541B Midterm 1 Solutions ${ }^{\text {円 }}$

1. Question 1

Let X be a Gaussian random variable with mean $\mu \in \mathbf{R}$ and variance 1 , so that X has PDF

$$
f(x):=\frac{1}{\sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2}, \quad \forall x \in \mathbf{R} .
$$

Provide a 99% confidence interval for μ.
Your answer should use the function $\Psi(t):=\int_{-t}^{t} e^{-x^{2} / 2} d x / \sqrt{2 \pi}, \Psi:(0, \infty) \rightarrow(0,1)$, and/or the function $\Psi^{-1}:(0,1) \rightarrow(0, \infty)$. (Recall that $\Psi\left(\Psi^{-1}(s)\right)=s$ for all $s \in(0,1)$ and $\Psi^{-1}(\Psi(t))=t$ for all $t>0$.)

Solution. Since $X-\mu$ is a standard Gaussian random variable (and $X-\mu$ is a pivotal quantity) we have

$$
\mathbf{P}(-a \leq X-\mu \leq a)=\int_{-a}^{a} e^{-x^{2} / 2} d x / \sqrt{2 \pi}=\Psi(a), \quad \forall a>0
$$

Setting $\Psi(a)=.99$, we have $\Psi^{-1}(.99)=: a$, so that

$$
\mathbf{P}\left(X-\Psi^{-1}(.99) \leq \mu \leq X+\Psi^{-1}(.99)\right)=\Psi\left(\Psi^{-1}(.99)\right)=.99
$$

That is, the confidence interval for μ is

$$
\left[X-\Psi^{-1}(.99), \quad X+\Psi^{-1}(.99)\right] .
$$

2. Question 2

Suppose X is a binomial distributed random variable with parameters 2 and $\theta \in\{1 / 2,3 / 4\}$. (That is, X is the number of heads that result from flipping two coins, where each coin has probability θ of landing heads.)
We want to test the hypothesis H_{0} that $\theta=1 / 2$ versus the hypothesis H_{1} that $\theta=3 / 4$.
Let \mathcal{T} be the set of hypothesis tests with significance level at most $1 / 20$.
(Recall that the significance level of a hypothesis test $\phi: \mathbf{R} \rightarrow[0,1]$ is $\sup _{\theta \in \Theta_{0}} \mathbf{E}_{\theta} \phi(X)$.)
Find a uniformly most powerful (UMP) class \mathcal{T} hypothesis test $\phi: \mathbf{R} \rightarrow[0,1]$.
Justify your answer.
Hint: you can freely use the following facts for the PMF f_{θ} of X

$$
\frac{f_{3 / 4}(0)}{f_{1 / 2}(0)}=\frac{1}{4}, \quad \frac{f_{3 / 4}(1)}{f_{1 / 2}(1)}=\frac{3}{4}, \quad \frac{f_{3 / 4}(2)}{f_{1 / 2}(2)}=\frac{9}{4}
$$

Solution. The Neyman-Pearson Lemma says that a UMP test for the class of tests with an upper bound on the significance level must be a likelihood ratio test with significance level equal to $1 / 20$. That is, there is some $k>0$ and $\gamma \in[0,1]$ such that the following hypothesis test is UMP class \mathcal{T}.

$$
\phi(x):= \begin{cases}1 & , \text { if } f_{\theta_{1}}(x)>k f_{\theta_{0}}(x) \\ 0 & , \text { if } f_{\theta_{1}}(x)<k f_{\theta_{0}}(x) \\ \gamma & , \text { if } f_{\theta_{1}}(x)=k f_{\theta_{0}}(x)\end{cases}
$$

[^0]After examining the likelihood ratios, we decide to choose $k=9 / 4$, so that

$$
\phi(x):=\left\{\begin{array}{ll}
1 & , \text { if } f_{\theta_{1}}(x)>(9 / 4) f_{\theta_{0}}(x) \\
0 & , \text { if } f_{\theta_{1}}(x)<(9 / 4) f_{\theta_{0}}(x) \\
\gamma & , \text { if } f_{\theta_{1}}(x)=(9 / 4) f_{\theta_{0}}(x)
\end{array} \quad= \begin{cases}0 & , \text { if } x \neq 2 \\
\gamma & , \text { if } x=2\end{cases}\right.
$$

Then $\mathbf{E}_{\theta_{0}} \phi(X)=\mathbf{P}_{\theta_{0}}(X=2) \gamma=\mathbf{P}_{1 / 2}(X=2) \gamma=(1 / 4) \gamma$. Since this quantity is equal to $1 / 20$ by assumption, we choose $\gamma:=1 / 5$. That is, our UMP test is

$$
\phi(x):= \begin{cases}0 & , \text { if } x \neq 2 \\ 1 / 5 & , \text { if } x=2\end{cases}
$$

3. Question 3

Let X_{1}, \ldots, X_{n} be a real-valued random sample of size n so that X_{1} has PDF given by

$$
f(x)=\lambda e^{-\lambda x} 1_{x>0}, \quad \forall x \in \mathbf{R}
$$

where $\lambda>0$ is an unknown parameter.
Suppose we want to test the hypothesis H_{0} that $0<\lambda \leq 2$ versus the hypothesis H_{1} that $\lambda>2$.

