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1. Review of Probability Theory

Definition 1.1 (Universal Set). In a specific problem, we assume the existence of a sample
space, or universal set Ω which contains all other sets. The universal set represents all pos-
sible outcomes of some random process. We sometimes call the universal set the universe.
The universe is always assumed to be nonempty. Subsets of the sample space are sometimes
called events.

Definition 1.2 (Countable Set Operations). Let A1, A2, . . . ⊆ Ω. We define
∞⋃
i=1

Ai = {x ∈ Ω: ∃ a positive integer j such that x ∈ Aj}.

∞⋂
i=1

Ai = {x ∈ Ω: x ∈ Aj, ∀ positive integers j}.

Definition 1.3 (Disjointness). Let A,B be sets in some universe Ω. We say that A and
B are disjoint if A ∩ B = ∅. A collection of sets A1, A2, . . . in Ω is said to be a partition
of Ω if ∪∞

i=1Ai = Ω, and if, for all i, j ≥ 1 with i ̸= j, we have Ai ∩ Aj = ∅.

The following properties follow from the above definitions.

Proposition 1.4. Let A,B,C be sets in a universe Ω.

(i) A ∪B = B ∪ A.
(ii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(iii) (Ac)c = A.
(iv) A ∪ Ω = Ω.
(v) A ∪ (B ∪ C) = (A ∪B) ∪ C.
(vi) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(vii) A ∩ Ac = ∅.
(viii) A ∩ Ω = A.

Exercise 1.5 (De Morgan’s Laws). Let A1, A2, . . . be sets in some universe Ω. Then(
∞⋃
i=1

Ai

)c

=
∞⋂
i=1

Ac
i ,

(
∞⋂
i=1

Ai

)c

=
∞⋃
i=1

Ac
i .
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Definition 1.6. A Probability Law (or probability distribution) P on a sample space
Ω is a function whose domain is the set of all subsets of Ω, and whose range is contained in
[0, 1], such that

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) +P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i ̸= j, then

P

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

More generally, a measure µ satisfies properties (i) and (ii) and has a range in [0,∞].

Remark 1.7. For technical reasons, it is sometimes not possible to define a probability law
on an arbitrary uncountable sample space. However, in practice, many sample spaces will be
finite or countable, so this issue will not arise in many applications of statistics. Nevertheless,
this is an important foundational issue in probability theory; for more on the subject, take
a class on measure theory, or consult my graduate probability notes here.

Proposition 1.8 (Multiplication Rule). Let n be a positive integer. Let A1, . . . , An be
sets in some sample space Ω, and let P be a probability law on Ω. Assume that P(Ai) > 0
for all i ∈ {1, . . . , n}. Then

P

(
n⋂

i=1

Ai

)
= P(A1)P(A2|A1)P(A3|A2 ∩ A1) · · ·P(An| ∩n−1

i=1 Ai).

Theorem 1.9 (Total Probability Theorem). Let A1, . . . , be disjoint events in a sample
space Ω. That is, Ai ∩Aj = ∅ whenever i, j ≥ 1 satisfy i ̸= j. Assume also that ∪∞

i=1Ai = Ω.
Let P be a probability law on Ω. Then, for any event B ⊆ Ω, we have

P(B) =
∞∑
i=1

P(B ∩ Ai) =
∞∑
i=1

P(Ai)P(B|Ai).

Proposition 1.10 (Properties of Probability Laws). Let Ω be a sample space and let
P be a probability law on Ω. Let A,B,C ⊆ Ω.

• If A ⊆ B, then P(A) ≤ P(B).
• P(A ∪B) = P(A) +P(B)−P(A ∩B).
• P(A ∪B) ≤ P(A) +P(B).
• P(A ∪B ∪ C) = P(A) +P(Ac ∩B) +P(Ac ∩Bc ∩ C).

Let n be a positive integer. Let A1, . . . , An ⊆ Ω. Then

P

(
n⋃

k=1

Ak

)
≤

n∑
k=1

P(Ak).

Definition 1.11 (Random Variable). Let Ω be a sample space. Let P be a probability law
on Ω. A random variable X is a function X : Ω → R. (Sometimes we might also consider
a random variable to be a function from Ω to another set.) Let n be a positive integer. A
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random vector X is a function X : Ω → Rn. A discrete random variable is a random
variable whose range is either finite or countably infinite. A probability density function
(PDF) is a function f : R → [0,∞) such that

∫∞
−∞ f(x)dx = 1, and such that, for any

−∞ ≤ a ≤ b ≤ ∞, the integral
∫ b

a
f(x)dx exists. A random variable X is called continuous

if there exists a probability density function f such that, for any −∞ ≤ a ≤ b ≤ ∞, we have

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

When this equality holds, we call f the probability density function of X.
Let X be any random variable. We then define the cumulative distribution function

(CDF) F : R → [0, 1] of X by

F (x) := P(X ≤ x), ∀x ∈ R.

We say two random variables X, Y are identically distributed if they have the same CDF.

Remark 1.12. There is another foundational issue here for uncountable sample spaces which
we will not discuss further. It suffices to say that the definition of a random variable should
have an extra condition, which is not needed for finite or countable sample spaces; for more
on the subject, take a class on measure theory, or consult my graduate probability notes
here.

Definition 1.13 (Probability Mass Function). Let X be a discrete random variable on
a sample space Ω, so that X : Ω → R. The probability mass function (or PMF) of X,
denote fX : R → [0, 1] is defined by

fX(x) = P(X = x) = P({X = x}) = P({ω ∈ Ω: X(ω) = x}), x ∈ R.

Definition 1.14 (Independence). Let A1, A2, . . . be subsets of a sample space Ω, and let
P be a probability law on Ω. We say that A1, A2, . . . are independent if, for any finite
subset S of {1, 2, . . .}, we have

P (∩i∈SAi) =
∏
i∈S

P(Ai).

Let X1 : Ω → Rn, X2 : Ω → Rn, . . . be random variables. We say that X1, X2, . . . are inde-
pendent if, for any integer m ≥ 1 and for any B1, B2, . . . ,⊆ Rn,

P (∩m
i=1{Xi ∈ Bi}) =

m∏
i=1

P(Xi ∈ Bi).

Here we denoted {X ∈ B} := {ω ∈ Ω: X(ω) ∈ B} where X : Ω → Rn and B ⊆ Rn.

We now give descriptions of some commonly encountered random variables.

Definition 1.15 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X has the following PMF:

P(X = k) =


p , if k = 1

1− p , if k = 0

0 , otherwise.
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Definition 1.16 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 ≤ k ≤ n, then

P(X = k) =

(
n

k

)
pk(1− p)n−k.

For any other k, we have P(X = k) = 0.

Recall that a sum of n independent Bernoulli random variables with parameter 0 < p < 1
is a binomial random variable with parameters n and p.

Definition 1.17 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

P(X = k) = (1− p)k−1p.

For any other k, we have P(X = k) = 0. Note that X is the number of times that are
needed to flip a biased coin in order to get a heads (if the coin has probability p of landing
heads).

Definition 1.18 (Negative Binomial Random Variable). Let 0 < p < 1 and let n be
a positive integer. A random variable X is called a negative binomial random variable
with parameters n and p if X has the following PMF. If k is an integer with n ≤ k, then

P(X = k) =

(
k − 1

n− 1

)
(1− p)k−npn.

For any other k, we have P(X = k) = 0. Note that X is the number of times that are
needed to flip a biased coin in order to get n heads (if the coin has probability p of landing
heads). The case n = 1 recovers the geometric random variable.

The negative binomial is equivalently defined as Y = X − n, i.e. the number of tails that
occur before the nth heads occurs, so that for any k ≥ 0,

P(Y = k) = P(X = k + n) =

(
k + n− 1

n− 1

)
(1− p)kpn =

(
k + n− 1

k

)
(1− p)kpn.

Definition 1.19 (Hypergeometric Random Variable). Let m,n, p be positive integers
such thatm ≤ p. A random variableX is called a hypergeometric random variable with
parameters m,n, p if X has the following PMF. If k is a positive integer with max(0, p +
m− n) ≤ k ≤ min(m, p), then

P(X = k) =

(
m
k

)(
n−m
p−k

)(
n
p

)
For any other k, we have P(X = k) = 0.

Suppose we have an urn containing n cubes, where m cubes are red and the remaining
n−m cubes are blue. We then randomly select p cubes from the urn, without replacement.
Let 0 ≤ k ≤ m be an integer. Then the probability that exactly k of the selected cubes are
red is given by the above distribution, since

(
m
k

)
is the number of ways to select k of the

(labelled) red cubes,
(
n−m
p−k

)
is the number of ways to select p−k of the (labelled) blue cubes,

and we then divide by the total number of ways to select p cubes from all n of them.
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Definition 1.20 (Poisson Random Variable). Let λ > 0. A random variable X is called
a Poisson random variable with parameter λ if X has the following PMF. If k is a
nonnegative integer, then

P(X = k) = e−λλ
k

k!
.

For any other x, we have pX(x) = 0.

Example 1.21. We say that a random variable X is uniformly distributed in [c, d] when
X has the following density function: f(x) = 1

d−c
when x ∈ [c, d], and f(x) = 0 otherwise.

Example 1.22. Let λ > 0. A random variable X is called an exponential random
variable with parameter λ if X has the following density function: f(x) = λe−λx when
x ≥ 0, and f(x) = 0 otherwise.

Definition 1.23 (Normal Random Variable). Let µ ∈ R, σ > 0. A continuous random
variable X is said to be normal or Gaussian with mean µ and variance σ2 if X has the
following density function:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R.

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with µ = 0 and σ = 1.

Proposition 1.24 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1, and let Xn be a binomial distributed random variable with
parameters n and pn. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Then, for any
nonnegative integer k, we have

lim
n→∞

P(Xn = k) = e−λλ
k

k!
.

Lemma 1.25. Let λ > 0. For each positive integer n, let λn > 0. Assume that limn→∞ λn =
λ. Then

lim
n→∞

(
1− λn

n

)n

= e−λ

Remark 1.26. A Poisson random variable is often used as an approximation for counting
the number of some random occurrences. For example, the Poisson distribution can model
the number of typos per page in a book, the number of magnetic defects in a hard drive, the
number of traffic accidents in a day, etc.

Exercise 1.27. For any α > 0 define the Gamma function Γ(α) by the formula

Γ(α) :=

∫ ∞

0

xα−1e−xdx.

Since α > 0, it follows that 0 ≤
∫∞
0

xα−1e−xdx < ∞, so this quantity is well-defined.
Using integration by parts, show that for any α > 0, we have the recursion

Γ(α + 1) = αΓ(α).

Since Γ(1) = 1, conclude by an inductive argument that, for any positive integer n,

Γ(n+ 1) = n!.
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In this way, the Gamma function extends the definition of the factorial to any positive real
number.

Definition 1.28 (Gamma Distribution). Let α, β > 0. Define the gamma distribution
with parameters (α, β) to be the random variable with the probability density function

f(x) :=

{
xα−1e−x/β

βαΓ(α)
, ifx > 0

0, ifx ≤ 0.

By changing variables, note that

P (X/β < t) = P(X < tβ) =

∫ tβ

0

xα−1e−x/β

βαΓ(α)
dx =

∫ t

0

yα−1e−y

Γ(α)
dx.

That is, X/β has the gamma distribution with parameters (α, 1). Also, choosing t = ∞
shows that the integral of the density function is one on (−∞,∞).

For example, if α = p/2 where p is a positive integer and β = 2, we get the chi squared
distribution with p degrees of freedom:

f(x) :=

{
xp/2−1e−x/2

2p/2Γ(p/2)
, ifx > 0

0, ifx ≤ 0.

This distribution can be defined as the distribution of the sum of p independent standard
Gaussian random variables.

Definition 1.29 (Beta Distribution). Let α, β > 0. Define the beta distribution with
parameters (α, β) to be the random variable with the probability density function

f(x) :=

{
1

B(α,β)
xα−1(1− x)β−1, if 0 < x < 1

0, ifx /∈ [0, 1].

Here B(α, β) :=
∫ 1

0
xα−1(1− x)β−1.

It can be shown that B(α, β) = Γ(α)Γ(β)
Γ(α+β)

. The quickest proof first switches to (squared)

polar coordinates so that x = r cos2 θ, y = r sin2 θ. Then the Jacobian determinant is

det

(
cos2 θ −2r cos θ sin θ
sin2 θ 2r sin θ cos θ

)
= 2r sin θ cos θ.

Using this change of variables, we get

Γ(α)Γ(β) =

∫ ∞

0

∫ ∞

0

xα−1e−xyβ−1e−ydxdy

=

∫ ∞

0

∫ π/2

0

2rα+β−1e−r(cos2 θ+sin2 θ) cos2α−1 θ sin2β−1 θdθdr

= 2

∫ ∞

0

rα+β−1e−rdr

∫ π/2

0

cos2α−1 θ sin2β−1 θdθ

= Γ(α + β)

∫ 1

0

tα−1(1− t)β−1dt = Γ(α + β)B(α, β).

In the last line, we changed variables by t = cos2 θ, so that dt = −2 cos θ sin θdθ.
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Definition 1.30 (Cauchy Distribution). Define the (centered) Cauchy distribution to
be the random variable with the probability density function

f(x) :=
1

π

1

1 + x2
, ∀x ∈ R.

Definition 1.31 (Indicator Function). Let A ⊆ Ω be a set. We define the indicator
function of A, denoted 1A : Ω → R so that 1A(ω) = 0 if ω /∈ A, and 1A(ω) = 1 if ω ∈ A.

Definition 1.32 (Expected Value). Let Ω be a sample space, let P be a probability law
on Ω. Let X be a random variable on Ω. Assume that X : Ω → [0,∞). We define the
expected value of X, denoted E(X), by

E(X) =

∫ ∞

0

P(X > t)dt.

In analytic notation, EX =
∫
Ω
X(ω)dP(ω). More generally, if g : [0,∞) → [0,∞) is a

differentiable function such that g′ is continuous and g(0) = 0, we define

Eg(X) =

∫ ∞

0

g′(t)P(X > t)dt.

In particular, taking g(t) = tn for any positive integer n, for any t ≥ 0, we have

EXn =

∫ ∞

0

ntn−1P(X > t)dt.

For a general random variable X, if Emax(X, 0) < ∞ and if Emax(−X, 0) < ∞, we then
define E(X) = Emax(X, 0)− Emax(−X, 0). Otherwise, we say that E(X) is undefined.

Remark 1.33. If we assume that the expected value and the integral on R can be commuted,
then the following derivation of the formula for Eg(X) can be given. From the Fundamental
Theorem of Calculus, we have

g(X) =

∫ X

0

g′(t)dt =

∫ ∞

0

g′(t)1{X>t}dt.

Therefore, Eg(X) = E
∫∞
0

g′(t)1{X>t}dt =
∫∞
0

g′(t)E1{X>t}dt =
∫∞
0

g′(t)P(X > t)dt.

Remark 1.34. If X only takes positive integer values, then for any t > 0, if k is an integer
such that k − 1 < t ≤ k, then P(X > t) = P(X ≥ k), so

E(X) =

∫ ∞

0

P(X > t)dt =
∞∑
k=1

∫ k

k−1

P(X > t)dt =
∞∑
k=1

P(X ≥ k) =
∞∑
k=0

P(X > k).

Proposition 1.35. Let X1, . . . , Xn be random variables. Then

E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi).

Unfortunately the above property is not obvious from our definition of expected value.

Definition 1.36 (Variance). Let Ω be a sample space, let P be a probability law on Ω.
Let X be a random variable on Ω. We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2 = EX2 − (EX)2.
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We define the standard deviation of X, denoted σX , by

σX =
√
var(X).

Proposition 1.37. Let Ω be a sample space, let P be a probability law on Ω. Let X be a
random variable on Ω. Let a, b be constants. Then

var(aX + b) = a2var(X).

We will review conditional expectation later on in the notes.

Exercise 1.38 (Inclusion-Exclusion Formula). Let A1, . . . , An ⊆ Ω be events. Then:

P(∪n
i=1Ai) =

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

To prove this formula, show that 1∪n
i=1Ai

= 1−
∏n

i=1(1− 1Ai
) and then take expected values

of both sides.

Definition 1.39 (Joint Probability Density Function, Two Variables). A joint
probability density function (PDF) for two random variables is a function f : R2 →
[0,∞) such that

∫∫
R2 f(x, y)dxdy = 1, and such that, for any −∞ ≤ a < b ≤ ∞ and

−∞ ≤ c < d ≤ ∞, the integral
∫ y=d

y=c

∫ x=b

x=a
fX,Y (x, y)dxdy exists.

Definition 1.40. Let X, Y be two continuous random variables on a sample space Ω. We
say that X and Y are jointly continuous with joint PDF fX,Y : R2 → [0,∞) if, for any
subset A ⊆ R2, we have

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dxdy.

In particular, choosing A = [a, b]× [c, d] with −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞, we
have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=b

x=a

fX,Y (x, y)dxdy.

We define the marginal PDF fX of X by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, ∀x ∈ R.

We define the marginal PDF fY of Y by

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx, ∀ y ∈ R.

Note that

P(c ≤ Y ≤ d) = P(−∞ ≤ X ≤ ∞, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=∞

x=−∞
fX,Y (x, y)dxdy.

Comparing this formula with Definition 1.11, we see that the marginal PDF of Y is exactly
the PDF of Y . Similarly, the marginal PDF of X is the PDF of X.
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Definition 1.41. Let X, Y be random variables with joint PDF fX,Y . Let g : R2 → R. Then

Eg(X, Y ) =

∫∫
R2

g(x, y)fX,Y (x, y)dxdy.

In particular,

E(XY ) =

∫∫
R2

xyfX,Y (x, y)dxdy.

Exercise 1.42. Let X, Y be random variables with joint PDF fX,Y . Let a, b ∈ R. Using
Definition 1.41, show that E(aX + bY ) = aEX + bEY .

Definition 1.43 (Joint Density Function). We say that random variables X1, . . . , Xn

have joint density function f : Rn → [0,∞) if
∫
Rn f(x)dx = 1, and if

P((X1, . . . , Xn) ∈ A) =

∫
A

f(x)dx, ∀A ⊆ Rn.

We define the marginal density f1 : R → [0,∞) of X1 so that

f1(x1) =

∫
Rn−1

f(x1, . . . , xn)dx2 · · · dxn, ∀x1 ∈ R.

Similarly, we can define the marginal density f12 : R2 → [0,∞) of X1, X2 so that

f12(x1, x2) =

∫
Rn−2

f(x1, . . . , xn)dx3 · · · dxn, ∀x1, x2 ∈ R.

And so on.

Exercise 1.44. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Using the change of variables formula from multivariable calculus,
show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

We defined independence of random variables in Definition 1.14. Below is an equivalent
definition (the equivalence is beyond the scope of this course).

Definition 1.45 (Independence of Random Variables). Let X1, . . . , Xn be random
variables on a sample space Ω, and let P be a probability law on Ω. We say that X1, . . . , Xn

are independent if

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.

Exercise 1.46. Let X1, . . . , Xn be discrete random variables. Assume that

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.
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Exercise 1.47. Let X1, . . . , Xn be continuous random variables with joint PDF f : Rn →
[0,∞). Assume that

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi
(xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.

Exercise 1.48. Let X1, . . . , Xn : Ω → R be uncorrelated random variables with EX2
i < ∞

for any 1 ≤ i ≤ n. Show that

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi)

Proposition 1.49. Let X1, . . . , Xn be random variables on a sample space Ω, and let P be
a probability law on Ω. Assume that X1, . . . , Xn are pairwise independent. That is, Xi and
Xj are independent whenever i, j ∈ {1, . . . , n} with i ̸= j. Then

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi).

Proposition 1.50. Let X1, . . . , Xn be independent random variables. Then

E(
n∏

i=1

Xi) =
n∏

i=1

E(Xi).

