541B Midterm 2 Solutiond]

1. QUESTION 1

Let B3i,... 5, be real numbers. Show that the following two conditions are equivalent.
e f=-=0,
e For any ¢i,...,¢, € R with Y7 | ¢; = 0, we have
P
i=1
Solution. If the first condition holds, then Y 7 | ¢;8; = 51> % ¢; = 0.
If the second condition holds, then fix any 1 <7 < j < p, and set ¢; = 1, ¢; = —1 and
¢ = 0 for all other k € {1,...,p}. The second condition says 5; — 5; = 0, i.e. f; = 3;, i.e.
the first condition holds.

2. QUESTION 2

Let £ € R and let 0 < 0 < co. Let Xi,...,X, beiid. real-valued random variables
each with mean p and variance 0. Let h: R — R be a function such that /' exists and is
continuous. Let X, := (X; 4+ --- + X,,)/n. Let Y, := h(X,,).

Show that the jackknife estimator of the variance of Y, converges almost surely to the
same estimate of the variance you get by applying the Delta Method to Y,,.

Solution. Theorem 5.8 in the notes implies that the jackknife variance estimator V,, is
consistent, i.e. (when d = 1), we have that

Va Va

S (P()2Cov(X1, X1) 1 (W(p))?0?
converges almost surely to 1 as n — oo.

On the other hand, the Delta Method implies that /n(h(X,) — h(u)) converges in dis-
tribution to a mean zero Gaussian with variance o?(h/(11))? as n — oo. Consequently, the
variance of h(X,) is approximately o(h'(11))?/n, asymptotically agreeing with the jackknife
variance estimate.

3. QUESTION 3

Let X4,..., X, be a random sample from a Gaussian random variable with unknown mean
i € R and unknown variance o2 > 0.

Fix po € R. Suppose we want to test that hypothesis Hy that u = g versus the alternative
Hy that p # po.

Explicitly describe the rejection region of the generalized likelihood ratio test for this
hypothesis.

Solution. For any = = (z1,...,%,) € R",

n

f ( ) H 1 _ (%“/2*)2
2\ ) = e 20 .
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Also, © = {(u,0): p € R,0 > 0} and ©g = {(19,0): 0 > 0}.
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As we computed in 541A, the MLE is the sample mean and sample variance (dividing by
n instead of n — 1), i.e. for any z € R", if we denote T:= £ 3" ;v := 13" (2, —7)?

sup fu,a2(x> = fi,v(l‘)'

(1,0)€O

Similarly,

sup f,u,02 (ZE) = f,uo,v’<x>-

(M?U)EGO
Here v/ := £ 3" (x; — po)?. Therefore,
C:={zeR": sup fuo2(x)>k sup f[f,.2(z)}

(1,0%)€0 (1,0%)€60

n 1 n 2
@im7 25=12)" | (wi—pg)®
= {x eR™: (U/U’)”/2He_ % T > k;}

=1

- {x eR": (v/v))"* > k} = {x eR": v/v > k2/n}

Note that
v’:l Y (v — p )2:li(m—f+f—u )2
ni:l 7 0 ni:l 7 0
1 n

= 3l =T @ )] = vt ST~ o) = v+ (7 o)’

i=1 =1
Using this fact, and that the inverse of x — 1/(1 4+ z) is z — —1 + 1/x,

v+ @ — o)

C:{xeR": ZkQ/”}:{xER": R
R
;Zi:ﬂxz’* )?

Ly , —T)? 1y )2
—_ {:L’ cR": nZz_:l(l'z 21') 1< ]{J_Q/n— 1} _ {IL’ cR": nzzzl(xl :Ij') < k;_Q/”}'
(T — po) (

4. QUESTION 4

Let Xi, X3, X3 be i.i.d. continuous random variables such that X; has PDF {fy: 6 € ©}.
Let Wy, W5, W3 be a bootstrap sample from X, X5, X3. Let Y denote the sample median
of Xy, X5, X3. (That is, Y is the middle value among Xj, X5, X3, which is unique with
probability one since the random variables are continuous.)

e Describe the distribution of (W), W(a), Wi3)).
e Describe the bootstrap estimator of Y.

