
541B Midterm 2 Solutions1

1. Question 1

Let β1, . . . βp be real numbers. Show that the following two conditions are equivalent.

• β1 = · · · = βp

• For any c1, . . . , cp ∈ R with
∑p

i=1 ci = 0, we have
p∑

i=1

ciβi = 0.

Solution. If the first condition holds, then
∑p

i=1 ciβi = β1

∑p
i=1 ci = 0.

If the second condition holds, then fix any 1 ≤ i < j ≤ p, and set ci = 1, cj = −1 and
ck = 0 for all other k ∈ {1, . . . , p}. The second condition says βi − βj = 0, i.e. βi = βj, i.e.
the first condition holds.

2. Question 2

Let µ ∈ R and let 0 < σ < ∞. Let X1, . . . , Xn be i.i.d. real-valued random variables
each with mean µ and variance σ2. Let h : R → R be a function such that h′ exists and is
continuous. Let Xn := (X1 + · · ·+Xn)/n. Let Yn := h(Xn).
Show that the jackknife estimator of the variance of Yn converges almost surely to the

same estimate of the variance you get by applying the Delta Method to Yn.
Solution. Theorem 5.8 in the notes implies that the jackknife variance estimator Vn is

consistent, i.e. (when d = 1), we have that

Vn

1
n
(h′(µ))2Cov(X1, X1)

=
Vn

1
n
(h′(µ))2σ2

converges almost surely to 1 as n → ∞.
On the other hand, the Delta Method implies that

√
n(h(Xn) − h(µ)) converges in dis-

tribution to a mean zero Gaussian with variance σ2(h′(µ))2 as n → ∞. Consequently, the
variance of h(Xn) is approximately σ2(h′(µ))2/n, asymptotically agreeing with the jackknife
variance estimate.

3. Question 3

Let X1, . . . , Xn be a random sample from a Gaussian random variable with unknown mean
µ ∈ R and unknown variance σ2 > 0.
Fix µ0 ∈ R. Suppose we want to test that hypothesisH0 that µ = µ0 versus the alternative

H1 that µ ̸= µ0.
Explicitly describe the rejection region of the generalized likelihood ratio test for this

hypothesis.
Solution. For any x = (x1, . . . , xn) ∈ Rn,

fµ,σ2(x) =
n∏

i=1

1

σ
√
2π

e−
(xi−µ)2

2σ2 .

Also, Θ = {(µ, σ) : µ ∈ R, σ > 0} and Θ0 = {(µ0, σ) : σ > 0}.
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As we computed in 541A, the MLE is the sample mean and sample variance (dividing by
n instead of n− 1), i.e. for any x ∈ Rn, if we denote x := 1

n

∑n
i=1 xi, v := 1

n

∑n
i=1(xi − x)2

sup
(µ,σ)∈Θ

fµ,σ2(x) = fx,v(x).

Similarly,

sup
(µ,σ)∈Θ0

fµ,σ2(x) = fµ0,v′(x).

Here v′ := 1
n

∑n
i=1(xi − µ0)

2. Therefore,

C := {x ∈ Rn : sup
(µ,σ2)∈Θ

fµ,σ2(x) ≥ k sup
(µ,σ2)∈Θ0

fµ,σ2(x)}

=
{
x ∈ Rn : (v/v′)n/2

n∏
i=1

e−
(xi−

1
n

∑n
j=1 xj)

2

2v
+

(xi−µ0)
2

2v′ ≥ k
}

=
{
x ∈ Rn : (v/v′)n/2 ≥ k

}
=

{
x ∈ Rn : v/v′ ≥ k2/n

}
Note that

v′ =
1

n

n∑
i=1

(xi − µ0)
2 =

1

n

n∑
i=1

(xi − x+ x− µ0)
2

=
1

n

n∑
i=1

[(xi − x)2 + (x− µ0)
2] = v +

1

n

n∑
i=1

(x− µ0)
2 = v + (x− µ0)

2

Using this fact, and that the inverse of x 7→ 1/(1 + x) is x 7→ −1 + 1/x,

C =
{
x ∈ Rn :

v

v + (x− µ0)2
≥ k2/n

}
=

{
x ∈ Rn :

1

1 + (x−µ0)2
1
n

∑n
i=1(xi−x)2

≥ k2/n
}

=
{
x ∈ Rn :

1
n

∑n
i=1(xi − x)2

(x− µ0)2
− 1 ≤ k−2/n − 1

}
=

{
x ∈ Rn :

1
n

∑n
i=1(xi − x)2

(x− µ0)2
≤ k−2/n

}
.