Proposition 1.51. Let 0 = n0 < n1 < n2 < . . . < nk = n be integers. Let X1, . . . , Xn

be independent random variables. For any 1 ≤ i ≤ k, let gi : Rni−ni−1 → R. Then the
random variables g1(X1, . . . , Xn1), g2(Xn1+1, . . . , Xn2), . . ., gk(Xnk−1+1, . . . , Xnk

) are inde-
pendent. Consequently,

E(
k∏

i=1

gi(Xni−1+1, . . . , Xni
)) =

k∏
i=1

Egi(Xni−1+1, . . . , Xni
).

Definition 1.52 (Covariance). Let X and Y be random variables with finite variances.
We define the covariance of X and Y , denoted cov(X, Y ), by

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

Remark 1.53. By the Cauchy-Schwarz inequality (see Theorem 1.71), we have

|cov(X, Y )| ≤ (E(X − EX)2)1/2(E(Y − EY )2)1/2.

So, the covariance is well defined if X, Y both have finite variance. Note that

cov(X,X) = E(X − E(X))2 = var(X).

The covariance of X and Y is meant to measure whether or not X and Y are related
somehow. The covariance of two random variables can be any real number. In order to more
accurately measure how two random variables are “related” to each other, it is natural to
divide the covariance by the product of the standard deviations, i.e. the right side of Remark
1.53.

In linear algebraic terms, if we think of the random variables X − EX and Y − EY as
vectors with the inner product ⟨X − EX, Y − EY ⟩ := E[(X − EX)(Y − EY )] and norm

11



∥(X − EX)∥ := ⟨X−EX,X−EX⟩1/2, then the covariance is the cosine of the angle between
the unit vectors X−EX

∥X−EX∥ and Y−EY
∥Y−EY ∥ .

Definition 1.54 (Correlation). Let Ω be a sample space, let P be a probability law on Ω.
Let X and Y be discrete random variables on Ω taking a finite number of values. We define
the correlation of X and Y to be

cov(X, Y )√
var(X)

√
var(Y )

.

From Remark 1.53, the correlation of X and Y is a real number in the interval [−1, 1]. If
the correlation is 1 or −1, then X −EX is a constant multiple of Y −EY with probability
1, by the known equality case of the Cauchy-Schwarz inequality (see Theorem 1.71). By
contrast, correlation zero is analogous to X and Y being independent. However, correlation
zero does not necessarily imply that X and Y are independent. Other correlation values can
be thought of as an interpolations between these extreme cases.

Exercise 1.55. Let X1, . . . , Xn be random variables. Then

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

In elementary probability theory, conditional probability and conditional expectation allow
a rigorous notion for incorporating previously unknown information into a probability law.

Definition 1.56. IfA,B are events and ifP(B) > 0, we define the conditional probability
of A given B, denoted P(A|B), to be

P(A|B) := P(A ∩B)/P(B).

For example, if P is uniform on the sample space Ω = {1, 2, 3, 4, 5, 6}, and if B = {2, 4, 6},
then P({1}|B) = 0 and P({2}|B) = 1/3.
Let X : Ω → [−∞,∞] be a random variable with E |X| < ∞. Note that, if B is fixed,

then the function A 7→ P(A|B) is itself a probability law on Ω, so we can e.g. define the
conditional expectation of a random variable X given B, denoted E(X|B), to be the
usual expectation of X with respect to the probability law P(·|B).

E(X|B) := E(X1B)/P(B).

In case X ≥ 0, we have the equivalent definition E(X|B) =
∫∞
0

P(X > t|B)dt.
If Z is a discrete random variable, i.e. if Z takes at most countably many values, and

if P(Z = z) > 0 for some z ∈ R, we let B := {Z = z} in the above definition to define
E(X|Z = z). By splitting the sample space Ω into countably many disjoint sets B1, B2, . . .
such that ∪∞

n=1Bn = Ω and P(Bn) > 0 for all n ≥ 1, we can write

P(A) =
∞∑
n=1

P(A ∩Bn) =
∞∑
n=1

P(A|Bn)P(Bn).

EX =
∞∑
n=1

E(X1Bn) =
∞∑
n=1

E(X|Bn)P(Bn). (1)

By breaking up expected values or probabilities into pieces in this way, sometimes the quan-
tities on the right side are easier to compute, allowing computation of the left side.

12



There is a way to condition on events with probability zero, but we will not do so here.

Proposition 1.57. Let B be a fixed subset of some sample space Ω. Let P be a probability law
on Ω. Assume that P(B) > 0. Given any subset A in Ω, define P(A|B) = P(A ∩B)/P(B)
as above. Then P(A|B) is itself a probability law on Ω.

Remark 1.58. Proposition 1.57 implies that facts from Proposition 1.10 apply also to
conditional probabilities. For example, using the notation of Proposition 1.57, we have
P(A ∪ C|B) ≤ P(A|B) +P(C|B).

Definition 1.59 (Conditioning a Continuous Random Variable on a Set). Let X
be a continuous random variable on a sample space Ω. Let A ⊆ Ω with P(A) > 0. The
conditional PDF fX|A of X given A is defined to be the function fX|A satisfying

P(X ∈ B |A) =
∫
B

fX|A(x)dx, ∀B ⊆ R.

Definition 1.60 (Conditioning one Random Variable on Another). Let X and Y be
continuous random variables with joint PDF fX,Y . Fix some y ∈ R with fY (y) > 0. For any
x ∈ R, define the conditional PDF of X, given that Y = y by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, ∀x ∈ R.

We also define the conditional expectation of X given Y = y by

E(X|Y = y) =

∫ ∞

−∞
xfX|Y (x|y)dx.

From Definition 1.40, note that
∫∞
−∞ fX|Y (x|y)dx = 1. So, fX|Y (x|y) is a probability

distribution function.
The following Theorem is a version of (1) for continuous random variables.

Theorem 1.61 (Total Expectation Theorem). Let X, Y be continuous random variables.
Assume that fX,Y : R2 → R is a continuous function. Then

E(X) =

∫ ∞

−∞
E(X|Y = y)fY (y)dy.

Exercise 1.62. Let ϕ : R → R. We say that ϕ is convex if, for any x, y ∈ R and for any
t ∈ [0, 1], we have

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y).

Let ϕ : R → R. Show that ϕ is convex if and only if: for any y ∈ R, there exists a constant
a and there exists a function L : R → R defined by L(x) = a(x− y)+ϕ(y), x ∈ R, such that
L(y) = ϕ(y) and such that L(x) ≤ ϕ(x) for all x ∈ R. (In the case that ϕ is differentiable,
the latter condition says that ϕ lies above all of its tangent lines.)

(Hint: Suppose ϕ is convex. If x is fixed and y varies, show that ϕ(y)−ϕ(x)
y−x

increases as y

increases. Draw a picture. What slope a should L have at x?)

Exercise 1.63 (Jensen’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Let
ϕ : R → R be convex. Assume that E |X| < ∞ and E |ϕ(X)| < ∞. Then

ϕ(EX) ≤ Eϕ(X).

13



(Hint: use Exercise 1.62 with y := EX.) Deduce the triangle inequality:

|EX| ≤ E |X| .

Exercise 1.64 (Markov’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

(Hint: multiply both sides by t and use monotonicity of E.)

Corollary 1.65. If n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. From Markov’s Inequality, Exercise 1.64,

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

□

We refer to E |X|n as the nth moment of X.

Definition 1.66 (Variance). Let X : Ω → [−∞,∞] be a random variable with E |X| < ∞
and EX2 < ∞. We define the variance of X, denoted var(X), to be

var(X) := E(X − EX)2 = EX2 − (EX)2.

Remark 1.67. By Jensen’s Inequality, if EX2 < ∞, then E |X| < ∞, so EX ∈ R.

Exercise 1.68. Let a, b ∈ R and let X : Ω → [−∞,∞] be a random variable with EX2 < ∞.
Show that

var(aX + b) = a2var(X).

Then, let X be a standard Gaussian. Show that EX = 0 and var(X) = 1.
Finally, show that the quantity E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

Replacing X by X − EX and taking n = 2 in Corollary 1.65 gives:

Corollary 1.69 (Chebyshev’s Inequality). Let X : Ω → [−∞,∞] be a random variable
with EX2 < ∞. Then

P(|X − EX| ≥ t) ≤ var(X)

t2
, ∀ t > 0.

(By Exercise 1.63, EX ∈ R.)

Corollary 1.65 shows that, if large moments of X are finite, then P(X > t) decays rapidly.
Sometimes, we can even get exponential decay on P(X > t), if we make the rather strong
assumption that EerX is finite for some r > 0. Note that, by the power series expansion of
the exponential, EerX < ∞ assumes that an infinite sum of the moments of X is finite.

Exercise 1.70 (The Chernoff Bound). Let X : Ω → [−∞,∞] be a random variable.
Show that, for any r, t > 0,

P(X > t) ≤ e−rtEerX .

If 1 ≤ p < ∞, and if X : Ω → [−∞,∞] is a random variable, denote the Lp-norm of X as
∥X∥p := (E |X|p)1/p and denote the L∞-norm ofX as ∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}.
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Theorem 1.71 (Hölder’s Inequality). Let X, Y : Ω → R be random variables. Let 1 ≤
p ≤ ∞, and let q be dual to p (so 1/p+ 1/q = 1). Then

E |XY | ≤ ∥X∥p ∥Y ∥q .

This inequality is an equality only if X is a constant multiple of Y with probability 1. The
case p = q = 2 recovers the Cauchy-Schwarz inequality:

E |XY | ≤ (EX2)1/2(EY 2)1/2.

Proof. By scaling, we may assume ∥X∥p = ∥Y ∥q = 1 (zeros and infinities being trivial).
Also, the case p = 1, q = ∞ follows from the triangle inequality, so we assume 1 < p < ∞.
From concavity of the log function, we have the pointwise inequality

|X(ω)Y (ω)| = (|X(ω)|p)1/p(|Y (ω)|q)1/q ≤ 1

p
|X(ω)|p + 1

q
|Y (ω)|q , ∀ω ∈ Ω

which upon integration gives the result. If this inequality is an equality with probability
one, then the strict concavity of the log function implies that P(X = Y ) = 1. □

Theorem 1.72 (Triangle Inequality). Let X, Y : Ω → R be random variables. Let 1 ≤
p ≤ ∞. Then

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p , 1 ≤ p ≤ ∞

Proof. The case p = ∞ follows from the scalar triangle inequality, so assume 1 ≤ p < ∞.
By scaling, we may assume ∥X∥p = 1− t, ∥Y ∥p = t, for some t ∈ (0, 1) (zeros and infinities

being trivial). Define V := X/(1− t), W := Y/t. Then by convexity of x 7→ |x|p on R,

|(1− t)V (ω) + tW (ω)|p ≤ (1− t) |V (ω)|p + t |W (ω)|p , ∀ω ∈ Ω

which upon integration completes the proof. □

LetX, Y be independent random variables. From Proposition 1.57, the moment generating
function of X + Y can be easily expressed as MX+Y (t) = MX(t)MY (t), for any t such that
both quantities on the right exist. On the other hand, the CDF of X + Y has a more
complicated dependence on X and Y .

Example 1.73. LetX, Y be independent integer-valued random variables. Then, repeatedly
using properties of probability laws, and using that X, Y are independent,

P(X + Y = t) =
∑

j,k∈Z : j+k=t

P(X = j, Y = k) =
∑
j∈Z

P(X = j, Y = t− j)

=
∑
j∈Z

P(X = j)P(Y = t− j) =
∑
j∈Z

pX(j)pY (t− j).

Definition 1.74 (Convolution on the integers). Let g, h : Z → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : Z → R defined by

(g ∗ h)(t) :=
∑
j∈Z

g(j)h(t− j), ∀ t ∈ Z.

A similar formula holds for continuous random variables. That is, if X, Y are two contin-
uous random variables, then the density of X + Y is the convolution of fX and fY .
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Definition 1.75 (Convolution on the real line). Let g, h : R → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : R → R defined by

(g ∗ h)(t) :=
∫ ∞

−∞
g(x)h(t− x)dx, ∀ t ∈ R.

Proposition 1.76. Let X, Y be two continuous independent random variables. Assume that
fY is a continuous function. Then

fX+Y (t) = (fX ∗ fY )(t), ∀ t ∈ R.

Exercise 1.77 (Convolution is Associative). Let g, h, d : R → R. Then for any t ∈ R,

((g ∗ h) ∗ d)(t) = (g ∗ (h ∗ d))(t)

The foundations of measure theory were developed in the late 1800s and early 1900s
by several mathematicians. Measure theory allows the definition of a probability law. In
the 1930s, Kolmogorov provided an axiomatic foundation of probability theory via measure
theory, e.g. the axioms of Definition 1.6. Probability theory was often not considered a
“serious” subject, perhaps due to its historical affiliation with gambling. Since the 1930s
and continuing to the present, more and more subjects embrace probabilistic and statistical
thinking. Statistics began to use more probability theory in the 1800s and 1900s.

1.1. Limit Theorems. The Laws of Large Numbers and Central Limit Theorem provide
limiting statements for sequences of random variables. The exact notions of convergence will
depend on the limit theorem. The general goal is to obtain the strongest possible convergence
with the weakest possible assumption. Sometimes, the convergence can be upgraded to a
stronger notion, but other times this is impossible.

Below are a few of the most commonly encountered notions of convergence of random
variables.

Definition 1.78 (Almost Sure Convergence). We say random variables Y1, Y2, . . . : Ω →
R converge almost surely (or with probability one) to a random variable Y : Ω → R if

P( lim
n→∞

Yn = Y ) = 1.

That is, P({ω ∈ Ω: limn→∞ Yn(ω) = Y (ω)}) = 1

Definition 1.79 (Convergence in Probability). We say that a sequence of random vari-
ables Y1, Y2, . . . : Ω → R converges in probability to a random variable Y : Ω → R if: for
all ε > 0,

lim
n→∞

P(|Yn − Y | > ε) = 0.

That is, ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| > ε) = 0.

Definition 1.80 (Convergence in Distribution). We say that real-valued random vari-
ables Y1, Y2, . . . converge in distribution to a real-valued random variable Y if, for any
t ∈ R such that s 7→ P(Y ≤ s) is continuous at s = t,

lim
n→∞

P(Yn ≤ t) = P(Y ≤ t).

Note that the random variables are allowed to have different domains.
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Definition 1.81 (Convergence in Lp). Let 0 < p ≤ ∞. We say that random variables
Y1, Y2, . . . : Ω → R converge in Lp to Y : Ω → R if ∥Y ∥p < ∞ and

lim
n→∞

∥Yn − Y ∥p = 0.

(Recall that ∥Y ∥p := (E |Y |p)1/p if 0 < p < ∞ and ∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}.)
Exercise 1.82. Let Y1, Y2, . . . : Ω → R be random variables that converge almost surely to
a random variable Y : Ω → R. Show that Y1, Y2, . . . converges in probability to Y in the
following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃

m=n

{ω ∈ Ω: |Ym(ω)− Y (ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞

n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables Y1, Y2, . . . that con-
verge in probability to Y , but where Y1, Y2, . . . do not converge to Y almost surely.

Exercise 1.83. Let 0 < p ≤ ∞. Show that, if Y1, Y2, . . . : Ω → R converge to Y : Ω → R in
Lp, then Y1, Y2, . . . converges to Y in probability.
Then, show that the converse is false.

Exercise 1.84. Suppose random variables Y1, Y2, . . . : Ω → R converge in probability to a
random variable Y : Ω → R. Prove that Y1, Y2, . . . converge in distribution to Y .
Then, show that the converse is false.

Exercise 1.85. Prove the following statement. Almost sure convergence does not imply
convergence in L2, and convergence in L2 does not imply almost sure convergence. That
is, find random variables that converge in L2 but not almost surely. Then, find random
variables that converge almost surely but not in L2.

Remark 1.86. The following table summarizes our different notions of convergence of ran-
dom variables, i.e. the following table summarizes the implications of Exercises 1.83, 1.84
and 1.85.

Almost sure
convergence

1.85

"*
Convergence
in probability

1.84 +3 Convergence
in distribution

Convergence
in Lp

1.83

4<

Laws of Large numbers say that if you perform a poll, then the sample mean converges to
the mean of the random variable, regardless of the population size. Or, in the terminology of
elementary statistics, the sample mean becomes more accurate as the sample size increases.
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Theorem 1.87 (Weak Law of Large Numbers). Let X1, . . . , Xn be independent identi-
cally distributed random variables. Assume that µ := EX1 is finite. Then for any ε > 0

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

Theorem 1.88 (Strong Law of Large Numbers). Let X1, . . . , Xn be independent iden-
tically distributed random variables. Assume that µ := EX1 is finite. Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Remark 1.89. A Monte Carlo simulation takes n independent samples from some ran-
dom distribution and then sums the sample results and divides by n. The Strong Law of
Large Numbers guarantees that this averaging procedure converges to the average value as
n becomes large.

The Laws of Large Numbers unfortunately say nothing about the distribution of the sum
X1 + · · · +Xn. Or, in the terminology of elementary statistics, the precision of the sample
mean is not addressed by the Laws of Large Numbers. The precision of the sum X1+· · ·+Xn

is instead dealt with in the Central Limit Theorem. This Theorem was apparently called
“Central” since it is so fundamental to probability and statistics, and mathematics more
generally.

More formally, let X1, X2, . . . : Ω → R be i.i.d. random variables with mean zero and
variance 1. From the Strong Laws of Large Numbers, 1

n
(X1+ · · ·+Xn) converges to 0 almost

surely (and in probability). From these results, it is still unclear what value X1 + · · · +Xn

“typically” takes. For example, if P(X1 = 1) = P(X1 = −1) = 1/2, then limn→∞P(X1 +
· · · + Xn = 0) = 0. (What is the exact probability that P(X1 + · · · + Xn = 0)?) In order
to see what values X1 + · · ·+Xn “typically” takes, we need to divide by a constant smaller
than

√
n log n

Consider 1√
n
(X1 + · · · + Xn). Dividing by

√
n is quite natural since 1√

n
(X1 + · · · + Xn)

has mean zero and variance 1 by Exercise 1.48. So, we expect that the most typical values
of X1 + · · ·+Xn occur in some range (−a

√
n, a

√
n) for some a > 0.

Dividing by anything other than
√
n will not work correctly. For example, if g : N → (0,∞)

satisfies limn→∞ g(n) = ∞, then it follows from Chebyshev’s inequality, Corollary 1.69, that
1

g(n)
√
n
(X1 + · · ·+Xn) converges to 0 in probability. Similarly, g(n)√

n
(X1 + · · ·+Xn) does not

converge in any sensible way as n → ∞ (though we will not show this here). In summary,
in order to see what values X1 + · · ·+Xn typically takes, we must divide by

√
n.

Unfortunately, we cannot hope for 1√
n
(X1 + · · · + Xn) to converge almost surely or in

probability. (We will not show this here.) So, we have to look for a different notion of
convergence.

Theorem 1.90 (Central Limit Theorem). Let X1, . . . , Xn be independent identically
distributed random variables. Assume that E |X1| < ∞ and 0 < Var(X1) < ∞.

Let µ = EX1 and let σ =
√

Var(X1). Then for any −∞ ≤ a ≤ ∞,

lim
n→∞

P

(
X1 + · · ·+Xn − µn

σ
√
n

≤ a

)
=

∫ a

−∞
e−t2/2 dt√

2π
.
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Remark 1.91. The random variable X1+···+Xn−(1/2)n
σ
√
n

has mean zero and variance 1, just like

the standard Gaussian.

Exercise 1.92. Estimate the probability that 1000000 coin flips of fair coins will result in
more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e−t2/2dt/
√
2π = 1/2,

∫ 1

−∞ e−t2/2dt/
√
2π ≈ .8413,

∫ 2

−∞ e−t2/2dt/
√
2π ≈

.9772,
∫ 3

−∞ e−t2/2dt/
√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Exercise 1.93 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, the number of any set of 625 bank members with savings accounts chosen uniformly
at random lies in the interval [a, b]. (Hint: if Y is a standard Gaussian random variable,
then P(−2 ≤ Y ≤ 2) ≈ .95.)