Solution. Since X7, Xo, X3 are all distinct with probability one, we have
P(Wy = X;, Wy = X;, Wy = Xi | X1, Xo, X3) = (1/3), V1<i,jk <3

That is, in describing the distribution of (W), W), W3)), we may as well assume that
Xay=1,X(¢ =2, X3 =3, and Wy, Wy, W3 are i.i.d. uniform in {1,2,3}. (We are satisfied
with this description of the distribution of (W), W2y, W(g)).)
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Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number
of indices 1 < j < 3 such that W; < X(;), we have

3
P(Wo < X | X1, Xo, X) = Z ( )pz (L—p)" ",
=2

where p; = i/3 for all 1 < i < 3. (This follows since Y is a binomial random variable with
parameters 3 and p;.) That is,

3
P(Wie) < Xy | X1, Xo, X) = Z ( ) B(1—i/3)"
=2

Therefore, for all 1 <17 < 3, we have
P(Wey = X | X1, X2, X3) = P(W( o) < Xy | X1, Xo, X3) = P(Wio) < X(im1) | X1, Xo, X3)

- Z (3) (3t =iy = (6 - s - - /).
The bootstrap estimator of Y is then

E(W) | X1, Xz, X3 = ZX (Wiey = Xy | X1, X2, X3)

3

_ ZX S ( ) ( B(1—/3)"F — (i — 1)/3)"(1 — (i — 1)/3)%‘6).

k=2

5. QUESTION 5

Let X = (Xy,...,X,) be arandom sample of size n from a family of distributions {fy: 0 €
©}. Fix 6y € © C R. Suppose we test the hypothesis Hy that {# = 6y} versus the alternative
{0 # 6y}. Suppose the Fisher information of X exists, is finite and nonzero, and the MLE
exists, is unique, and is consitent.

Let A(X) := M denote the generalized likelihood ratio statistic.

SUPgeco, fo(

Give a sketch of the proof of the following: If Hj is true, then 2log A(X) converges in
distribution as n — oo to a chi-squared random variable with one degree of freedom.

(This Theorem, which we sketched in the notes, is known as Wilks’ Theorem.)

(Hint: Perform a second order Taylor expansion of the log-likelihood ¢(#) at the point Y
where Y =Y, is the MLE of 6, and recall that Eg,¢"(0y) = —nlx,(6p).)

(You are allowed in your proof sketch to ignore technicalities, e.g. you can ignore error
terms in the Taylor expansion, and you can freely assume that the MLE is consistent. You
can also freely use that \/n(Y, — 6y) converges in distribution to a mean zero Gaussian as
n — 0o, with variance 1/1Ix, (6y).)

Solution. Recall that £(0) := log fy(x). Suppose we expand £(f) in a Taylor series around
the random point Y, i.e. assume there exists h: R — R such that lim,_,, Z) = 0 and, for
all 0 € R,

0(00) =L(Y)+L(Y)(0g—Y) + (1/2)0"(Y) (0 — Y)* + h(Y — 6y).
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By definition of Y, ¢/(Y') = 0. Since 2log A(X) = —2¢(0y) +2((Y'), we rearrange the equality
to get

2log M(X) =~ —£"(Y) (0 — Y)2.
As mentioned in the hint, Eg,¢"(0y) = —Ix(6p) = —nlx,(0y). From the hint, we may assume
that, Y =Y,, converges in probability to the constant , with respect to Py, as n — oo. So,
we can approximate £”(Y) by ¢"(6y) =~ —nlx, (0y). That is,

21log A(X) = nlx, (0y)(0 — Y)>.

From the hint (the Theorem in the notes about the MLE converging in distribution), v/n(Y —
6p) converges in distribution to a mean zero Gaussian with variance 1/Iy,(6y) as n — oo.
Therefore, 2log A(X) converges in distribution to a chi-squared random variable with one
degree of freedom as n — oo.
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