4. Question 4

Let X1, X2, X3 be i.i.d. continuous random variables such that X1 has PDF {fθ : θ ∈ Θ}.
Let W1,W2,W3 be a bootstrap sample from X1, X2, X3. Let Y denote the sample median
of X1, X2, X3. (That is, Y is the middle value among X1, X2, X3, which is unique with
probability one since the random variables are continuous.)

• Describe the distribution of (W(1),W(2),W(3)).
• Describe the bootstrap estimator of Y .

Solution. Since X1, X2, X3 are all distinct with probability one, we have

P(W1 = Xi,W2 = Xj,W3 = Xk |X1, X2, X3) = (1/3)3, ∀ 1 ≤ i, j, k ≤ 3.

That is, in describing the distribution of (W(1),W(2),W(3)), we may as well assume that
X(1) = 1, X(2) = 2, X(3) = 3, and W1,W2,W3 are i.i.d. uniform in {1, 2, 3}. (We are satisfied
with this description of the distribution of (W(1),W(2),W(3)).)
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Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number
of indices 1 ≤ j ≤ 3 such that Wj ≤ X(i), we have

P(W(2) ≤ X(i) |X1, X2, X3) =
3∑

k=2

(
3

k

)
pki (1− pi)

n−k,

where pi = i/3 for all 1 ≤ i ≤ 3. (This follows since Y is a binomial random variable with
parameters 3 and pi.) That is,

P(W(2) ≤ X(i) |X1, X2, X3) =
3∑

k=2

(
3

k

)
(i/3)k(1− i/3)n−k,

Therefore, for all 1 ≤ i ≤ 3, we have

P(W(2) = X(i) |X1, X2, X3) = P(W(2) ≤ X(i) |X1, X2, X3)−P(W(2) ≤ X(i−1) |X1, X2, X3)

=
3∑

k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

The bootstrap estimator of Y is then

E[W(2) |X1, X2, X3] =
3∑

i=1

X(i)P(W(2) = X(i) |X1, X2, X3)

=
3∑

i=1

X(i)

3∑
k=2

(
3

k

)(
(i/3)k(1− i/3)n−k − ((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

5. Question 5

Let X = (X1, . . . , Xn) be a random sample of size n from a family of distributions {fθ : θ ∈
Θ}. Fix θ0 ∈ Θ ⊆ R. Suppose we test the hypothesis H0 that {θ = θ0} versus the alternative
{θ ̸= θ0}. Suppose the Fisher information of X1 exists, is finite and nonzero, and the MLE
exists, is unique, and is consitent.

Let λ(X) :=
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

denote the generalized likelihood ratio statistic.

Give a sketch of the proof of the following: If H0 is true, then 2 log λ(X) converges in
distribution as n → ∞ to a chi-squared random variable with one degree of freedom.
(This Theorem, which we sketched in the notes, is known as Wilks’ Theorem.)
(Hint: Perform a second order Taylor expansion of the log-likelihood ℓ(θ) at the point Y

where Y = Yn is the MLE of θ, and recall that Eθ0ℓ
′′(θ0) = −nIX1(θ0).)

(You are allowed in your proof sketch to ignore technicalities, e.g. you can ignore error
terms in the Taylor expansion, and you can freely assume that the MLE is consistent. You
can also freely use that

√
n(Yn − θ0) converges in distribution to a mean zero Gaussian as

n → ∞, with variance 1/IX1(θ0).)
Solution. Recall that ℓ(θ) := log fθ(x). Suppose we expand ℓ(θ) in a Taylor series around

the random point Y , i.e. assume there exists h : R → R such that limz→0
h(z)
z2

= 0 and, for
all θ0 ∈ R,

ℓ(θ0) = ℓ(Y ) + ℓ′(Y )(θ0 − Y ) + (1/2)ℓ′′(Y )(θ0 − Y )2 + h(Y − θ0).
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By definition of Y , ℓ′(Y ) = 0. Since 2 log λ(X) = −2ℓ(θ0)+2ℓ(Y ), we rearrange the equality
to get

2 log λ(X) ≈ −ℓ′′(Y )(θ0 − Y )2.

As mentioned in the hint, Eθ0ℓ
′′(θ0) = −IX(θ0) = −nIX1(θ0). From the hint, we may assume

that, Y = Yn converges in probability to the constant θ0 with respect to Pθ0 as n → ∞. So,
we can approximate ℓ′′(Y ) by ℓ′′(θ0) ≈ −nIX1(θ0). That is,

2 log λ(X) ≈ nIX1(θ0)(θ0 − Y )2.

From the hint (the Theorem in the notes about the MLE converging in distribution),
√
n(Y −

θ0) converges in distribution to a mean zero Gaussian with variance 1/IX1(θ0) as n → ∞.
Therefore, 2 log λ(X) converges in distribution to a chi-squared random variable with one
degree of freedom as n → ∞.
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