Exercise 1.94 (Hypothesis Testing). Suppose we run a casino, and we want to test
whether or not a particular roulette wheel is biased. Let p be the probability that red results
from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null
hypothesis, and “p ̸= 18/38” is the alternative hypothesis. (On a standard roulette wheel,
18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0
otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ

σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

A version of the Law of Large Numbers was stated as early as the 1500s. In the 1700s
and 1800s, various laws of large numbers were proved with weaker and weaker hypotheses.
For example, the L2 Weak Law was known to Chebyshev in 1867. The Strong Law of Large
Numbers might have first been proven in 1930 by Kolmogorov.

If the random variables have infinite mean, then the Strong Law cannot hold.

Exercise 1.95. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| = ∞. Then P(|Xn| >
n for infinitely many n ≥ 1) = 1. And P(limn→∞

X1+···+Xn

n
∈ (−∞,∞)) = 0. (Hint: show∑∞

n=1P(|Xn| > n) = ∞, then apply the second Borel-Cantelli Lemma. Write Sn

n
− Sn+1

n+1
=

Sn

n(n+1)
− Xn+1

n+1
, and consider what happens to both sides on the set where limn→∞

Sn

n
∈ R.)

Exercise 1.96 (Second Borel-Cantelli Lemma). Let A1, A2, . . . be independent events
with

∑∞
n=1P(An) = ∞. Then P(An occurs for infinitely many n ≥ 1) = 1. (Hint: using
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1− x ≤ e−x for any x ∈ R, show P(∩t
n=sA

c
n) ≤ exp(−

∑t
n=sP(An)), let t → ∞ to conclude

P(∪∞
n=sAn) = 1 for all s ≥ 1, then let s → ∞.)

The Central Limit Theorem was described by de Moivre in 1733 and again by Laplace in
1785 and 1812, where the Fourier Transform was used. In 1901, Lyapunov proved the Central
Limit Theorem under an assumption similar to E |X1|2+ε < ∞ for some ε > 0. The Central
Limit Theorem under the assumption of a finite (truncated) second moment was proven by
Lindeberg in 1920. This result was extended by Feller in 1935, also with contributions by
Lévy in the same year.

Theorem 1.97 (Lindeberg Central Limit Theorem for Triangular Arrays). For any
n ≥ 1, let Xn,1, . . . , Xn,n : Ωn → R be independent with mean zero and finite variance. (Note
e.g. that X3,1 and X2,2 might not be independent, and the sample space is allowed to change
as n changes.) Define

σ2
n :=

n∑
k=1

Var(Xn,k), ∀n ≥ 1.

Assume that σn > 0 for all n ≥ 1. If, for any ε > 0, we have

lim
n→∞

1

σ2
n

n∑
k=1

E(|Xn,k|21|Xn,k|>εσn) = 0, (∗)

then the random variables Xn,1+···+Xn,n

σn
converge in distribution to a standard Gaussian ran-

dom variable.

The Lindeberg condition (∗) implies the Feller condition

lim
n→∞

1

σ2
n

max
1≤k≤n

E|Xn,k|2 = 0.

It was shown by Feller that if the above assumptions hold (without (∗)) and if the Feller

condition holds, then the Lindeberg condition (∗) is necessary and sufficient for Xn,1+···+Xn,n

σn

to converge in distribution to a standard Gaussian random variable. The combined result is
sometimes known as the Lindeberg-Feller theorem.

Berry and Esseén separately gave an error bound for the Central Limit Theorem in the
early 1940s.

Theorem 1.98 (Berry-Esseén). Let σ > 0. Let X1, X2, . . . be i.i.d. real-valued random
variables with mean zero, EX2

1 = σ2, and E |X1|3 < ∞. Let Z be a standard Gaussian
random variable. Then for any n ≥ 1,

sup
t∈R

∣∣P((X1 + · · ·+Xn)/(σ
√
n) < t)−P(Z < t)

∣∣ ≤ E |X1|3

σ3
√
n

.

With the assumption of more bounded moments, an asymptotic expansion can be written,
with explicit dependence on t, for the difference |P(X1 + · · ·+Xn/

√
n < t)−P(Z < t)|.

This expansion is called the Edgeworth Expansion; see Feller, Vol. 2, XVI.4.(4.1).
One may ask for general conditions under which the average of any i.i.d. random variables

have a limiting distribution, with moment assumptions different than the Central Limit
Theorem. Necessary and sufficient conditions are described in the following Theorem.
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Theorem 1.99. Let X1, X2, . . . be i.i.d. real-valued random variables. Assume there exists
a function h : [0,∞) → (0,∞) such that, for any x > 0, limx→∞ L(tx)/L(x) = 1. Assume
also there exists θ ∈ [0, 1] and α ∈ (0, 2)such that

• limx→∞ P(X1 > x)/P(|X1| > x) = θ,
• P(|X1| > x) = x−αL(x), ∀ x > 0.

For any n ≥ 1, define

an := inf{x > 0: P (|X1| > x) ≤ 1/n}, bn := E(X11|X1|≤an).

Then X1+···+Xn−an
bn

converges in distribution to a random variable Y as n → ∞

Exercise 1.100. Show that there exists a nonzero random variableX such that, ifX1, X2, . . .
are i.i.d. copies of X, then X1+···+Xn

n
is equal in distribution to X, for any n ≥ 1. (Optional:

can you write out an explicit formula for the density of X?) (Hint: take the Fourier trans-
form.)

Show that there exists a nonzero random variable X such that, if X1, X2, . . . are i.i.d.
copies of X, then X1+···+Xn

n2 is equal in distribution to X, for any n ≥ 1.

By projection the random variables onto one-dimensional lines, the following Central Limit
Theorem in Rd can be proven from the corresponding result in R.

Theorem 1.101 (Central Limit Theorem in Rd). Let X(1), X(2), . . . be i.i.d. Rd-valued
random variables. Let µ ∈ Rd. (We write a random variable in its components as X(n) =

(X
(n)
1 , . . . , X

(n)
d ) ∈ Rd.) Assume EX(n) = µ for all n ≥ 1, and for any 1 ≤ i, j ≤ d, all of

the covariances
aij := E((X

(1)
i − EX

(1)
i )(X

(1)
j − EX

(1)
j )).

are finite. Then as n → ∞, X(1)+···+X(n)−nµ√
n

converges weakly to a Gaussian random vector

Z = (Z1, . . . , Zd) ∈ Rd with covariance matrix (aij)1≤i,j≤d.

Remark 1.102. By definition, a random vector Z = (Z1, . . . , Zd) ∈ Rd is Gaussian if, for

any v1, . . . , vd ∈ R, the random variable
∑d

i=1 viZi is a Gaussian random variable. Equiv-
alently, for any v ∈ Rd, the random variable ⟨v, Z⟩ is a Gaussian random variable. The
covariance matrix (aij)1≤i,j≤d of Z is defined by

aij := E((Zi − EZi)(Zj − EZj)).

Exercise 1.103. Let Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector.

• Show that the covariance matrix (aij)1≤i,j≤d of Z is symmetric, positive semidefinite.
That is, for any v ∈ Rd, we have

vTav =
d∑

i,j=1

vivjaij ≥ 0.

• Given any symmetric positive semidefinite matrix (bij)1≤i,j≤d, show that there exists a
Gaussian random vector Z such that the covariance matrix of Z is (bij)1≤i,j≤d. (Hint:
write the matrix b in its Cholesky decomposition b = rr∗, where r is a d × d real
matrix. Let e(1), . . . , e(d) be the rows of r. Let X1, . . . , Xd be independent standard
Gaussian random variables. Let X := (X1, . . . , Xd). Define Zi := ⟨X, e(i)⟩ for any
1 ≤ i ≤ d.)
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Exercise 1.104. Let X1, X2, . . . : Ω → R be random variables that converge in probability
to X : Ω → R. Let f : R → R be continuous. Then f(X1), f(X2), . . . converges in probability
to f(X).

Proposition 1.105.

• (Slutsky’s Theorem) Let X1, X2, . . . : Ω → R be random variables that converge in
distribution to X : Ω → R. Let c ∈ R. Let Y1, Y2, . . . : Ω → R be random variables
that converge in probability to c. Then X1 + Y1, X2 + Y2, . . . converges in distribution
to X + c. Also, X1Y1, X2Y2, . . . converges in distribution to cX.

• Let X1, X2, . . . : Ω → R be random variables that converge in distribution to X : Ω →
R. Let f : R → R be continuous. Then f(X1), f(X2), . . . converges in distribution to
f(X).

Exercise 1.106. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127

5.3884, 3.3529, 3.4311, 3.6905, 1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this
random variable. (This question is a bit open-ended, so there could be more than one correct
way of justifying your answer.)

Exercise 1.107. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell you the mean or standard deviation. Also,
around one or two of the numbers was corrupted by noise, computational error, tabulation
error, etc., so that it is totally unrelated to the actual Gaussian random variable.

−1.2045, −1.4829, −0.3616, −0.3743, −2.7298, −1.0601, −1.3298, 0.2554, 6.1865, 1.2185

−2.7273, −0.8453, −3.4282, −3.2270, −1.0137, 2.0653, −5.5393, −0.2572, −1.4512, 1.2347

To the best of your ability, determine what the mean and standard deviation are of this
random variable. Supposing you had instead a billion numbers, and 5 or 10 percent of
them were corrupted samples, can you come up with some automatic way of throwing out
the corrupted samples? (Once again, there could be more than one right answer here; the
question is intentionally open-ended.)

2. Review of Statistics

2.1. Exponential Families. A basic problem in statistics is to fit data to an unknown
probability distribution. As in Exercise 1.106, we might have a list of numbers, and we
known these numbers follow some Gaussian distribution, but we might not know the mean
and variance of this Gaussian. We then want to infer the mean and variance from the data.
In this example, there are two unknown parameters. In order to generalize this problem, we
introduce exponential families. Exponential families provide a general class of distributions
with a given number of unknown parameters.
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Definition 2.1 (Exponential Families). Let n, k be a positive integers and let µ be a
measure on Rn. Let t1, . . . , tk : Rn → R. Let h : Rn → [0,∞] so that h is not identically zero.
For any w = (w1, . . . , wk) ∈ Rk, define

a(w) := log

∫
Rn

h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

The set {w ∈ Rk : a(w) < ∞} is called the natural parameter space. On this set, the
function

fw(x) := h(x) exp
( k∑

i=1

witi(x)− a(w)
)
, ∀x ∈ Rn

satisfies
∫
Rn fw(x)dµ(x) = 1. So, the set of functions (which can be interpreted as probability

density functions, or as probability mass functions according to µ)

{fw : a(w) < ∞}

is called a k-parameter exponential family in canonical form.
More generally, let Θ ⊆ Rk and let w : Θ → Rk. We define a k-parameter exponential

family to be a set of functions {fθ : θ ∈ Θ, a(w(θ)) < ∞}, where

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ Rn.

An exponential family is called curved if the dimension of Θ is less than k.

Remark 2.2. If w : Θ → Rk has an inverse function, then the corresponding k-parameter
exponential family can be written in canonical form.

When we deal with probability density functions, we will simplify to dµ(x) = dx and
n = 1, so that

a(w) := log

∫
R
h(x) exp

( k∑
i=1

witi(x)
)
dx.

and we can then interpret

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ)))
)
, ∀x ∈ R

as probability density functions on the real line, since
∫
R fθ(x)dx = 1 for every θ such that

a(w(θ)) < ∞, and fw(θ)(x) ≥ 0 for all x ∈ R.
To specialize to probability mass functions on e.g. the integers, we let µ be counting

measure (so that µ({m}) = 1 for any integer m, and µ({x}) = 0 for any x ∈ R that is not
an integer), so that

a(w) := log
∞∑

m=−∞

h(m) exp
( k∑

i=1

wi(θ)ti(m)
)
.

23



and we can then interpret

fθ(m) := h(m) exp
( k∑

i=1

wi(θ)ti(m)− a(w(θ))
)
, ∀m ∈ Z

as a probability mass function, since
∑

m∈Z fw(θ)(m) = 1 and fw(θ)(m) ≥ 0 for all m ∈ Z.
Below we will use fθ interchangeably for a single variable density/mass function and for a

joint density/mass function.

Example 2.3. Let us see how to phrase Exercise 1.106 using a two parameter exponential
family. We write a Gaussian density of mean µ ∈ R and standard deviation σ > 0 as

1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2π

exp
( µ

σ2
x− 1

2σ2
x2 −

( µ2

2σ2
+ log σ

))
, ∀x ∈ R.

Then, we interpret θ as θ = (θ1, θ2) = (µ, σ2) ∈ R2, and define

t1(x) := x, t2(x) := x2,

w1(θ) :=
θ1
θ2

=
µ

σ2
, w2(θ) := − 1

2θ2
= − 1

2σ2
,

a(w(θ)) :=
θ21
2θ2

+
1

2
log θ2 =

µ2

2σ2
+ log σ,

and h(x) := 1√
2π

for all x ∈ R. Let Θ := {θ ∈ R2 : θ2 > 0}, and for any θ ∈ Θ, define

fθ(x) := h(x) exp
( 2∑

i=1

wi(θ)ti(x)− a(w(θ)))
)
, ∀x ∈ R.

Then {fθ : θ ∈ Θ} is a two parameter exponential family.
If we instead want to write this exponential family in canonical form, we replace the θ

terms with w1, w2 terms as follows

a(w) =
µ2

2σ2
+ log σ =

( µ

σ2

)2 [
(−4)

(−1)

2σ2

]−1

− 1

2
log
(
(−2)

(−1)

2σ2

)
= − w2

1

4w2

− 1

2
log(−2w2).

We then restrict to the set {(w1, w2) ∈ R2 : w2 < 0} and define

fw(x) := h(x) exp
( 2∑

i=1

witi(x)− a(w))
)
, ∀x ∈ R.

Lemma 2.4. The function a(w) is continuous and has continuous partial derivatives of all
orders on the interior of W . Moreover, we can compute these derivatives by differentiating
under the integral sign.

Lemma 2.4 is proven in Lemma 12.2 below.

Theorem 2.5 (Dominated Convergence Theorem). Let X1, X2, . . . : Ω → R be random
variables that converge almost surely. Assume that Y is a nonnegative random variable with
EY < ∞ and |Xn| ≤ Y almost surely, ∀ n ≥ 1. Then

E lim
n→∞

Xn = lim
n→∞

EXn.

24



Theorem 2.6. (Dominated Convergence Theorem) Let E be a measurable set. Let
{fn} be a sequence of measurable functions such that |fn| ≤ g, g integrable. If f = lim fn
exists then lim

∫
E
fn exists, f is integrable on E, and∫

E

fdµ = lim

∫
E

fndµ

Corollary 2.7. Let ε > 0. Let X : Ω → R be a random variable such that EewX < ∞ for
all w ∈ (−ε, ε). Then, for any integer n ≥ 1, EXn exists and

dn

dwn
|w=0e

wX = EXn.

Exercise 2.8. Let X : Ω → Rn be a random variable with the standard Gaussian distri-
bution:

P(X ∈ A) :=

∫
A

e−(x2
1+···+x2

n)/2dx(2π)−n/2, ∀A ⊆ Rn.

Let v1, . . . , vm be vectors in Rn. Let ⟨·, ·⟩ : Rn × Rn → R be the standard inner product
on Rn, so that ⟨x, y⟩ :=

∑n
i=1 xiyi for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

First, let v ∈ Rn and show that ⟨X, v⟩ is a mean zero Gaussian with variance ⟨v, v⟩.
Then, show that the random variables ⟨X, v1⟩, . . . , ⟨X, vm⟩ are independent if and only if

the vectors v1, . . . , vm are pairwise orthogonal.
(Hint: use the rotation invariance of the Gaussian.)

Exponential families were apparently introduced by Darmois, Koopman and Pitman in
the 1930s.

2.2. Random Samples. When conducting a poll of a sample population, one often assumes
that there exists a random variable X : Ω → R that describes a single observation from the
population. Repeated observations of the population are then performed independently of
each other. This concept is formalized as a random sample.

Definition 2.9 (Random Sample). Let n be a positive integer. A random sample of size
n is a sequence X1, . . . , Xn of independent, identically distributed (i.i.d.) random variables.

As in Exercise 1.106, a basic problem is to find e.g. the mean or standard deviation
of the unknown distribution of X. That is, if we have a random sample of size n then
1
n
(X1 + · · ·+Xn) seems to be a reasonable guess for the mean of the unknown distribution

if n is large. More generally, any function of the random sample is called a statistic.

Definition 2.10 (Statistic). Let n, k be positive integers. Let X1, . . . , Xn be a random
sample of size n. Let t : Rn → Rk. A statistic is a random variable of the form Y :=
t(X1, . . . , Xn). The distribution of Y is called a sampling distribution.

Example 2.11. The sample mean of a random sample X1, . . . , Xn of size n, denoted X,
is the following statistic:

X :=
1

n

n∑
i=1

Xi.
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Example 2.12. Let n > 1. The sample standard deviation of a random sample
X1, . . . , Xn of size n, denoted S, is the following statistic:

S :=

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2.

The sample variance of a random sample X1, . . . , Xn of size n is S2.

From the usual definition of the variance (for the uniform distribution on the integers
{1, . . . , n}), it might seem sensible to divide by n above instead of n − 1. The second part
of the following exercise attempts to explain why dividing by n− 1 is sensible.

Exercise 2.13. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample of size n.
Assume that µ := EX1 ∈ R and σ :=

√
var(X1) < ∞. Let X be the sample mean and let

S be the sample standard deviation of the random sample. Show the following

• Var(X) = σ2/n.
• ES2 = σ2.

If we divided by n instead of n − 1 in the definition of S, then the second part of the
above exercise would not hold. Since ES2 agrees with the variance of X, we say that S2 is
unbiased. We will discuss this concept more in Section 2.4.

Exercise 2.14. Let X : Ω → R be a random variable with EX2 < ∞. Show that the
quantity E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

The Central Limit Theorem implies that the combination of a large number of independent
identically distributed random actions results in a Gaussian distribution. For this reason, one
can often (but not always) assume that sampling from a large population is sampling from
the normal distribution with unknown mean and variance. Since this Gaussian assumption
is so common, we discuss properties of sampling from the normal in this section.

Proposition 2.15. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample from the
Gaussian distribution with mean µ ∈ R and variance σ2 > 0. Let X be the sample mean and
let S be the sample standard deviation.

• X and S are independent random variables.
• X is a Gaussian random variable with mean µ and variance σ2/n.
• (n−1)S2/σ2 is a chi-squared distributed random variable with n−1 degrees of freedom.

If X1, X2, . . . are a random sample from a Gaussian random variable with mean µ ∈ R
and standard deviation σ > 0, then

X1 + · · ·+Xn − nµ

σ
√
n

=
X − µ

σ/
√
n

is a Gaussian random variable with mean zero and variance one. If the mean and standard
deviation are unknown, then it might be difficult to find either µ or σ by looking at this
quantity for different values of µ and σ. However, if we substitute the sample variance S for
σ and examine instead

X − µ

S/
√
n
,
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then there is only one unknown parameter µ appearing in this expression. So, if we insert

different values of µ into X−µ
S/

√
n
, we might be able to determine the unknown mean µ, if

we knew the distribution of X−µ
S/

√
n
for fixed µ. This distribution is given by the following

proposition.

Proposition 2.16. Let X be a standard Gaussian random variable. Let Y be a chi squared
random variable with p degrees of freedom. Assume that X and Y are independent. Then
X/
√

Y/p has the following density, known as Student’s t-distribution with p degrees of
freedom:

f
X/(

√
Y/p)

(t) :=
Γ(p+1

2
)

√
p
√
πΓ(p/2)

(
1 +

t2

p

)− p+1
2
, ∀ t ∈ R.