Describe the uniformly most powerful hypothesis test among all hypothesis tests with significance level at most $1 / 3$. Justify your answer.

Solution. We have for any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$,

$$
f_{\lambda}(x)=1_{x_{1}, \ldots, x_{n} \geq 0} \prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}=1_{x_{1}, \ldots, x_{n} \geq 0} \lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}}
$$

So, if $\lambda_{1}>\lambda_{0}>0$, we have for any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$,

$$
\frac{f_{\lambda_{1}}(x)}{f_{\lambda_{0}}(x)}=1_{x_{1}, \ldots, x_{n} \geq 0}\left(\lambda_{1} / \lambda_{0}\right)^{n} e^{-\left(\lambda_{1}-\lambda_{0}\right) \sum_{i=1}^{n} x_{i}}
$$

Since $\lambda_{1}-\lambda_{0}>0$, this likelihood ratio is a strictly increasing function of $-\sum_{i=1}^{n} x_{i}$. We conclude from the Karlin-Rubin Theorem that there is a UMP test is of the form

$$
\phi(x):= \begin{cases}1 & , \text { if }-\sum_{i=1}^{n} x_{i}>c \\ 0 & , \text { if }-\sum_{i=1}^{n} x_{i}<c \\ \gamma & , \text { if }-\sum_{i=1}^{n} x_{i}=c\end{cases}
$$

for some $c \in \mathbf{R}$. Rewriting this, and noting that $-\sum_{i=1}^{n} x_{i}=c$ has probability zero for any $\lambda>0$,

$$
\phi(x):= \begin{cases}1 & , \text { if } \sum_{i=1}^{n} x_{i}<-c \\ 0 & , \text { if } \sum_{i=1}^{n} x_{i} \geq-c .\end{cases}
$$

4. Question 4

Let X_{1}, \ldots, X_{n} be a real-valued random sample of size n from a family of distributions $\left\{f_{\theta}: \theta \in \Theta\right\}$. (That is, X has distribution f_{θ}, where $X=\left(X_{1}, \ldots, X_{n}\right)$.) Suppose $\Theta=\mathbf{R}$. Fix $\theta \in \mathbf{R}$. Suppose $\left\{f_{\theta}: \theta \in \Theta\right\}$ has the monotone likelihood ratio property with respect to a statistic $Y=t(X)$ that is a continuous random variable.

Consider the set of hypothesis tests with rejection region $\left\{x \in \mathbf{R}^{n}: t(x)>c\right\}$, where $c \in \mathbf{R}$ is a constant (so that different values of c correspond to different hypothesis tests.) Fix $\theta_{0} \in \Theta$. Suppose we are testing $H_{0}=\left\{\theta \leq \theta_{0}\right\}$ versus $H_{1}=\left\{\theta>\theta_{0}\right\}$. For any $0<\alpha<1$, let $c_{\alpha} \in \mathbf{R}$ such that the rejection region $\left\{x \in \mathbf{R}^{n}: t(x)>c_{\alpha}\right\}$ has significance level α. Define the p-value quantity

$$
p(x):=\inf \left\{\alpha \in[0,1]: t(x)>c_{\alpha}\right\}, \quad \forall x \in \mathbf{R}^{n} .
$$

(Here we define the infimum of the empty set to be 1.)
Show that, if $X=x$, then $p(x)$ satisfies

$$
p(x)=\mathbf{P}_{\theta_{0}}(t(X)>t(x))
$$

Solution. Recall that significance level α means that

$$
\alpha=\sup _{\theta \in \Theta_{0}} \mathbf{E}_{\theta} \phi(X)=\sup _{\theta \leq \theta_{0}} \mathbf{P}_{\theta}\left(t(X)>c_{\alpha}\right)
$$

Since the Karlin-Rubin Theorem implies that the power function is nondecreasing in θ, we have

$$
\begin{equation*}
\alpha=\mathbf{P}_{\theta_{0}}\left(t(X)>c_{\alpha}\right) . \tag{*}
\end{equation*}
$$

We also have

$$
p(x)=\inf \left\{\alpha \in[0,1]: \phi_{\alpha}(x)=1\right\}=\inf \left\{\alpha \in[0,1]: t(x)>c_{\alpha}\right\}
$$

The nested property implies that $\{\alpha \in[0,1]: t(x)>c\}$ is an interval, so that the infimum of this set is the smaller endpoint of that interval. That is, there exists some $\alpha \in[0,1]$ such that $p(x)=\alpha$ and $t(x)=c_{\alpha}$. So, from $(*)$,

$$
\alpha=p(x)=\mathbf{P}_{\theta_{0}}\left(t(X)>c_{\alpha}\right)=\mathbf{P}_{\theta_{0}}(t(X)>t(x)) .
$$

[^0]: ${ }^{1}$ September 18, 2023, © 2023 Steven Heilman, All Rights Reserved.

