mixing time of a Markov Chain in terms of γ.)
4. (10 points) Suppose you can freely sample any number of i.i.d. Gaussian random variables with mean zero and variance one (on a computer).
Give an MCMC algorithm for estimating the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}-x^{4}-x^{8}} e^{x} \frac{d x}{\alpha}, \tag{*}
\end{equation*}
$$

where $\alpha:=\int_{-\infty}^{\infty} e^{-x^{2}-x^{4}-x^{8}} d x$ is an unknown quantity. (That is, you should not need to estimate α at all, in order to estimate the integral (*).)
(Hint: Even though we didn't cover a continuous version of MCMC, all random variables on a computer are discrete, so the discrete versions of MCMC we dealt with should be sufficient to do this problem.)
(Hint: Consider approximating the integral by a Riemann sum, or something similar to that.)
5. (10 points) Give an example of a Markov Chain that is not reversible. Prove your assertion.
6. (10 points) Give an example of a transition matrix P for a finite Markov Chain such that:

- The Markov Chain is reversible.
- There is a stationary distribution π that does not satisfy the detailed balance condition.

Prove your assertions.