Remark 2.17. If X1, . . . , Xn+1 is a random sample from a Gaussian random variable with
mean µ ∈ R and standard deviation σ > 0, then (X − µ)/(S/

√
n) also has Student’s t-

distribution, since X − µ has mean zero, and dividing the top and bottom by σ reduces
to the case treated in the proposition (using also independence of X and S by Proposition
2.15).

Exercise 2.18. Let X be a chi squared random variables with p degrees of freedom. Let
Y be a chi squared random variable with q degrees of freedom. Assume that X and Y
are independent. Show that (X/p)/(Y/q) has the following density, known as Snedecor’s
f-distribution with p and q degrees of freedom

f(X/p)/(Y/q)(t) :=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

, ∀ t > 0.

Exercise 2.19 (Order Statistics). Let X : Ω → R be a random variable. Let X1, . . . , Xn

be a random sample of size n from X. Define X(1) := min1≤i≤nXi, and for any 2 ≤ i ≤ n,
inductively define

X(i) := min
{
{X1, . . . , Xn}∖ {X(1), . . . , X(i−1)}

}
,

so that
X(1) ≤ X(2) ≤ · · · ≤ X(n) = max

1≤i≤n
Xi.

The random variables X(1), . . . , X(n) are called the order statistics of X1, . . . , Xn.

• Suppose X is a discrete random variable and we can order the values that X takes
as x1 < x2 < · · · . For any i ≥ 1, define pi := P(X ≤ xi). Show that, for any
1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =
n∑

k=j

(
n

k

)
pki (1− pi)

n−k.

(Hint: Let Y be the number of indices 1 ≤ j ≤ n such that Xj ≤ xi. Then Y is a
binomial random variable with parameters n and pi.)

You don’t have to show it, but ifX is a continuous random variable with density fX
and cumulative distribution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))

j−1(1− FX(x))
n−j, ∀x ∈ R.
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(This follows by differentiating the above identity for the cumulative distribution
function, i.e. by differentiating P(X(j) ≤ x) =

∑n
k=j

(
n
k

)
FX(x)

k(1−FX(x))
n−k, where

FX(x) := P(X ≤ x) for any x ∈ R.)
• Let X be a random variable uniformly distributed in [0, 1]. For any 1 ≤ j ≤ n, show
that X(j) is a beta distributed random variable with parameters j and n − j + 1.
Conclude that (as you might anticipate)

EX(j) =
j

n+ 1
.

• Let a, b ∈ R with a < b. Let U be the number of indices 1 ≤ j ≤ n such that
Xj ≤ a. Let V be the number of indices 1 ≤ j ≤ n such that a < Xj ≤ b. Show
that the vector (U, V, n − U − V ) is a multinomial random variable, so that for any
nonnegative integers u, v with u+ v ≤ n, we have

P(U = u, V = v, n− U − V = n− u− v)

=
n!

u!v!(n− u− v)!
FX(a)

u(FX(b)− FX(a))
v(1− FX(b))

n−u−v.

Consequently, for any 1 ≤ i, j ≤ n,

P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) +P(U ≥ j).

So, it is possible to write an explicit formula for the joint distribution of X(i) and
X(j) (but you don’t have to write it yourself).

From Examples 2.11 and 2.12 and Exercise 2.13, the sample mean and sample variance
give good estimates for the mean and variance of random samples. More generally, we might
want an estimate for a function of the mean or a function of the variance. Such an estimate
is provided by the following version of the Central Limit Theorem.

Theorem 2.20 (Delta Method). Let θ ∈ R. Let Y1, Y2, . . . be random variables such that√
n(Yn−θ) converges in distribution to a mean zero Gaussian random variable with variance

σ2 > 0. Let f : R → R. Assume that f ′(θ) exists. Then
√
n(f(Yn)− f(θ))

converges in distribution to a mean zero Gaussian with variance σ2(f ′(θ))2 as n → ∞.

Theorem 2.21 (Convergence Theorem with Bounded Moment). Let X1, X2, . . . be
random variables that converge in distribution to a random variable X. Assume ∃ 0 < ε, c <
∞ such that E |Xn|1+ε ≤ c, ∀ n ≥ 1. Then

EX = lim
n→∞

EXn.

For a proof, see my Graduate Probability Notes (Theorem 1.59 together with Exercise
3.8(iii).)

In the case that f ′(θ) = 0 in the Delta Method, we can instead use a second order Taylor
expansion as follows.
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Theorem 2.22 (Second Order Delta Method). Let θ ∈ R. Let Y1, Y2, . . . be random
variables such that

√
n(Yn − θ) converges in distribution to a mean zero Gaussian random

variable with variance σ2 > 0. Let f : R → R. Assume that f ′(θ) = 0, f ′′(θ) exists and is
nonzero. Then

n(f(Yn)− f(θ))

converges in distribution to a chi squared random variable with one degree of freedom, mul-
tiplied by σ2 1

2
f ′′(θ) as n → ∞.

Let m > 2 be an integer. Theorem 2.22 generalizes to: if f ′(θ) = · · · = f (m−1)(θ) = 0, if
f (m)(θ) exists and is nonzero, then as n → ∞,

nm/2(f(Yn)− f(θ))

converges in distribution to the distribution of the absolute value of a Gaussian to the mth

power, multiplied by σm 1
m!
f (m)(θ).

The assumption that astronomical data sampling error arose from sampling from the
normal distribution was common in the early 1800s, and Quetelet was one of the first of that
period to apply the normal assumption to other scientific fields.

2.3. Data Reduction. Suppose we have some data and an exponential family. We would
like to find the parameter θ among the exponential family that fits the data well. One way
to achieve this goal is to look for a sufficient statistic.

Definition 2.23 (Sufficient Statistic). Suppose X = (X1, . . . , Xn) is a random sample of
size n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of PDFs or PMFs (such as an
exponential family). Let t : Rn → Rk, so that Y := t(X1, . . . , Xn) is a statistic. We say that
Y is a sufficient statistic for θ if, for every y ∈ Rk and for every θ ∈ Θ, the conditional
distribution of (X1, . . . , Xn) given Y = y (with respect to probabilities given by fθ) does not
depend on θ. That is, Y provides sufficient information to determine θ from X1, . . . , Xn.

Definition 2.24 (Minimal Sufficient Statistic). Suppose X = (X1, . . . , Xn) is a random
sample of size n from a family {fθ : θ ∈ Θ} of joint probability density functions, or joint
probability mass functions. Let t : Rn → Rk, so that Y := t(X1, . . . , Xn) is a statistic.
Assume that Y is sufficient for θ. Then Y is minimal sufficient for θ if, for every statistic
Z : Ω → Rm that is sufficient for θ, there exists a function r : Rm → Rk such that Y = r(Z).

Theorem 2.25. Suppose (X1, . . . , Xn) is a random sample of size n from a family {fθ : θ ∈
Θ} of joint probability density functions or joint probability mass functions. (In the case
of probability mass functions, we also assume that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is
countable.) Let t : Rn → Rm and define Y := t(X1, . . . , Xn). When {fθ : θ ∈ Θ} are joint
probability density functions, suppose the following condition holds for every x, y ∈ Rn, and
when {fθ : θ ∈ Θ} are joint probability mass functions, suppose the following condition holds
for every x, y in the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0}.

∃ c(x, y) ∈ R that does not depend on θ such that

fθ(x) = c(x, y)fθ(y) ∀ θ ∈ Θ

if and only if t(x) = t(y).

Then Y is minimal sufficient.
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Exercise 2.26. Let A,B,Ω be sets. Let u : Ω → A and let t : Ω → B. Assume that, for
every x, y ∈ Ω, if u(x) = u(y), then t(x) = t(y). Show that there exists a function s : A → B
such that

t = s(u).

Remark 2.27. If a minimal sufficient statistic exists, it is unique up to an invertible trans-
formation. To see this, let Y : Ω → Rn and let Z : Ω → Rm be minimal sufficient statistics.
By minimality of Y , there exists r : Rm → Rn such that Y = r(Z). By minimality of Z,
there exists s : Rn → Rm such that Z = s(Y ). Composing each of these identities with each
other, we getj

Y = r(s(Y )), Z = s(r(Z)).

That is, r ◦ s is the identity map on the range of Y , and s ◦ r is the identity map on the
range of Z. That is, Y and Z are each the invertible image of each other.

The uniqueness of the minimal sufficient statistic is nice, since it implies that (up to an
invertible map), there is at most one way to reduce the data at hand when we are trying to
determine the parameter θ that fits our data.

Proposition 2.28 (Existence of Minimal Sufficient Statistic). Suppose X1, . . . , Xn is a
random sample of size n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of probability
density functions, or a family of probability mass functions. (In the case of probability mass
functions, we also assume that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.) Then there
exists a statistic Y that is minimal sufficient for θ.

Minimal sufficient statistics provide sufficient information to estimate a parameter θ in a
family of distributions {fθ : θ ∈ Θ}. However, even a minimal sufficient statistic can have
excess “information.” For example, we saw in Proposition 2.28 that a minimal sufficient
statistic can have infinitely many nontrivial components in its range. It would be desirable
to come up with statistics that contain as little unnecessary information as possible, while
still being minimal sufficient. In order to accomplish this task, we first define what we mean
by “excess information” of a statistic.

Definition 2.29 (Ancillary Statistic). Suppose X1, . . . , Xn is a random sample of size
n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of distributions. A statistic
Y = t(X1, . . . , Xn), t : Rn → Rm is ancillary for θ if the distribution of Y does not depend
on θ.

Example 2.30. Let X1, . . . , Xn be a random sample of size n from the location family for
the Cauchy distribution:

fθ(x) :=
n∏

i=1

1

π

1

1 + (xi − θ)2
, ∀x = (x1, . . . , xn) ∈ Rn, ∀ θ ∈ R.

Then the order statistics X(1) ≤ · · · ≤ X(n) are minimal sufficient for θ. Sufficiency follows
by the Factorization Theorem 2.48 since, if t(x) := (x(1), . . . , x(n)), then fθ(t(x)) = fθ(x).
Minimal sufficiency follows from Theorem 2.25, since if x, y ∈ Rn are fixed, then the following
ratio is constant in θ

fθ(x)

fθ(y)
=

∏n
i=1

1
1+(xi−θ)2∏n

i=1
1

1+(yi−θ)2

=

∏n
i=1[1 + (yi − θ)2]∏n
i=1[1 + (xi − θ)2]

,
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only when t(x) = t(y). To see this, note that the top and bottom are each polynomials in θ,
and these polynomials must be a constant multiple of each other, so their (complex) roots
must be identical (counting multiplicities), and these roots are θ = xi ±

√
−1, θ = yi ±

√
−1

respectively (i = 1, . . . , n), so that t(x) = t(y).
Even though the order statistics (X(1), . . . , X(n)) are minimal sufficient for θ in this case,

they certainly seem to contain a lot of extraneous information about θ. Indeed, the statistic
X(n)−X(1) is ancillary. To see this, let Z1, . . . , Zn be independent Cauchy random variables,
i.e. they each have density 1

π
1

1+x2 for all x ∈ R. Then Xi = Zi + θ for all 1 ≤ i ≤ n, so that
X(i) = Z(i) + θ for all 1 ≤ i ≤ n, so that X(n) −X(1) = Z(n) − Z(1), and the last expression
does not depend on θ.

Definition 2.31 (Complete Statistic). Suppose X1, . . . , Xn is a random sample of size n
from a family of distributions {fθ : θ ∈ Θ}. Let t : Rn → Rm. A statistic Y = t(X1, . . . , Xn)
is complete for {fθ : θ ∈ Θ} if the following holds:

For any f : Rm → R such that Eθf(Y ) = 0 ∀ θ ∈ Θ, it holds that f(Y ) = 0.

(When we assume that Eθf(Y ) can be defined, we also assume that Eθ |f(Y )| < ∞ for all
θ ∈ Θ.)

Remark 2.32. From our discussion above, we see that a nonconstant complete statistic is
not ancillary. (If Y is ancillary, then there is a constant c ∈ R such that Eθ(Y − c) = 0
for all θ ∈ Θ, and if Y is also complete, we then have Y − c = 0, so that Y = c.) Also, a
complete statistic may not be sufficient. Consider for example a statistic that is constant.

Remark 2.33. Unfortunately, a complete sufficient statistic might not exist.

Exercise 2.34. Give an example of a statistic Y that is complete and nonconstant, but such
that Y is not sufficient.

Theorem 2.35 (Bahadur’s Theorem). If Y is a complete sufficient statistic for a family
{fθ : θ ∈ Θ} of joint probability densities or joint probability mass functions, then Y is a
minimal sufficient statistic for θ. (In the case of probability mass functions, we also assume
that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.)

Remark 2.36. So, by Remark 2.27, a complete sufficient statistic is unique, up to an
invertible map. Also, by Example 2.30, the converse of Bahadur’s Theorem is false.

The following theorem says that complete sufficient statistics have no ancillary informa-
tion, unlike the minimal sufficient statistics, as we saw in Example 2.30.

Theorem 2.37 (Basu’s Theorem). If Y is a complete sufficient statistic for {fθ : θ ∈ Θ},
and if Z is ancillary for θ, then for all θ ∈ Θ, Y and Z are independent with respect to fθ.

Sufficient and ancillary statistics were introduced by Fisher in 1920. Complete and minimal
sufficient statistics were studied in the mid 1900s by Bahadur, Halmos, and Savage, and
Lehmann and Scheffé.

Above, we have typically focused on families of probability density functions or probability
mass functions, in order to avoid use of measure theory. However, many of the above
theorems naturally generalize to the setting of a dominated family of functions.
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Definition 2.38 (Dominated Family). Let Θ ⊆ Rm. Let {fθ : θ ∈ Θ} be a family of
functions so that fθ : Rn → [0,∞) for all θ ∈ Θ. We say that {fθ : θ ∈ Θ} is a dominated
family if there exists a measure µ on Rm such that Pθ is absolutely continuous with respect
to µ, for all θ ∈ Θ.

For example, a family of probability density functions is absolutely continuous with respect
to Lebesgue measure. And a family of probability mass functions is absolutely continuous
with respect to a counting measure, if ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.
We can then restate the Factorization Theorem and its Corollaries for dominated families.

Theorem 2.39 (Factorization Theorem). Suppose X = (X1, . . . , Xn) is a random sample
of size n from a dominated family {fθ : θ ∈ Θ} that is dominated by a measure µ on Rn.
That is, fθ : Rn → [0,∞) for all θ ∈ Θ. Let t : Rn → Rk, so that Y := t(X1, . . . , Xn)
is a statistic. Then Y is sufficient for θ if and only if there exist nonnegative functions
{gθ : θ ∈ Θ}, h : Rn → [0,∞), gθ : Rk → [0,∞), such that

fθ(x) = gθ(t(x))h(x), ∀ θ ∈ Θ, for a.e. x with respect to µ.

Theorem 2.40. Suppose X = (X1, . . . , Xn) is a random sample of size n from a dominated
family {fθ : θ ∈ Θ} that is dominated by a measure µ on Rn. Let t : Rn → Rm and define
Y := t(X1, . . . , Xn). Suppose the following condition holds for a.e. x, y ∈ Rn with respect to
µ:

∃ c(x, y) ∈ R that does not depend on θ such that

fθ(x) = c(x, y)fθ(y) ∀ θ ∈ Θ

if and only if t(x) = t(y).

Then Y is minimal sufficient.

Proposition 2.41 (Existence of Minimal Sufficient Statistic). Let X = (X1, . . . , Xn)
be a random sample of size n from a dominated family {fθ : θ ∈ Θ} that is dominated by a
measure µ on Rn. Suppose the set {fθ : θ ∈ Θ} has a countable dense set with respect to the
total variation metric d(fθ, fθ′) = supB⊆Rn |Pθ(B)−Pθ′(B)|. Then there exists a statistic Y
that is minimal sufficient for θ.

To see the original proof, read Theorem 6.1 in “Completeness, Similar Regions, and Un-
biased Estimation-Part I” by Lehmann and Scheffé.

2.4. Estimation of Parameters. A basic problem in statistics is to fit data to an unknown
probability distribution. As in Exercise 1.106, we might have a list of numbers, and we
known these numbers follow some Gaussian distribution, but we might not know the mean
and variance of this Gaussian. We then want to infer the mean and variance from the data.
In this example, there are two unknown parameters. In general, we might want to estimate
any number of unknown parameters.

Let X1, . . . , Xn be a random sample of size n from a family of distributions {fθ : θ ∈ Θ}.
We can regard {fθ : θ ∈ Θ} as either a family of probability density functions, or a family of
probability mass functions. If Y is a statistic that is used to estimate the parameter θ that
fits the data at hand, we then refer to Y as a point estimator or estimator.
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Example 2.42. In Exercise 1.106 we have a random sample X1, . . . , X20 from a Gaussian
distribution with unknown mean and variance. We denote the unknown Gaussians as

{fθ : θ ∈ Θ} = {fµ,σ(x) : (µ, σ) ∈ R2, µ ∈ R, σ > 0} =
{ 1√

2πσ
e−

(x−µ)2

2σ2 : µ ∈ R, σ > 0
}
.

One estimator for the unknown mean µ is the sample mean

X1 + · · ·+X20

20
.

A “less good” estimator for the unknown mean µ could be X1 +X2 or (X1 +X3)/2.
As previously discussed, an estimator for the unknown variance σ2

1

19

20∑
i=1

(Xi −X)2.

And an estimator for the unknown parameter σ itself is

S :=

√√√√ 1

19

20∑
i=1

(Xi −X)2.

As we see from this example, there are many ways of defining estimators for various
unknown parameters. One focus of this course will be criteria for determining if an estimator
is “good” or not.

There are many different ways to create estimators. A priori, it might not be clear which
estimator is the best. One desirable property of an estimator is that it is unbiased.

Definition 2.43. Let X1, . . . , Xn be a random sample of size n from a family of distributions
{fθ : θ ∈ Θ}. Let t : Rn → Rk and let Y := t(X1, . . . , Xn) be an estimator for g(θ). Let
g : Θ → Rk. We say that Y is unbiased for g(θ) if

EθY = g(θ), ∀ θ ∈ Θ.

For example, we saw in Exercise 2.13 that the sample mean and sample variance are
unbiased estimates of the mean and variance, respectively.

Definition 2.44 (Consistency). Let {fθ : θ ∈ Θ} be a family of distributions. Let Y1, Y2, . . .
be a sequence of estimators of g(θ) where g : Θ → Rk. We say that Y1, Y2, . . . is consistent
for g(θ) if, for any θ ∈ Θ, Y1, Y2, . . . converges in probability to the constant value g(θ), with
respect to the probability distribution fθ.

Typically, we will take Yn to be a function of a random sample of size n, for all n ≥ 1.

Definition 2.45 (Method of Moments). Let g : Θ → Rk. Suppose we want to estimate
g(θ) for any θ ∈ Θ. Suppose there exists h : Rj → Rk such that

g(θ) = h(µ1, . . . , µj).

Then the estimator

h(M1, . . . ,Mj)

is a method of moments estimator for g(θ).
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Suppose we have some data and a family of distributions {fθ : θ ∈ Θ}. We would like to
find the parameter θ among the distributions that fits the data well. One way to achieve
this goal is to look for a sufficient statistic. Once we find the sufficient statistic, we can
then apply the Rao-Blackwell Theorem, Theorem 2.51 below, to get a good estimate of the
parameter θ.

Definition 2.46 (Sufficient Statistic). Suppose X = (X1, . . . , Xn) is a random sample of
size n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of densities. Let t : Rn → Rk,
so that Y := t(X1, . . . , Xn) is a statistic. We say that Y is a sufficient statistic for θ if,
for every y ∈ Rk and for every θ ∈ Θ, the conditional distribution of (X1, . . . , Xn) given
Y = y (with respect to probabilities given by fθ) does not depend on θ. That is, Y provides
sufficient information to determine θ from X1, . . . , Xn.

Example 2.47. Let X1, . . . , Xn be a random sample of size n from a Gaussian distribution
with known variance σ2 > 0 and unknown mean µ ∈ R. We claim that Y := (X1+· · ·+Xn)/n
is a sufficient statistic for µ. Let x1, . . . , xn ∈ R and let y ∈ R. Then Y is a Gaussian with
variance σ2/n and mean µ, and we may assume y = (x1 + · · ·+ xn)/n, so that

fX1,...,Xn|Y (x1, . . . , xn|y) =
fX1,...,Xn,Y (x1, . . . , xn, y)

fY (y)
=

fX1,...,Xn,Y (x1, . . . , xn, n
−1
∑n

i=1 xi)

fY (y)

=
fX1,...,Xn(x1, . . . , xn)

fY (y)
=

σ−n(2π)−n/2 exp
(
− 1

2σ2 (x
2
1 + · · ·+ x2

n)− n
2σ2µ

2 + µ
σ2

∑n
i=1 xi

)
n1/2σ−1(2π)−1/2 exp

(
− n

2σ2y2 − n
2σ2µ2 + nµ

σ2 y
)

=
σ−n(2π)−n/2 exp

(
− 1

2σ2 (x
2
1 + · · ·+ x2

n)
)

n1/2σ−1(2π)−1/2 exp
(
− n

2σ2y2
) .

Since the last expression does not depend on µ, Y is sufficient for µ.

Theorem 2.48 (Factorization Theorem). Suppose X = (X1, . . . , Xn) is a random sample
of size n from a family {fθ : θ ∈ Θ} of joint probability density functions, or a family of joint
probability mass functions. (In the case of probability mass functions, we also assume that
the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.) Let t : Rn → Rk, so that Y := t(X1, . . . , Xn)
is a statistic. Then Y is sufficient for θ if and only if there exist nonnegative functions
{gθ : θ ∈ Θ}, h : Rn → [0,∞), gθ : Rk → [0,∞), such that

fθ(x) = gθ(t(x))h(x), ∀ θ ∈ Θ.

When {fθ : θ ∈ Θ} are joint probability density functions, this equality holds for all x ∈ Rn

except a set of measure zero. When {fθ : θ ∈ Θ} are joint probability mass functions, this
equality holds on the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0}.

A set B ⊆ Rn of measure zero satisfies: for all ε > 0, there exists a countable set of balls
B1, B2, . . . such that the total volume of B1, B2, . . . is less than ε, and B ⊆ ∪∞

i=1Bi.

Exercise 2.49 (Conditional Expectation as a Random Variable). LetX, Y, Z : Ω → R
be discrete or continuous random variables. Let A be the range of Y . Define g : A → R by
g(y) := E(X|Y = y), for any y ∈ A. We then define the conditional expectation of X
given Y , denoted E(X|Y ), to be the random variable g(Y ).
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(i) LetX, Y be random variables such that (X, Y ) is uniformly distributed on the triangle
{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}. Show that

E(X|Y ) =
1

2
(1− Y ).

(ii) Prove the following version of the Total Expectation Theorem

E(E(X|Y )) = E(X).

• If X is a random variable, and if f(t) := E(X − t)2, t ∈ R, then the function
f : R → R is uniquely minimized when t = EX. A similar minimizing property holds
for conditional expectation. Let h : R → R. Show that the quantity E(X − h(Y ))2

is minimized among all functions h : R → R when h(Y ) = E(X|Y ). (Hint: use the
previous item.)

(iii) Show the following:

E(Xh(Y )|Y ) = h(Y )E(X|Y ).

E([E(X|h(Y ))] |Y ) = E(X|h(Y )).

(iv) Show the following

E(X|X) = X.

E(X + Y |Z) = E(X|Z) + E(Y |Z).
(v) If Z is independent of X and Y , show that

E(X|Y, Z) = E(X|Y ).

(Here E(X|Y, Z) is notation for E(X|(Y, Z)) where (Y, Z) is interpreted as a random
vector, so that X is conditioned on the random vector (Y, Z).)

Even if an estimator is unbiased, its distribution of values might be quite far from g(θ).
Recall that we made a similar observation that the Law of Large Numbers does not give any
information about the Central Limit Theorem. It is desirable to examine the distribution
of values of the estimator. The most common way to check the quality of an estimator in
this sense is to examine the mean-squared error, or squared L2 norm, of the estimator minus
g(θ):

Eθ(Y − g(θ))2.

If the estimator is unbiased, this quantity is equal to the variance of Y .

Definition 2.50 (UMVU). Let X1, . . . , Xn be a random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Let g : Θ → R. Let t : Rn → R and let Y := t(X1, . . . , Xn) be an
unbiased estimator for g(θ). We say that Y is uniformly minimum variance unbiased
(UMVU) if, for any other unbiased estimator Z for g(θ), we have

Varθ(Y ) ≤ Varθ(Z), ∀ θ ∈ Θ.

The Rao-Blackwell Theorem says that any sufficient statistic can be used to improve any
estimator for g(θ).
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Theorem 2.51 (Rao-Blackwell). Let Z be a sufficient statistic for {fθ : θ ∈ Θ} and let Y
be an estimator for g(θ). Define W := Eθ(Y |Z). (Since Z is sufficient for θ, W does not
depend on θ by Exercise 2.54, i.e. W is a well-defined function of the random sample but
not an explicit function of θ.) Let θ ∈ Θ with r(θ, Y ) < ∞ and such that ℓ(θ, y) is convex in
y ∈ R. Then

r(θ,W ) ≤ r(θ, Y ).

And if ℓ(θ, y) is strictly convex in y, then this inequality is strict unless W = Y .

Recall that the function t 7→ t2 is a convex function of t ∈ R.

Definition 2.52. Let ϕ : R → R. We say that ϕ is strictly convex if, for any x, y ∈ R
with x ̸= y and for any t ∈ (0, 1), we have

ϕ(tx+ (1− t)y) < tϕ(x) + (1− t)ϕ(y).

A strictly convex function is convex.

Exercise 2.53 (Conditional Jensen Inequality). Prove Jensen’s inequality for the con-
ditional expectation. Let X, Y : Ω → R be random variables that are either both discrete or
both continuous. Let ϕ : R → R be convex. Then

ϕ(E(X|Y )) ≤ E(ϕ(X)|Y )

If ϕ is strictly convex, then equality holds only if X is constant on any set where Y is
constant. That is, (by Exercise 2.26) equality holds only if X is a function of Y .
(Hint: first show that if X ≥ Z then E(X|Y ) ≥ E(Z|Y ).)

Exercise 2.54. Let Y, Z be a statistics, and suppose Z is sufficient for {fθ : θ ∈ Θ}. Show
that W := Eθ(Y |Z) does not depend on θ. That is, there is a function t : Rn → R that does
not depend on θ such that W = t(X), where X is the sample distribution.

Remark 2.55. By Exercise 2.49, if Y is unbiased, then EθW = EθEθ(Y |Z) = EθY , so that
W is also unbiased in Theorem 2.51.

Another desirable property of an estimator is high efficiency. That is, the estimator is
good with a small number of samples. One way to quantify “good” in the previous sentence
is to define a notion of information and to try to maximize the information content of the
estimator.

Definition 2.56 (Fisher Information). Let {fθ : θ ∈ Θ} be a family of multivariable
probability densities or probability mass functions. Assume Θ ⊆ R. Let X be a random
vector with distribution fθ. Define the Fisher information of the family to be

I(θ) = IX(θ) := Eθ(
d

dθ
log fθ(X))2, ∀ θ ∈ Θ,

if this quantity exists and is finite.

In order for the Fisher information to be well defined, the set {x ∈ Rn : fθ(x) > 0} should
not depend on θ, otherwise the derivative d

dθ
log fθ(X) might not be well-defined.

If {fθ : θ ∈ Θ} are n-dimensional probability densities, note that

Eθ
d

dθ
log fθ(X) =

∫
Rn

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

d

dθ
fθ(x)dx =

d

dθ

∫
Rn

fθ(x)dx =
d

dθ
(1) = 0.
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Similarly, if {fθ : θ ∈ Θ} are multivariable probability mass functions, Eθ
d
dθ
log fθ(X) = 0.

So, we could equivalently define

I(θ) = Varθ

( d

dθ
log fθ(X)

)
, ∀ θ ∈ Θ.

(Differentiation under the integral sign can be justified whenever Proposition 10.9 applies.)
We also have another equivalent definition:

Eθ
d2

dθ2
log fθ(X) =

∫
Rn

d

dθ

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

fθ(x)
d2

dθ2
fθ(x)−

(
d
dθ
fθ(x)

)2
[fθ(x)]2

fθ(x)dx

=

∫
Rn

d2

dθ2
fθ(x)−

( d

dθ
log fθ(x)

)2
fθ(x)dx = 0− IX(θ) = −IX(θ).

The Fisher information expresses the amount of “information” a random variable has.

Example 2.57. Let σ > 0 and let fθ(x) :=
1

σ
√
2π
e−(x−θ)2/[2σ2] for all θ ∈ Θ, x ∈ R. We have

I(θ) = Varθ

( d

dθ

−(X − θ)2

2σ2

)
=

1

σ4
Varθ(X − θ) =

1

σ2
.

Proposition 2.58. Let X be a random variable with distribution from {fθ : θ ∈ Θ} (densities
or mass functions). Let Y be a random variable with distribution from {gθ : θ ∈ Θ} (densities
or mass functions). Assume that X and Y are independent. Then

I(X,Y )(θ) = IX(θ) + IY (θ), ∀ θ ∈ Θ.

Our primary interest in information is the following inequality. Theorem 2.59 gives a lower
bound on the variance of unbiased estimators of θ.

Theorem 2.59 (Cramér-Rao/ Information Inequality). Let X : Ω → Rn be a random
variable with distribution from a family of multivariable probability densities or probability
mass functions {fθ : θ ∈ Θ} with Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. For
any θ ∈ Θ let g(θ) := EθY . Then

Varθ(Y ) ≥ |g′(θ)|2

IX(θ)
, ∀ θ ∈ Θ.

In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ 1

IX(θ)
, ∀ θ ∈ Θ.

Equality occurs for some θ ∈ Θ only when d
dθ
log fθ(X) and Y − EθY are multiples of each

other.

(Differentiation under the integral sign in the proof can be justified whenever Proposition
10.9 applies. Also, we assume that {x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e.
x ∈ Rn, (d/dθ)fθ(x)) exists and is finite.)

Remark 2.60. In the case that X1, . . . , Xn are i.i.d. real-valued random variables and
X = (X1, . . . , Xn), Proposition 2.58 says that IX(θ) =

∑n
i=1 IXi

(θ) = nIX1(θ). And if Y is
unbiased for θ, Theorem 2.59 says

Varθ(Y ) ≥ 1

nIX1(θ)
, ∀ θ ∈ Θ.
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For a one-parameter family of distributions, the equality case of Theorem 2.59 allows us
to find a UMVU for θ. To find such an estimator, we look for affine functions of d

dθ
log fθ(X).

Let X1, . . . , Xn be a random sample of size n from a family of distributions {fθ : θ ∈ Θ}.
So, we denote the joint distribution of X1, . . . , Xn as

n∏
i=1

fθ(xi), ∀ 1 ≤ i ≤ n.

If we have data x ∈ Rn, recall that we defined the function ℓ : Θ → [0,∞)

ℓ(θ) :=
n∏

i=1

fθ(xi)

and called it the likelihood function.

Definition 2.61 (Maximum Likelihood Estimator). The maximum likelihood esti-
mator (MLE) Y is the estimator maximizing the likelihood function. That is, Y := t(X),
t : Rn → Θ and t(x1, . . . , xn) is defined to be any value of θ ∈ Θ that maximizes the function

n∏
i=1

fθ(xi),

if this value of θ exists. A priori, the θ maximizing ℓ(θ) might not exist, and it might not be
unique

Remark 2.62. Maximizing the likelihood ℓ(θ) is equivalent to maximizing log ℓ(θ), since
log is monotone increasing.

Example 2.63. Consider a random sample from a Gaussian distribution with unknown
mean µ ∈ R and unknown variance σ2 > 0, so that θ = (µ, σ). The value of θ maximizing

log
n∏

i=1

1

σ
√
2π

exp(−(xi − µ)2/[2σ2]) =
n∑

i=1

− log σ − 1

2
log(2π)− (xi − µ)2

2σ2

can be found by differentiating in the two parameters. We have

∂

∂µ
log ℓ(θ) =

n∑
i=1

xi − µ

σ2
,

∂

∂σ
log ℓ(θ) =

n∑
i=1

−σ−1 + σ−3(xi − µ)2,

Setting both terms equal to zero, we get

µ =
1

n

n∑
i=1

xi, σ2 =
1

n

n∑
i=1

(xi − µ)2.

This is the unique critical point of the function ℓ(θ). It remains to show that this critical
point is the global maximum of ℓ(θ). It follows from Exercise 1.68 that, if z ̸= 1

n

∑n
i=1 xi,

then
n∑

i=1

(
xi −

1

n

n∑
i=1

xi

)2
<

1

n

n∑
i=1

(xi − z)2.
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Therefore, for any such z ∈ R

log ℓ(
1

n

n∑
i=1

xi, σ) > log ℓ(z, σ).

So, we need only show that log ℓ( 1
n

∑n
i=1 xi, σ) is maximized when σ =

√
1
n

∑n
i=1(xi − µ)2.

Since

∂

∂σ
log ℓ(θ) = σ−3

n∑
i=1

−σ2 + (xi − µ)2,

the function σ 7→ log ℓ(µ, σ) is increasing, and then decreasing, so that the global maximum
occurs at the unique critical point.

We already know the sample mean M1 is UMVU for the mean (by Example 2.47 M1 is
sufficient for the mean, by the Rao-Blackwell Theorem 2.51 Eθ(M1|M1) is UMVU for the
mean, and Eθ(M1|M1) = M1 by Exercise 2.49(iv)). Let

Y = Yn = Yn(X1, . . . , Xn) :=
1

n

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2
.

We also know from Proposition 2.15 that Y is asymptotically unbiased for σ2, i.e.

lim
n→∞

EY

σ2
= lim

n→∞

n− 1

n
= 1.

We will show that Y has asymptotically optimal variance. If we fix µ ∈ R and look at the
information of the n-dimensional Gaussian X, we get by modifying Example 2.57 and using
Proposition 2.58

IX(σ) = nIX1(σ) = nVarσ

( d

dσ

−(X1 − µ)2

2σ2

)
= nσ−6Varσ[(X1 − µ)2]

= nσ−6Eσ((X1 − µ)4 − σ4) = 2nσ−2.

By the Cramér-Rao Inequality, Theorem 2.59, with g(σ) = Eσ(Y ) = σ2(n − 1)/n (using
Proposition 2.15), the variance of any unbiased estimator Z of σ2(n− 1)/n satisfies

Varσ(Z) ≥
|g′(σ)|2

IX(σ)
=

4σ2(n− 1)2

n22nσ−2
=

2σ4(n− 1)2

n3
.

And by Proposition 2.15,

Varσ(Y ) = Varσ

[σ2

n

1

σ2

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2]
=

σ4

n2
2(n− 1) =

2σ4(n− 1)

n2
.

In summary,

lim
n→∞

EY

σ2
= 1, lim

n→∞

Varσ(Y )

|g′(σ)|2 /IX(σ)
= 1.

That is, the estimator Y is asymptotically unbiased (as n → ∞) and it asymptotically
achieves the optimal variance bound in the Cramér-Rao Inequality.
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Example 2.64. Consider a random sample from the exponential density 1x>0θe
−θx with

θ > 0 unknown. Then

log
n∏

i=1

1xi>0θe
−θxi = 1x1,...,xn>0 log θ − θ

n∑
i=1

xi.

So,

d

dθ
log

n∏
i=1

1xi>0θe
−θxi = 1x1,...,xn>0

n

θ
−

n∑
i=1

xi.

As a function of θ, the likelihood is increasing for small θ and decreasing for large θ, so there
is a unique maximum of

Y :=
1

1
n

∑n
i=1Xi

,

which is the MLE for θ.
To find the asymptotic efficiency of the MLE, recall that the exponential distribution has

mean θ−1 and variance θ−2, so by the Central Limit Theorem 1.90,
√
n(Xn− θ−1) converges

in distribution to a Gaussian random variable with mean 0 and variance θ−2 as n → ∞. So,
the Delta Method, Theorem 2.20, with g(x) = 1/x, g′(x) = −1/x2 for all x > 0, shows that

√
n
( 1

Xn

− θ
)
=

√
n
( 1

Xn

− g(1/θ)
)

converges in distribution to a Gaussian random variable with mean 0 and with variance
(g′(1/θ))2θ−2 = θ2 as n → ∞. That is, (using also Theorem 2.21)

Var(Y ) = Var
[
n−1/2

√
n
( 1

Xn

− θ
)]

=
1

n
θ2(1 + o(1)).

On the other hand, the information inequality, Theorem 2.59, says the smallest possible
variance of an unbiased estimator of θ is

1/Var
(n
θ
−

n∑
i=1

Xi

)
= 1/(nθ−2) = θ2/n.

So, the MLE asymptotically achieves the optimal variance for an estimator of θ.

Proposition 2.65 (Functional Equivariance of MLE). Let g : Θ → Θ′ be a bijection.
Suppose Y is the MLE of θ. Then g(Y ) is the MLE of g(θ).

Lemma 2.66 (Likelihood Inequality). Let X : Ω → Rn be a random variable with proba-
bility density fθ : Rn → [0,∞). Let fω : Rn → [0,∞) be another probability density. Assume
that the probability laws Pθ and Pω corresponding to fθ and fω are not equal. Then the
Kullback-Leibler information

I(θ, ω) := Eθ log
fθ(X)

fω(X)

satisfies I(θ, ω) > 0.

Remark 2.67. If Pθ(fω(X) = 0 and fθ(X) > 0) > 0, then define I(θ, ω) := ∞, so there
is nothing to prove. Also, in the definition of I(θ, ω), if both densities take value zero, we
define the ratio of zero over zero to be 1.
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Theorem 2.68 (Consistency of MLE). Let X1, X2, . . . : Ω → Rn be i.i.d. random vari-
ables with common probability density fθ : Rn → [0,∞). Fix θ ∈ Θ ⊆ Rm. Suppose Θ
is compact and fθ(x1) is a continuous function of θ for a.e. x1 ∈ R. (Then the max-
imum of ℓ(θ) exists, since it is a continuous function on a compact set.) Assume that
Eθ supθ′∈Θ |log fθ′(X1)| < ∞, and Pθ ̸= Pθ′, for all θ′ ̸= θ with θ′ ∈ Θ. Then, as n → ∞,
the MLE Yn of θ converges in probability to the constant function θ, with respect to Pθ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.11. Fix θ ∈ Θ.

For any θ′ ∈ Θ and n ≥ 1, let ℓn(θ
′) := 1

n

∑n
i=1 log fθ′(Xi). Denote Θ = {θ, θ1, . . . , θk}.

By the Weak Law of Large Numbers, Theorem 1.87, for any θ′ ∈ Θ, ℓn(θ
′) converges in

probability with respect to Pθ to the constant µ(θ′) := Eθ log fθ′(X1) as n → ∞. Since
Pθ ̸= Pθ′ , for all θ′ ̸= θ, we have µ(θ) > µ(θ′) for all θ′ ∈ Θ with θ′ ̸= θ, by Lemma 2.66
(since I(θ, θ′) = µ(θ)− µ(θ′) > 0). For any n ≥ 1, let

An := {ℓn(θ) > ℓn(θj), ∀ 1 ≤ j ≤ k}.

Then limn→∞Pθ(An) = 1, and on the set An, the MLE Yn is well-defined and unique with
Yn = θ, so {Yn = θ}c ⊆ Ac

n, and for any ε > 0

lim
n→∞

Pθ(|Yn − θ| > ε) ≤ lim
n→∞

Pθ(A
c
n) = 0.

□

If g : Θ → Θ′ is a bijection, it follows from Proposition 2.65 that the MLE for g(θ) is also
consistent.

The above Theorem is analogous to a weak law of large numbers, since it gives convergence
in probability of the MLE. Continuing this analogy, the following Theorem is analogous to
the Central Limit Theorem, since it gives the limiting distribution of the MLE.

Theorem 2.69 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rn → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ R. Assume the following

(i) The set A := {x ∈ R : fθ(x) > 0} does not depend on θ.
(ii) For every x ∈ A, ∂2fθ(x)/∂θ

2 exists and is continuous in θ.
(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ

d
dθ
log fθ(X1) = 0 and

IX1(θ) = Eθ(
d

dθ
log fθ(X1))

2 = −Eθ
d2

dθ2
log fθ(X1) > 0.

(iv) For every θ in the interior of Θ, ∃ ε > 0 such that

Eθ sup
θ′∈Θ

∣∣∣∣1θ′∈[θ−ε,θ+ε]
d2

d[θ′]2
log fθ′(X1)

∣∣∣∣ < ∞.

(v) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n → ∞,
√
n(Yn − θ)

converges in distribution to a mean zero Gaussian with variance 1
IX1

(θ)
, with respect to Pθ.
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Remark 2.70. Combining this Theorem with Proposition 2.65, under the above assump-
tions (and also if the variance of the MLE converges, i.e. we can apply something like
Theorem 2.21), the MLE for θ achieves the asymptotically optimal variance in the Cramér-
Rao Inequality, Theorem 2.59. The same holds for an invertible function of θ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.14. Fix θ ∈ Θ. (When Θ is finite, it has no interior, so the theorem is vacuous
in this case, but the proof below is meant to illustrate the general case while avoiding a few
technicalities.)

For any θ′ ∈ Θ and n ≥ 1, let ℓn(θ
′) := 1

n

∑n
i=1 log fθ′(Xi).

Choose ε > 0 sufficiently small such that [θ− ε, θ+ ε]∩Θ = {θ}. For any n ≥ 1, let An be
the event that Yn = θ. Since Y1, Y2, . . . is consistent by Assumption (v), limn→∞Pθ(An) = 1.
Since Yn maximizes ℓn, we have ℓ

′
n(Yn) = 0 on An. (Since Θ is finite, this is not true, so take

it as an additional assumption.) Taylor expanding ℓ′n then gives

0 = ℓ′n(Yn) = ℓ′n(θ) + ℓ′′n(Zn)(Yn − θ), if An occurs,

where Zn lies between θ and Yn. Rewriting this equation gives

√
n(Yn − θ) =

√
nℓ′n(θ)

−ℓ′′n(Zn)
, if An occurs. (∗)

By Assumption (iii), the summed terms in ℓ′n(θ) i.i.d. random variables with mean zero
and variance IX1(θ). So, the Central Limit Theorem 1.90 says that

√
nℓ′n(θ) converges in

distribution to a mean zero Gaussian with variance IX1(θ).
We now examine the denominator of (∗). By Assumption (iv) and the Weak Law of Large

Numbers, ℓ′′n(θ
′) converges in probability to Eθℓ

′′
n(θ

′). Since |Zn − θ| ≤ |Yn − θ| when An

occurs, we conclude that Zn also converges in probability to θ as n → ∞. Since Zn only

takes finitely many values, ℓ′′n(Zn) converges in probability to Eθℓ
′′
n(θ)

(iii)
= −IX1(θ). So, (∗)

implies that
√
n(Yn − θ) converges in distribution as n → ∞ to a mean zero Gaussian with

variance
IX1(θ)

[IX1(θ)]
2
=

1

IX1(θ)
.

So, we are done by Exercise 2.71. □

Exercise 2.71. Suppose W1,W2, . . . are random variables that converge in distribution to a
random variable W , and U1, U2, . . . is any sequence of random variables. Let A1, A2, . . . ⊆ Ω
satisfy limn→∞ P(An) = 1. Then, as n → ∞

Wn1An + Un1Ac
n

converges in distribution to W .

The Cramér-Rao and Limiting Distribution for the MLE have analogous statements when
Θ is a vector space.

Theorem 2.72 (Multiparameter Cramér-Rao/ Information Inequality). Suppose
X : Ω → Rn is a random variable with distribution from a family of multivariable probability
densities or probability mass functions {fθ : θ ∈ Θ}. Assume that Θ ⊆ Rm is an open set.
We assume that {x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e. x ∈ Rn, and for all
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1 ≤ i ≤ m, (∂/∂θi)fθ(x) exists and is finite. Define the Fisher information of the family
to be the m×m matrix I(θ) = IX(θ), so that if 1 ≤ i, j ≤ m, the (i, j) entry of I(θ) is

Covθ

( ∂

∂θi
log fθ(X),

∂

∂θj
log fθ(X)

)
= Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
, ∀ θ ∈ Θ,

and assume this quantity exists and is finite. Moreover, assume that I(θ) is an invertible
matrix. (It is symmetric positive semidefinite by e.g. Exercise 1.103, but it might have a
zero eigenvalue, a priori.)

Let t : Rn → Rm and let Y := t(X) be statistic. For any θ ∈ Θ, let g(θ) := EθY so that
g : Θ → Θ. Assume that all first order partial derivatives of g exist and are continuous.
We assume that the assumptions of Proposition 10.9 hold, so that we can differentiate under
the integral sign. Let Dg(θ) denote the matrix of first order partial derivatives of g, and let
Varθ(Y ) denote the vector of variances of the components of Y . Then

Varθ(Y ) ≥ (Dg(θ))T [IX(θ)]
−1Dg(θ), ∀ θ ∈ Θ.

In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ [IX(θ)]
−1, ∀ θ ∈ Θ.

Equality occurs for some θ ∈ Θ only when d
dθ
log fθ(X) and Y − EθY are multiples of each

other.

Theorem 2.73 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rn → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ Rm. Assume the following

(i) The set A := {x ∈ Rn : fθ(x) > 0} does not depend on θ.

(ii) For every x ∈ A, ∀ 1 ≤ i, j ≤ m, ∂2fθ(x)
∂θi∂θj

exists and is continuous in θ.

(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ∇θ log fθ(X1) = 0 and

IX1(θ) = Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
= −EθD

2
θ log fθ(X1).

(D2
θ denotes the matrix of iterated second order derivatives in θ.) Moreover, assume

that IX1(θ) is an invertible matrix.
(iv) For every θ in the interior of Θ, ∀ 1 ≤ i, j ≤ m, ∃ ε > 0 such that

Eθ sup
θ′∈Θ

∣∣∣∣1θ′∈[θ−ε,θ+ε]
∂2

∂θ′i∂θ
′
j

log fθ′(X1)

∣∣∣∣ < ∞.

(v) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n → ∞,

√
n(Yn − θ)

converges in distribution to a mean zero Gaussian random vector with covariance matrix
[IX1(θ)]

−1, with respect to Pθ.
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3. Hypothesis Testing

In Section 2.4, we gave methods for estimating parameters from a probability distribution
with unknown parameters. In this section, we consider the corresponding “decision problem”
for parameter estimation. For example, we consider whether or not an unknown parameter
lies in a certain range of values, and we try to estimate the probability of this event. A
hypothesis is then a guess for the value or range of values of an unknown parameter.

Definition 3.1 (Null Hypothesis, Alternative Hypothesis). Let {fθ : θ ∈ Θ} be a
family of distributions. Let Θ0 ⊆ Θ. A null hypothesis H0 is an event of the form

{θ ∈ Θ0}.
Define Θ1 := Θc

0, so that Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅. The alternative hypothesis H1

is the event
{θ ∈ Θ1}.

Example 3.2. In Exercise 1.94, we supposed that we had a roulette wheel such that, with
probability p, red results from one spin of the roulette wheel. So we can take Θ = [0, 1], H0

to be the event {θ = 18/38}, and H1 is the event {θ ∈ [0, 1] : θ ̸= 18/38}.
Example 3.3. Let {fθ : θ ∈ Θ} be a family of distributions. Suppose Θ,Θ0 are such that
{fθ : θ ∈ Θ0} is the set of all Gaussian densities with unknown mean and variance, and
{fθ : θ ∈ Θ1} is some other set of non-Gaussian probability density functions. Then the
null-hypothesis H0 is the assertion that fθ is a Gaussian density (with arbitrary mean and
variance), and the alternative hypothesis H1 is the assertion that fθ is in the remaining set
of probability densities.

3.1. Neyman-Pearson Testing. Let X : Ω → Rn be a random variable with distribution
fθ, where {fθ : θ ∈ Θ} is a family of multivariable probability densities or probability mass
functions.

Definition 3.4 (Hypothesis Test). Let H0 be a null hypothesis. A nonrandomized
hypothesis test of H0 versus H1 is specified by a subset C ⊆ Rn. The set C is called the
critical region or the rejection region. The test proceeds as follows:

• If X /∈ C, then we accept the null hypothesis H0 to be true.
• If X ∈ C, then we reject the null hypothesis H0, and instead assert that H1 is true.

The region Cc ⊆ Rn is called the acceptance region. The performance of the test is
quantified by its power function β : Θ → [0, 1] defined by

β(θ) := Pθ(X ∈ C) = 1−Pθ(X /∈ C), ∀ θ ∈ Θ.

More generally, a randomized hypothesis test of H0 versus H1 is specified by a critical
function ϕ : Rn → [0, 1]. For any x ∈ Rn, ϕ(x) denotes the probability of rejecting the null
hypothesis, given that we observe data x. That is,

• If X = x, we accept the null hypothesis to be true with probability 1− ϕ(x).
• If X = x, we reject the null hypothesis H0 with probability ϕ(x).

We could identify {x ∈ Rn : ϕ(x) = 1} as a rejection region, {x ∈ Rn : ϕ(x) = 0} as an
acceptance region, and {x ∈ Rn : ϕ(x) ∈ (0, 1)} as a region where acceptance or rejection
can each occur with some nonzero probability. The power function β : Θ → [0, 1] is then

β(θ) := Eθϕ(X), ∀ θ ∈ Θ.
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The case ϕ : Rn → {0, 1} then corresponds to a nonrandomized hypothesis test, where the
current definition of power function agrees with our previous definition.

Remark 3.5. Since the critical function ϕ determines the hypothesis test, we will often refer
to ϕ itself as a hypothesis test.

One advantage of randomized hypothesis tests over nonrandomized tests is adjustments
to the test allow a wider range of power function values.

In an ideal world, we could find a test that performs perfectly, i.e. we would prefer that
β(θ) = 0 for all θ ∈ Θ0 and β(θ) = 1 for all θ ∈ Θ1. In practice, such a β often cannot be
found. For example, H0 may be accepted to be true while actually being false.

Definition 3.6 (Type II Error). A Type II Error for a nonrandomized hypothesis test
occurs when X /∈ C with positive probability, but H0 is actually false. That is, β(θ) < 1 for
some θ ∈ Θ1. That is, H0 is accepted to be true by the test, while actually being false.

The quantity 1− β(θ) is the probability of occurrence of a Type II Error for θ ∈ Θ1.

A type II error is sometimes called a “false negative.”
It is also undesirable that H1 may be accepted to be true while actually being false.

Definition 3.7 (Type I Error). A Type I Error for a nonrandomized hypothesis test
occurs when X ∈ C with positive probability, but H1 is actually false (i.e. H0 is true). That
is, β(θ) > 0 for some θ ∈ Θ0. That is, H1 is accepted to be true by the test, while actually
being false.

The value of β(θ) is the probability of occurrence of a Type I Error for θ ∈ Θ0.
The significance level α is defined as

α := sup
θ∈Θ0

β(θ).

A type I error is sometimes called a “false positive.” So, α is the “worst” probability of a
false positive occurring.

Example 3.8. Let us return to Exercise 1.94. The roulette wheel has 38 spaces and 18 red
spaces. Suppose we spin the roulette wheel 5 times resulting in X red outcomes. We model
the set of outcomes as a sum of independent {0, 1} valued random variables, so that the
total number of red outcomes X is a binomial random variable with parameters n, θ with
n = 5 and θ ∈ [0, 1] unknown. Suppose the null hypothesis H0 is {0 ≤ θ ≤ 1/2}, and the
alternative hypothesis H1 is {1/2 < θ ≤ 1}. If θ is small, then the observed value of X
should be small as well, so a “good” hypothesis test should use a rejection region consisting
of large values of X.

Recalling that 0 ≤ X ≤ 5, let’s first consider a test for this hypothesis that rejects H0 if
and only if X = 5. That is, C := {5}, and

β(θ) = Pθ(X ∈ C) = Pθ(X = 5) = θ5.

For this test, the probability of a type I error is fairly low since it is at most

α = sup
θ∈[0,1/2]

β(θ) = β(1/2) = (1/2)5 ≈ .03.

However, the probability of a type II error is quite far from 0, since e.g. 1−β(.6) ≈ .92, and
1− β(.87) ≈ .5.
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Let us therefore consider a different test that improves on the type II error. Suppose we
now reject H0 if and only if X ∈ {3, 4, 5}. That is, C := {3, 4, 5}, and

β(θ) = Pθ(X ∈ C) = Pθ(X = 3 or X = 4 or X = 5)

=

(
5

3

)
θ3(1− θ)2 +

(
5

4

)
θ4(1− θ)4 +

(
5

5

)
θ5.

For this test, the probability of a type I error is not quite as good:

α = sup
θ∈[0,1/2]

β(θ) = β(1/2) = 1/2.

However, the probability of a type II error is better than before, since e.g. 1− β(.6) ≈ .32,
and 1− β(.87) ≈ .017.

From the above example, we see that different tests can have different Type I and Type
II Errors, and it might be a priori unclear which test is the “best.” In practice, one fixes
some bound on the significance level α such as α = .05. For example, in driverless cars, the
autonomous system constantly tests the hypothesis H0 that “there is an obstruction ahead of
the car such that the brakes need to be applied.” We would like to have a small upper bound
on α, since a Type I Error corresponds to an obstruction being present, but the autonomous
system does not believe this to be the case (so the car does not apply the brakes). In this
example, a Type II Error corresponds to the car applying the brakes unnecessarily, which is
also undesirable but perhaps less so than a Type I error.

Definition 3.9 (Uniformly Most Powerful Test (UMP)). Let Θ0 ⊆ Θ and denote
Θ1 := Θc

0. Let H0 be the hypothesis {θ ∈ Θ0} and let H1 be the hypothesis {θ ∈ Θ1}. Let
T be a family of hypothesis tests. A hypothesis test in T with power function β(θ) is called
Uniformly Most Powerful (UMP) class T test if

β(θ) ≥ β′(θ), ∀ θ ∈ Θ1,

for every β′(θ) that is a power function of any hypothesis test in T .

In the case that Θ consists of exactly two points, it is possible to explicitly find a UMP
among all hypothesis tests with significance level at most α, where α ∈ [0, 1]. This UMP is
given by a likelihood ratio test.

Lemma 3.10 (Neyman-Pearson). Suppose Θ = {θ0, θ1}, Θ0 = {θ0}, Θ1 = {θ1}. Let
H0 be the hypothesis {θ = θ0} and let H1 be the hypothesis {θ = θ1}. Let {fθ0 , fθ1} be two
multivariable probability densities or probability mass functions on Rn. Fix k ≥ 0. Define a
likelihood ratio test ϕ : Rn → [0, 1] to be

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

(unspecified) , if fθ1(x) = kfθ0(x).

(∗)

Define
α := sup

θ∈Θ0

β(θ) = β(θ0) = Eθ0ϕ(X). (∗∗)

Let T be the class of all randomized hypothesis tests with significance level at most α. Then

• (Sufficiency) Any randomized hypothesis test satisfying (∗) is a UMP class T test.
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• (Necessity) If there exists a hypothesis test satisfying (∗) and (∗∗) with k > 0, then any
UMP class T test has significance level equal to α, and any UMP class T test satisfies
(∗), except possibly on a set D ⊆ Rn satisfying Pθ0(X ∈ D) = Pθ1(X ∈ D) = 0.

• (Existence) For any α′ ∈ [0, 1], there exists a UMP class T test with α′ = α.

Remark 3.11. Intuitively, the likelihood ratio test compares how “likely” x ∈ Rn is to
satisfy the null hypothesis (quantified by fθ0(x)) to how “likely” x ∈ Rn is to satisfy the
alternative hypothesis (quantified by fθ1(x)). If the null hypothesis is not very “likely” to
occur, i.e. fθ0(x) is a bit smaller than fθ1(x), then the test rejects the null hypothesis.

Remark 3.12. When we use Lemma 3.10 in practice, we will typically fix α ∈ [0, 1], and
then define k ≥ 0 such that Eθ0ϕ(X) is at most α (even though Lemma 3.10 instead starts
with ϕ and then defines α via ϕ).

Proof. In the proof below we assume that {fθ0 , fθ1} are multivariable probability densities.
The probability mass function case follows by replacing the integral below by a sum.

As we already noted in (∗∗), Θ0 consists of a single point, so the supremum appearing in
(∗∗) is just β(θ0), and we will repeatedly use this fact below without further mention.

Let β(θ) be the power function of the test corresponding to ϕ. Let ϕ′ another test in T ,
and let β′(θ) be the power function of this test. By definition of ϕ, we have

[ϕ(x)− ϕ′(x)][fθ1(x)− kfθ0(x)] ≥ 0, ∀x ∈ Rn.

Therefore,

0 ≤
∫
Rn

[ϕ(x)− ϕ′(x)][fθ1(x)− kfθ0(x)]dx = β(θ1)− β′(θ1)− k[β(θ0)− β′(θ0)]. (∗ ∗ ∗)

Since ϕ has significance level α and ϕ′ has significance level at most α, we have β(θ0) −
β′(θ0) ≥ 0. So, k ≥ 0 and (∗ ∗ ∗) imply that β(θ1)− β′(θ1) ≥ 0. That is, the ϕ test is UMP
class T .

We now prove necessity. Let ϕ′ be a UMP class T test. We just showed that the ϕ test is
UMP class T . Therefore β(θ1) = β′(θ1). Using this fact, (∗ ∗ ∗) and k > 0, we then get

α− β′(θ0)
(∗∗)
= β(θ0)− β′(θ0)

(∗∗∗)
≤ 0. (‡)

Since ϕ′ is a UMP class T test, the ϕ′ test has significance level at most α, i.e. β′(θ0) ≤ α, so
that β′(θ0) = α by (‡). So, (∗ ∗ ∗) is equal to zero, and the nonnegative integrand appearing
in (∗ ∗ ∗) must be equal to zero. Necessity follows.

We now prove existence. If α′ = 1, choose k = 0. Below we therefore assume α′ < 1. For
any k ∈ R, define

a(k) := Pθ0(fθ1(X) > kfθ0(X)).

Note that a is a monotone decreasing function of k, with limk→0− a(k) = 1 and limk→∞ a(k) =
0, so we can choose c ≥ 0 such that limk→c− a(k) ≥ α′ ≥ limk→c+ a(k) = a(c). Define then

ϕ(x) :=


1 , if fθ1(x) > cfθ0(x)

0 , if fθ1(x) < cfθ0(x)
α′−a(c)

Pθ0
(fθ1 (X)=cfθ0 (X))

, if fθ1(x) = cfθ0(x).
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(If Pθ0(fθ1(X) = cfθ0(X)) = 0, then ϕ is well-defined with Pθ0 probability one.) Then, using
the definition of ϕ,

Eθ0ϕ(X) = Pθ0(fθ1(X) > cfθ0(X)) +
α′ − a(c)

Pθ0(fθ1(X) = cfθ0(X))
Pθ0(fθ1(X) = cfθ0(X))

= a(c) + (α′ − a(c)) = α′.

(If Pθ0(fθ1(X) = kfθ0(X)) = 0, then a(c) = α′ and the fraction term is zero.)
□

Example 3.13. Suppose X is a binomial distributed random variable with parameters 2
and θ ∈ {1/2, 3/4}. We want to test the hypothesis H0 that θ = 1/2 versus the hypothesis
H1 that θ = 3/4. Lemma 3.10 says that the UMP test for the class of tests with an upper
bound on the significance level must be a likelihood ratio test. There are only three values
that X can take, so we examine the likelihood ratios explicitly:

f3/4(0)

f1/2(0)
=

(1− 3/4)2

(1− 1/2)2
=

1

4
,

f3/4(1)

f1/2(1)
=

2(1− 3/4)(3/4)

2(1− 1/2)(1/2)
=

3

4
,

f3/4(2)

f1/2(2)
=

(3/4)2

(1/2)2
=

9

4
.

We then get different likelihood ratio tests according to the choice of k > 0.

• If 3/4 < k ≤ 9/4, then H0 is rejected if and only if X = 2, and this test is the unique
UMP for tests with significance level at most P1/2(X = 2) = 1/4.

• If 1/4 < k ≤ 3/4, then H0 is rejected if and only if X = 1 or 2, and this test is the
unique UMP for tests with significance level at most P1/2(X ∈ {1, 2}) = 3/4.

• If 0 < k ≤ 1/4, then H0 is always rejected, and this test is the unique UMP for tests
with significance level at most P1/2(X ∈ {1, 2, 3}) = 1.

• If k > 9/4, then H0 is never rejected, and this test is the unique UMP for tests with
significance level at most P1/2(X ∈ ∅) = 0.

Note that P1/2(X ∈ {0, 1, 2}) = P3/4(X ∈ {0, 1, 2}) = 1, so we do not need to consider the
necessity part of Lemma 3.10.

Evidently, in order to get a UMP test with significance level other than {0, 1/4, 3/4, 1}, we
need to use a randomized hypothesis test. For example, to get a UMP test with significance
level 1/8, we could use ϕ : R → [0, 1] defined by

ϕ(x) :=


1 , if fθ1(x) > (9/4)fθ0(x)

0 , if fθ1(x) < (9/4)fθ0(x)

1/2 , if fθ1(x) = (9/4)fθ0(x)

=

{
0 , ifx ̸= 2

1/2 , if x = 2.

Then ϕ is UMP by Lemma 3.10 with significance level

Eθ0ϕ(X) = Pθ0(X = 2)ϕ(2) = P1/2(X = 2)(1/2) = (1/4)(1/2) = 1/8.

Exercise 3.14. Suppose X is a Gaussian distributed random variable with known variance
σ2 > 0 but unknown mean. Fix µ0, µ1 ∈ R. Assume that µ0 − µ1 > 0. We want to test the
hypothesis H0 that µ = µ0 versus the hypothesis H1 that µ = µ1. Fix α ∈ (0, 1). Explicitly
describe the UMP test for the class of tests whose significance level is at most α.

Your description of the test should use the function Φ(t) :=
∫ t

−∞ e−x2/2dx/
√
2π, Φ: R →

(0, 1), and/or the function Φ−1 : (0, 1) → R. (Recall that Φ(Φ−1(s)) = s for all s ∈ (0, 1)
and Φ−1(Φ(t)) = t for all t ∈ R.)
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Corollary 3.15. Suppose Θ = {θ0, θ1}, Θ0 = {θ0}, Θ1 = {θ1}. Let H0 be the hypothesis
{θ = θ0} and let H1 be the hypothesis {θ = θ1}. Let {fθ0 , fθ1} be two multivariable probability
densities or probability mass functions. Assume that Pθ0 ̸= Pθ1. Let ϕα : Rn → [0, 1] be a
likelihood ratio test with significance level α ∈ (0, 1) (which exists by Lemma 3.10). Then

Eθ1ϕα(X) > α.

Proof. Define ϕ′(x) := α ∀ x ∈ Rn. Let T be the class of all randomized hypothesis tests with
significance level at most α. Since ϕα is UMP class T by Lemma 3.10, Eθ1ϕα ≥ Eθ1ϕ

′ = α.
It remains to eliminate the case that Eθ1ϕα(X) = α. If Eθ1ϕα(X) = α, then ϕ′ is also UMP
class T . Lemma 3.10 (necessity) then implies that ϕ′ is a likelihood ratio test and ϕ = ϕ′ on
the set B := {x ∈ Rn : fθ1(x) ̸= kfθ0(x)}, except on a set of probability zero (with respect
to both Pθ0 and Pθ1). Since α ∈ (0, 1) we have ϕ ̸= ϕ′ on B, so that Pθ0(B) = Pθ1(B) = 0.
That is, Pθ0(B

c) = Pθ1(B
c) = 1. Since fθ0 and fθ1 are PDFs or PMFs, we must then have

k = 1, hence Pθ0 = Pθ1 , a contradiction. We conclude that Eθ1ϕα(X) > α. □

3.2. Karlin-Rubin Theorem. The Neyman-Pearson Lemma shows that we can classify
UMP tests with significance level at most α, if we want to test the alternatives between two
distinct parameters. The Karlin-Rubin Theorem is another situation where a UMP test can
be identified. This Theorem applies when a family of PDFs has the following property.

Definition 3.16 (Monotone Likelihood Ratio Property). Let {fθ : θ ∈ Θ} be a family
of PDFs where θ ∈ Θ ⊆ R. Assume that, if θ1, θ2 ∈ R with θ1 ̸= θ2, then Pθ1 ̸= Pθ2 .
Let X ∈ Rn have PDF fθ. We say that {fθ : θ ∈ Θ} has the monotone likelihood ratio
property (MLR) if there exists a real-valued statistic Y = t(X) such that, whenever θ1 < θ2,
the ratio fθ2(x)/fθ1(x) is a well-defined, strictly increasing function of t(x).
Here the likelihood ratio is defined to be ∞ when fθ2(x) > 0 and fθ1(x) = 0. Also, the

MLR property makes no assumption about x ∈ Rn such that fθ1(x) = fθ2(x) = 0.
WARNING. Many books define MLR so that the likelihood ratio is an increasing func-

tion of t(x). Some other books allow the likelihood ratio to be an increasing or decreasing
function of t(x).

Example 3.17. Suppose we have a one-parameter exponential family of the form

fθ(x) := h(x) exp
(
w(θ)t(x)− a(w(θ))

)
, ∀x ∈ Rn.

Here θ ∈ Θ ⊆ R. Then if x ∈ Rn satisfies h(x) > 0, we have

fθ2(x)

fθ1(x)
= exp

(
[w(θ2)− w(θ1)]t(x)− a(w(θ1)) + a(w(θ2))

)
.

So, if e.g. w is strictly increasing, then if θ1 < θ2, we have w(θ2) − w(θ1) > 0, so
fθ2 (x)

fθ1 (x)
is a

strictly increasing function of t(x), i.e. this exponential family has the MLR property.
From Example 2.3, we see that a Gaussian with known variance and unknown mean µ has

the MLR property with respect to µ, if we use t(x) := (x1+ · · ·+xn)/n ∀ x = (x1, . . . , xn) ∈
Rn. That is, fµ : Rn → [0,∞) is the multivariate PDF of n i.i.d. Gaussians with known
variance and unknown mean µ ∈ R.

Theorem 3.18 (Karlin-Rubin Theorem). Let {fθ : θ ∈ Θ} be a family of PDFs with
the MLR property, with respect to a real-valued statistic Y = t(X), where θ ∈ Θ ⊆ R. Let
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0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis H0 = {θ ∈ Θ: θ ≤ θ0} and the hypothesis
H1 = {θ ∈ Θ: θ > θ0}. Let c ∈ R. Consider the randomized hypothesis test ϕ : Rn → [0, 1]

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α. Then

(i) ϕ is UMP class T .
(ii) For any 0 < α′ < 1, there exist c ∈ R and γ ∈ [0, 1] such that ϕ is UMP class T with

α = α′.
(iii) β, the power function of ϕ, is nondecreasing and strictly increasing when it takes

values in (0, 1).
(iv) For any θ1 < θ0, ϕ minimizes Eθ1ϕ

′ among all tests ϕ′ satisfying Eθ0ϕ
′ = α.

Proof. We first prove (iii). Let θ1 > θ0 with θ1 ∈ Θ and consider the function r : Rn → R
defined by

r(x) :=
fθ1(x)

fθ0(x)
, ∀x ∈ Rn.

By assumption, r is a strictly increasing function of t(x). Let k ≥ 0 such that r(x) = k when
t(x) = c. Since r is a strictly increasing function of t(x), we can rewrite ϕ as

ϕ(x) =


1 , if r(x) > k

0 , if r(x) < k

γ , if r(x) = k.

That is, ϕ is a likelihood ratio test of the hypothesis {θ = θ0} versus {θ = θ1}. Corollary
3.15 says β(θ1) = Eθ1ϕ(X) > α = Eθ0ϕ(X) = β(θ0), if Pθ0 ̸= Pθ1 . (If Pθ0 = Pθ1 , then
Eθ1ϕ(X) = Eθ0ϕ(X) ∈ {0, 1} since ϕ is either zero or one with probability one in this case,
i.e. α ∈ {0, 1}.) Assertion (iii) follows.
We now prove (i). First, note that α = Eθ0ϕ(X) = supθ≤θ0 Eθϕ(X) from (iii), so that ϕ

is in class T . Now let θ1 > θ0 with θ1 ∈ Θ, and let ϕ′ be a class T hypothesis test. By
definition of T , Eθ0ϕ

′ ≤ supθ≤θ0 Eθϕ
′(X) ≤ α. So, from Lemma 3.10 (sufficiency), ϕ is UMP

(in the context of that Lemma), i.e. Eθ1ϕ(X) ≥ Eθ1ϕ
′(X). Since this inequality holds for all

θ1 > θ0 with θ1 ∈ Θ, we conclude that ϕ is UMP class T , i.e. (i) holds.
We now prove (iv). Let θ1 < θ0 with θ1 ∈ Θ. The MLR property now implies that

fθ0(x)/fθ1(x) is a strictly increasing function of t(x). That is, there is some k > 0 such that

ϕ(x) =


1 , if fθ0(x)/fθ1(x) > k

0 , if fθ0(x)/fθ1(x) < k

γ , if fθ0(x)/fθ1(x) = k.

That is, ϕ is a likelihood ratio test of the hypothesis {θ = θ1} versus {θ = θ0}. As in the proof
of Lemma 3.10 (though with the roles of θ0, θ1 reversed), we have [Eθ0−kEθ1 ][ϕ(X)−ϕ′(X)] ≥
0. So, if Eθ0ϕ(X) = Eθ0ϕ

′(X) = α, we have Eθ1ϕ(X) ≤ Eθ1ϕ
′(X).

We now prove (ii). Define F (k) := Pθ0(t(X) ≤ k), ∀ k ∈ R. If α′ = 1, choose ϕ := 1.
If α′ = 0, choose ϕ := 0. Now consider the case 0 < α′ < 1. Since F is monotone
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increasing with limk→−∞ F (k) = 0 and limk→∞ F (k) = 1, there exists c ∈ R such that
limk→c− F (k) ≤ 1− α′ ≤ limk→c+ F (k) = F (c). Define then

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c
F (c)−(1−α′)
Pθ0

(t(X)=c)
, if t(x) = c.

(If Pθ0(t(X) = c) = 0, then ϕ is well-defined with Pθ0 probability one.) Then, using the
definition of ϕ,

Eθ0ϕ(X) = Pθ0(t(X) > c) +
F (c)− (1− α′)

Pθ0(t(X) = c)
Pθ0(t(X) = c)

= 1− F (c) + F (c)− (1− α′) = α′.

(If Pθ0(t(X) = c) = 0, then 1− F (c) = α′.) □

Exercise 3.19. Prove the following version of the Karlin-Rubin Theorem, with the inequal-
ities reversed in the definition of the hypotheses.

Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued
statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
H0 = {θ ≥ θ0} and the hypothesis H1 = {θ < θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


0 , if t(x) > c

1 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.

(i) ϕ is UMP class T .
(iii) β, the power function of ϕ, is nonincreasing and strictly decreasing when it takes

values in (0, 1).

Example 3.20. In Example 3.17, we observed that a Gaussian with known variance and
unknown mean µ has the MLR property with respect to µ, if we use t(x) := (x1+ · · ·+xn)/n
∀ x = (x1, . . . , xn) ∈ Rn. That is, fµ : Rn → [0,∞) is the multivariate PDF of n i.i.d.
Gaussians with known variance and unknown mean µ ∈ R. Fix µ0 ∈ R. Consider testing
the hypothesis H0 = {µ ≤ µ0} versus the hypothesis H1 = {µ > µ0}. Then Theorem 3.18
implies that the hypothesis test

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

is UMP among all hypothesis test with significance level at most α, where α := Eµ0ϕ(X),
and X = (X1, . . . , Xn).

Exercise 3.21. Prove the following one-sided version of the Karlin-Rubin Theorem.
Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued

statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
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H0 = {θ = θ0} and the hypothesis H1 = {θ > θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.
Then ϕ is UMP class T .

Exercise 3.22. Let X1, . . . , Xn be i.i.d. random variables. Let X = (X1, . . . , Xn). Let
θ > 0. Assume that X1 is uniformly distributed in the interval [0, θ]. Fix θ0 > 0. Fix
0 < α < 1. Let T denote the set of hypothesis tests with significance level at most α.

• Suppose we test H0 = {θ ≤ θ0} versus H1 = {θ > θ0}. Identify the set of all UMP
class T hypothesis tests.

• Suppose we test H0 = {θ = θ0} versus H1 = {θ ̸= θ0}. Show there is a unique UMP
class T hypothesis test in this case.

(Hint: first consider testing {θ = θ0} versus {θ = θ1} with θ1 > θ0, and apply the Neyman-
Pearson Lemma. That is, mimic the argument of the Karlin-Rubin Theorem.) (As an aside,
observe that, if you näıvely apply the Karlin-Rubin Theorem, you will not find all UMP
tests, i.e. a non-strict MLR property version of the Karlin-Rubin Theorem will neglect some
UMP tests.)

Exercise 3.23. This exercise demonstrates that a UMP might not always exists.
Let X1, . . . , Xn be i.i.d. Gaussian random variables with known variance and unknown

mean µ ∈ R. Fix µ0 ∈ R. Let H0 denote the hypothesis {µ = µ0} and let H1 denote the
hypothesis µ ̸= µ0. Fix 0 < α < 1. Let T denote the set of hypothesis tests with significance
level at most α. Show that no UMP class T test exists, using the following strategy.

• Let µ1 < µ0. You may take as given the following fact (that follows from the Karlin-
Rubin Theorem): the power at µ1 is maximized among class T tests by the hypothesis
test ϕ that rejects H0 when the sample mean satisfies X < c for an appropriate choice
of c ∈ R. Assume for the sake of contradiction that a UMP class T test ϕ′ exists.
Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing
µ = µ0 versus µ = µ1), conclude that ϕ′ must have the same rejection region as ϕ
(just by examining the power of the tests at µ1.)

• Consider now a test in T that rejects H0 when the sample mean satisfies X > c′ for
an appropriate choice of c′ ∈ R. Repeating the previous argument, conclude that ϕ′

must reject when X > c′, leading to a contradiction.
That is, let µ2 > µ0. You may take as given the following fact (that follows from

the Karlin-Rubin Theorem): the power at µ2 is maximized among class T tests by
the hypothesis test ϕ′′ that rejects H0 when the sample mean satisfies X > c′ for an
appropriate choice of c′ ∈ R. Then, using the necessity part of the Neyman-Pearson
Lemma (i.e. consider testing µ = µ0 versus µ = µ2), conclude that ϕ′ must have the
same rejection region as ϕ′′.
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Exercise 3.24. The rejection regions Cα for UMP hypothesis tests of significance level at
most α ∈ (0, 1) are often nested in the sense that Cα ⊆ Cα′ for all 0 < α < α′ < 1. This
exercise demonstrates an example of UMP tests where this nesting behavior does not occur.

Let θ0, θ1 ∈ R be unequal parameters. Let H0 denote the hypothesis {θ = θ0} and let
H1 denote the hypothesis {θ = θ1}. Suppose X ∈ {1, 2, 3} is a random variable. If θ = θ0,
assume that X takes the values 1, 2, 3 with probabilities .85, .1, .05, respectively. If θ = θ1,
assume that X takes the values 1, 2, 3 with probabilities .7, .2, .1, respectively. Let T denote
the set of hypothesis tests with significance level at most α.

• Let 0 < α < .15. Show that a UMP class T test is not unique.
• When α = .05, show there is a unique nonrandomized hypothesis UMP class T test.
• When α = .1, show there is a unique nonrandomized hypothesis UMP class T test.
• Show that the α = .05 and α′ = .1 UMP nonrandomized tests from above do not
have nested rejection regions.

• However, when α = .05 and α′ = .1, there are randomized UMP tests ϕ, ϕ′ : Rn →
[0, 1] respectively, that are nested in the sense that ϕ ≤ ϕ′.

3.3. Hypothesis Tests and Confidence Intervals.

Definition 3.25 (Confidence Interval, Confidence Region). Let X : Ω → Rn be a
random variable with distribution fθ, where {fθ : θ ∈ Θ} is a family of multivariable proba-
bility densities or probability mass functions. Let g : Θ → R. Let u, v : Rn → R such that
u(x) ≤ v(x) for all x ∈ Rn. Let α ∈ (0, 1). A 100(1-α)% confidence interval for a
parameter g(θ) is a random interval of the form [u(X), v(X)] satisfying

Pθ(g(θ) ∈ [u(X), v(X)]) ≥ 1− α, ∀ θ ∈ Θ.

More generally, if c : Rn → 2Θ, then a 100(1-α)% confidence region for a parameter
g(θ) is a random set c(X) satisfying

Pθ(g(θ) ∈ c(X)) ≥ 1− α, ∀ θ ∈ Θ.

Example 3.26. Let X1, . . . , Xn be i.i.d. random variables taking values in [0, 1] with un-
known mean µ ∈ [0, 1] and known variance σ2 ∈ (0, 1). Let X := 1

n

∑n
i=1Xi be the sample

mean. Then EX = µ and Var(X) = σ2

n
. From the Central Limit Theorem with error bound

(i.e. the Berry-Esseén Theorem 1.98),

sup
t∈R

∣∣∣∣P(X1 + · · ·+Xn − nµ

σ
√
n

< t
)
−P(Z < t)

∣∣∣∣ ≤ 1

σ3
√
n
.

Choosing e.g. t = 2 and t = −2 and subtracting the results,∣∣∣∣P(− 2 <
X1 + · · ·+Xn − nµ

σ
√
n

< 2
)
−P(−2 < Z < 2)

∣∣∣∣ ≤ 2

σ3
√
n

That is, we get a confidence interval for the parameter µ for any n ≥ 1:

P
(X1 + · · ·+Xn

n
− 2

σ√
n
< µ <

X1 + · · ·+Xn

n
+ 2

σ√
n

)
≥ P(−2 < Z < 2)− 2

σ3
√
n
≥ .95− 2

σ3
√
n
.

There is a straightforward duality between hypothesis tests and confidence regions.
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Proposition 3.27 (Confidence Region/ Hypothesis Test Duality). Let X : Ω → Rn

be a random variable.

• Fix α ∈ (0, 1). Assume that for every θ0 ∈ Θ, there is a nonrandomized hypothesis
test with significance level α of the hypothesis H0 that is {θ = θ0}. Let C(θ0) ⊆ Rn

denote the rejection region of this test. Then the set

c(X) := {θ ∈ Θ: X /∈ C(θ)}
is a 100(1− α)% confidence region for θ.

• Let c : Rn → 2Θ. Assume that c(X) is a 100(1−α)% confidence region for θ. Define
a hypothesis test of θ = θ0 whose rejection region is

C(θ) := {x ∈ Rn : θ /∈ c(x)}.
Then this test has significance level at most α.

Proof. For the first statement, note that α = supθ∈Θ0
β(θ) = β(θ0) = Pθ0(X ∈ C(θ0)). By

the definition of c(X) and C(θ), for any θ ∈ Θ,

Pθ(θ ∈ c(X)) = Pθ(X /∈ C(θ)) = 1− α.

The first statement follows. For the second statement, the definition of c(X) and C(θ) gives

1− α ≤ Pθ(θ ∈ c(X)) = Pθ(X /∈ C(θ)) = 1−Pθ(X ∈ C(θ)), ∀ θ ∈ Θ.

The second statement then follows, since supθ∈Θ0
β(θ) = β(θ0) = Pθ0(X ∈ C(θ0)) ≤ α. □

When we begin with a rejection region defined by a statistic, and we then obtain a confi-
dence region via Proposition 3.27, we refer to this procedure as inverting the test statistic.

For example, in Example 3.26, we began with estimates for the probability that X1+ · · ·+
Xn − nµ lies outside an interval. A key property in this example is that these computed
probabilities did not depend on µ. We then used some algebra to convert these probability
estimates to bounds on µ, in terms of X1, . . . , Xn. For another example, suppose X1, . . . , Xn

are i.i.d. from a location family with parameter θ. Then X1+ · · ·+Xn−nθ does not depend
on θ, so we can get confidence intervals for θ if we know the distribution of X1+· · ·+Xn−nθ,
similar to what we did in Example 3.26. This procedure can often be replicated, if we can
begin with a quantity whose distribution does not depend on the unknown parameter.

Definition 3.28 (Pivotal Quantity). Let X ∈ Rn be a random variable. Let q : Rn×Θ →
Rm. A random variable Q := q(X, θ) is called a pivotal quantity if the distribution of Q
does not depend on θ.

WARNING. A pivotal quantity is typically not a statistic, since the pivotal quantity
can depend on the unknown parameter. (A statistic is, by definition, a function only of the
random variables. A statistic is not an explicit function of the unknown parameter.) If a
pivotal quantity is a statistic, it could be called an ancillary statistic.

For the location family example mentioned above, X1+ · · ·+Xn−nθ is a pivotal quantity,
since its distribution depend on the unknown parameter θ ∈ R.

Example 3.29. Let X1, . . . , Xn be i.i.d. exponential random variables with unknown pa-
rameter λ > 0. Suppose we want to find a confidence interval for λ. We begin by finding
a pivotal quantity. It is known that Y := X1 + · · · + Xn has a gamma distribution with
parameters n and λ. As discussed in Definition 1.28, Y/λ has a gamma distribution with
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parameters n and 1. That is, Y/λ is a pivotal quantity, since it does not depend on λ. From
Definition 1.28, we have

P (a ≤ Y/λ ≤ b) =
1

Γ(n)

∫ b

a

xn−1e−xdx, ∀ 0 ≤ a ≤ b ≤ ∞.

We can therefore find confidence intervals for λ by writing

P
(X1 + · · ·+Xn

b
≤ λ ≤ X1 + · · ·+Xn

a

)
=

1

Γ(n)

∫ b

a

xn−1e−xdx, ∀ 0 ≤ a ≤ b ≤ ∞.

Exercise 3.30. Let X1, . . . , Xn be i.i.d. Gaussian random variables with unknown mean
and unknown variance.

• Find a real-valued pivotal quantity for X = (X1, . . . , Xn).
• Using the pivotal quantity, construct a 1− α confidence interval for the mean µ, for
any 0 < α < 1.

3.4. Bayesian Intervals. In Bayes estimation, the unknown parameter θ ∈ Θ is regarded
instead as a random variable Ψ. The distribution of Ψ reflects our prior knowledge about
the probable values of Ψ. Then, given that Ψ = θ, the conditional distribution of X|{Ψ = θ}
is assumed to be {fθ : θ ∈ Θ}, where fθ : Rn → [0,∞).

Definition 3.31 (Credible Interval, Credible Region). Let g : Θ → R. Let u, v : Rn →
R such that u(x) ≤ v(x) for all x ∈ Rn. Let α ∈ (0, 1). A 100(1-α)% credible interval
for a parameter g(θ) is a random interval of the form [u(X), v(X)] satisfying

P(g(Ψ) ∈ [u(X), v(X)]) ≥ 1− α.

Here P denotes taking a probability with respect to Ψ and X.
More generally, if c : Rn → 2Θ, then a 100(1-α)% credible region for a parameter g(θ)

is a random set c(X) satisfying

P(g(Ψ) ∈ c(X)) ≥ 1− α.

3.5. p-Value. A p-value is a measure of the belief of rejecting the null hypothesis. A small
p-value corresponds to a high probability that the null hypothesis is false.

Definition 3.32 (p-Value, One-Sided, Nonrandomized). Let X1, . . . , Xn be a real-
valued random sample of size n from a family of distributions {fθ : θ ∈ Θ}. Denote X :=
(X1, . . . , Xn). Let t : Rn → R. Let Y := t(X). For any c ∈ R, consider the hypothesis test
with rejection region {x ∈ Rn : t(x) ≥ c}. Let p : Rn → [0, 1] be a function defined by

p(x) := sup
θ∈Θ0

Pθ(t(X) ≥ t(x)), ∀x ∈ Rn.

The p-value for this set of hypothesis tests is defined to be the statistic p(X).

Remark 3.33. If c ∈ R is fixed, then β(θ) = Pθ(X ∈ C) = Pθ(t(X) ≥ c), by definition of
the rejection region C. And the significance level α is defined as

α := sup
θ∈Θ0

β(θ) = sup
θ∈Θ0

Pθ(t(X) ≥ c).

So, p(x) is equal to the significance level of the test where c = t(x). Since α decreases as
c increases, we say that p(x) is the smallest significance level such that the hypothesis test
rejects the null hypothesis (if α strictly decreases as c increases.)
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Remark 3.34. Assume that Y := t(X) is a continuous random variable. Fix θ ∈ Θ. For
any c ∈ R, define F−Y (c) := Pθ(−Y ≤ c). For any x ∈ Rn denote gθ(x) := Pθ(t(X) ≥
t(x)) = Pθ(−t(X) ≤ −t(x)) = F−Y (−t(x)). Then gθ(X) = F−Y (−t(X)) = F−Y (−Y ). So,

Pθ(gθ(X) ≤ c) = Pθ(F−Y (−Y ) ≤ c) = Pθ(−Y ≤ F−1
−Y (c)) = F−Y (F

−1
−Y (c)) = c.

So, by definition of p(x), for every θ ∈ Θ0, and for every c ∈ [0, 1],

Pθ(p(X) ≤ c) ≤ Pθ(gθ(X) ≤ c) = c.

So, for example, if the null hypothesis is true (i.e. θ ∈ Θ0), then p(X) ≤ .05 with probability
at most .05. If the p-value is observed to be small, then the null hypothesis is believed to
be false with high probability. (If the null hypothesis is true, then it is unlikely to observe a
small p-value.)

Example 3.35. We continue Example 3.8 and Exercise 1.94. The roulette wheel has 38
spaces and 18 red spaces. Suppose we spin the roulette wheel 5 times resulting in X red
outcomes. We model the set of outcomes as a sum of independent {0, 1} valued random
variables, so that the total number of red outcomes X is a binomial random variable with
parameters n, θ with n = 5 and θ ∈ [0, 1] unknown. Suppose the null hypothesis H0 is
{θ = 1/2}, and the alternative hypothesis H1 is {θ ∈ [0, 1], θ ̸= 1/2}.
Consider the hypothesis test with rejection region C := {x ∈ R : x ≥ 3}. Since Θ0 consists

of a single point, then we define

p(x) := P1/2(X ≥ x), ∀x ∈ R,

and the p-value of this test is p(X). So, for example, if we observe that X is 2, i.e. we
observe exactly two red outcomes on the roulette wheel, then the reported p-value is

P1/2(X ≥ 2) = 1−P1/2(X ≤ 1) = 1− (1/2)5 − 5(1/2)5 = 1− 6/32 = .8125.

So, in this case, we are not at all confident in rejecting the null hypothesis (we might instead
conclude that the null hypothesis is true).

If we observe that X is 4, i.e. we observe exactly four red outcomes on the roulette wheel,
then the reported p-value is

P1/2(X ≥ 4) = 5(1/2)5 + (1/2)5 = 6/32 = .1875.

In this case we are more confident in rejecting the null hypothesis.

Remark 3.33 leads to the following generalized definition of p-valued

Definition 3.36 (p-Value, Randomized). LetX1, . . . , Xn be a real-valued random sample
of size n from a family of distributions {fθ : θ ∈ Θ}. Denote X := (X1, . . . , Xn). Consider a
set of hypothesis tests ϕα : Rn → [0, 1], for any α ∈ [0, 1]. Assume that these tests are nested
in the sense that ϕα ≤ ϕα′ for all 0 ≤ α < α′ ≤ 1. The p-value for this set of hypothesis
tests is the statistic

p(X) := inf{α ∈ [0, 1] : ϕα(X) = 1}.
(If the set {α ∈ [0, 1] : ϕα(X) = 1} is empty, we define p(X) := 1.) In the case that ϕα are
nonrandomized, so that ϕα = 1Cα for all 0 ≤ α ≤ 1, this definition becomes

p(X) = inf{α ∈ [0, 1] : X ∈ Cα}.

56



The nested property implies that {α ∈ [0, 1] : ϕα(X) = 1} is an interval. Without the
nested property, we could still define the p-value, but then it would not really be an interesting
quantity to consider. (If an observation X = x is rejected at a low significance level, then
thinking about p-values only seems sensible when that observation is rejected at all higher
significance levels.)

Exercise 3.37. Suppose X is a binomial distributed random variable with parameters n =
100 and θ ∈ [0, 1] where θ is unknown. Suppose we want to test the hypothesis H0 that
θ = 1/2 versus the hypothesis H1 that θ ̸= 1/2. Consider the hypothesis test that rejects
the null hypothesis if and only if |X − 50| > 10.
Using e.g. the central limit theorem, do the following:

• Give an approximation to the significance level α of this hypothesis test
• Plot an approximation of the power function β(θ) as a function of θ.
• Estimate p values for this test when X = 50, and also when X = 70 or X = 90.

Exercise 3.38. Let X1, . . . , Xn be a real-valued random sample of size n from a family
of distributions {fθ : θ ∈ Θ}. Suppose Θ = R. Fix θ ∈ R. Denote X := (X1, . . . , Xn).
Consider a set of hypothesis tests ϕα : Rn → [0, 1], for any α ∈ [0, 1]. Assume that these
tests are nested in the sense that ϕα ≤ ϕα′ for all 0 ≤ α < α′ ≤ 1. Suppose we are testing
the hypothesis H0 that {θ ≤ θ0} versus H1 that {θ > θ0}. Suppose also that {fθ} has the
monotone likelihood ratio property with respect to a statistic Y = t(X) that is a continuous
random variable.

• Show that the family of UMP tests with significance level at most α satisfies the
nested property mentioned above (for all α ∈ [0, 1]).

• Show that, if X = x, then the p-value p(x) satisfies

p(x) = Pθ0(t(X) > t(x)).

3.6. Loss Function Optimality. As we observed in the previous section, UMP tests might
not exist in fairly natural situations, such as testing {θ = θ0} versus {θ ̸= θ0}. To get around
this issue, we can look for UMP tests in a smaller class of tests, or we could try to optimize
a loss function instead of looking for a UMP test. In the former case, it is sometimes natural
to search for a UMP test among all unbiased tests.

Definition 3.39. Let ϕ : Rn → [0, 1] be a hypothesis test for {θ ∈ Θ0} versus {θ ∈ Θ1}. Let
β : Θ → [0, 1] be the power function of ϕ. We say that ϕ is unbiased with level α ∈ [0, 1] if

β(θ) ≤ α, ∀ θ ∈ Θ0, and β(θ) ≥ α, ∀ θ ∈ Θ1.

Fix 0 < α < 1. If a UMP hypothesis test ϕ exists among all tests with significance level
at most α, then ϕ is unbiased, since being UMP implies that β(θ) ≥ α for all θ ∈ Θ1 (if we
compare ϕ to the constant hypothesis test ϕ′ := α). On the other hand, the class of unbiased
tests with level α is smaller than the class of tests with significance level at most α. So,
a finding a UMP among all unbiased tests is an optimization over a smaller class of tests,
when compared with finding a UMP among all tests with a bound on their significance level.

Theorem 3.40. Let 0 < α < 1, and let X be a random variable from a one-parameter
exponential family {fθ : θ ∈ Θ} with w : R → R (as in Definition 2.1). Assume w is contin-
uously differentiable and strictly increasing. Let θ0 in the interior of Θ. Let T denote the
set of unbiased hypothesis tests with significance level at most α. Suppose we are testing the
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hypothesis {θ = θ0} versus {θ ̸= θ0}. Then there exists a, b ∈ R with a ≤ b, there exists a
real-valued statistic Y = t(X) and a UMP class T test ϕ such that ϕ = 1 when t < a or
t > b, ϕ = 0 when t ∈ (a, b) and such that Eθ0ϕ(X)1t(X)<a > 0 and Eθ0ϕ(X)1t(X)>b > 0.

Alternatively, we could try to minimize a risk function

r(θ) := Eθℓ(θ, ϕ).

where ℓ is a loss function
ℓ : Θ× [0, 1] → R,

among all hypothesis tests ϕ.

4. Generalized Likelihood Ratio Tests

4.1. Generalized Likelihood Ratio Tests. Let X1, . . . , Xn be a real-valued random sam-
ple of size n from a family of distributions {fθ : θ ∈ Θ}. We denote the joint distribution of
X1, . . . , Xn as

n∏
i=1

fθ(xi), ∀ 1 ≤ i ≤ n.

If we have data x ∈ Rn, recall that we defined the function ℓ : Θ → [0,∞)

ℓ(θ) :=
n∏

i=1

fθ(xi)

and called it the likelihood function. Below we denote fθ(x) = ℓ(θ).
The Neyman-Pearson Lemma demonstrates that, when Θ has exactly two points, a like-

lihood ratio test is UMP among all tests of significance level at most α. When Θ has more
than two points, there is an analogue of the likelihood ratio test that has some desirable
properties.

Let Θ0 ⊆ Θ. When Θ consists of two points {θ0, θ1} and Θ0 consists of one point θ0, we
defined the likelihood ratio test for the hypothesis H0 that {θ = θ0} in the Neyman-Pearson
Lemma 3.10 by its rejection region C ′.

C ′ := {x ∈ Rn : fθ1(x) ≥ kfθ0(x)}.
Here k > 0. Written another way, the rejection region is

C ′ := {x ∈ Rn : sup
θ∈Θc

0

fθ(x) ≥ k sup
θ∈Θ0

fθ(x)}.

We could use this C ′ to define a generalized likelihood ratio test, but for technical reasons,
the following modification is more convenient.

Definition 4.1 (Generalized Likelihood Ratio Test). Let k ≥ 1. The generalized
likelihood ratio test of a hypothesis H0 that {θ ∈ Θ0} is defined by the following rejection
region.

C := {x ∈ Rn : sup
θ∈Θ

fθ(x) ≥ k sup
θ∈Θ0

fθ(x)}.

Intuitively, supθ∈Θ0
fθ(x) chooses the null parameter θ ∈ Θ0 that best fits the data x. So,

the generalized likelihood ratio test compares the likelihood of the parameter θ ∈ Θ that
best fits the data x, to the likelihood of the null parameter θ ∈ Θ0 that best fits the data x,
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Remark 4.2. If 0 < k ≤ 1 then C = Rn. That is, all generalized likelihood ratio tests with
0 < k ≤ 1 are the same, hence our restriction to k ≥ 1 in Definition 4.1.
Let D be the set of x ∈ Rn such that supθ∈Θc

0
fθ(x) ≥ supθ∈Θ0

fθ(x). If x ∈ D, then

supθ∈Θ fθ(x) = supθ∈Θc
0
fθ(x). So, C ∩D = C ′∩D. On Dc, we could have C ∩Dc ̸= C ′∩Dc.

So, at least on the set D, the rejection regions C and C ′ agree.

Example 4.3. LetX1, . . . , Xn be a random sample from a Gaussian distribution with known
variance σ2 > 0 but unknown mean µ ∈ R. Fix µ0 ∈ R. Suppose we want to test the
hypothesis H0 that µ = µ0 versus the alternative H1 that µ ̸= µ0. That is, Θ = R,
Θ0 = {µ0} and Θc

0 = Θ1 = {µ ∈ R : µ ̸= µ0}. Also, for any x = (x1, . . . , xn) ∈ Rn,

fµ(x) =
n∏

i=1

1

σ
√
2π

e−
(xi−µ)2

2σ2 .

From Example 2.63, the MLE is the sample mean, i.e. for any x ∈ Rn,

sup
µ∈Θ

fµ(x) = f(x1+···+xn
n

)(x).
Since Θ0 is just a single point, we can then write the rejection region of the generalized
likelihood ratio test as

C := {x ∈ Rn : sup
µ∈Θ

fµ(x) ≥ k sup
µ∈Θ0

fµ(x)}

=
{
x ∈ Rn :

n∏
i=1

e−
(xi−

1
n

∑n
j=1 xj)

2−(xi−µ0)
2

2σ2 ≥ k
}

=
{
x ∈ Rn : e−

1
2σ2

∑n
i=1

[
(xi− 1

n

∑n
j=1 xj)

2−(xi−µ0)2
]
≥ k

}
=
{
x ∈ Rn :

n∑
i=1

[
(xi −

1

n

n∑
j=1

xj)
2 − (xi − µ0)

2
]
≤ −2σ2 log k

}
=
{
x ∈ Rn : − n

( 1
n

n∑
j=1

xj − µ0

)2
≤ −2σ2 log k

}
=
{
x ∈ Rn :

∣∣∣ 1
n

n∑
j=1

xj − µ0

∣∣∣ ≥√2n−1σ2 log k
}
.

So, the test rejects the null hypothesis, unless 1
n

∑n
j=1Xj is close to µ0. As anticipated

by Proposition 3.27, the hypothesis test corresponds to confidence intervals for the sample

mean. (Above we used the identity
∑n

i=1

[
(xi − 1

n

∑n
j=1 xj)

2 − (xi − µ0)
2
]
=
∑n

i=1

[
(xi −

µ0 + µ0 − 1
n

∑n
j=1 xj)

2 − (xi − µ0)
2
]
= n(µ0 − 1

n

∑n
j=1 xj)

2 − 2
n

∑n
i,j=1(xi − µ0)(xj − µ0) =

n(µ0 − 1
n

∑n
j=1 xj)

2 − 2n( 1
n

∑n
i=1(xi − µ0))

2 = −n(µ0 − 1
n

∑n
j=1 xj)

2.)
Note also that the rejection region of this hypothesis test is a function of a sufficient

statistic, since the sample mean is a sufficient statistic for µ by Example 2.47. Intuitively,
since the sufficient statistic contains all information about µ, it should not be a surprise that
the hypothesis test only needs to check the sufficient statistic.
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Denoting X := (X1, . . . , Xn), observe that, if H0 is true, then

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

=
n

σ2

( 1
n

n∑
j=1

[Xj − µ0]
)2

=
( 1

σ
√
n

n∑
j=1

[Xj − µ0]
)2

has a chi-squared distribution with one degree of freedom. In fact, this holds asymptotically
as n → ∞ in general (see Theorem 4.7 below.)
Finally, note that the p-value for this hypothesis test is

p(X), where p(x) := Pθ0

(∣∣∣ 1
n

n∑
j=1

Xj − µ0

∣∣∣ ≥ ∣∣∣ 1
n

n∑
j=1

xj − µ0

∣∣∣) ∀x ∈ Rn.

Exercise 4.4. Let X1, . . . , Xn be a random sample from an exponential distribution with
unknown location parameter θ > 0, i.e. X1 has density

g(x) := 1x≥θe
−(x−θ), ∀x ∈ R.

Fix θ0 ∈ R. Suppose we want to test that hypothesis H0 that θ ≤ θ0 versus the alternative
H1 that θ > θ0. That is, Θ = R, Θ0 = {θ ∈ R : θ ≤ θ0} and Θc

0 = Θ1 = {θ ∈ R : θ > θ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for
this hypothesis. (Hint: it might be easier to describe the region using x(1) =
min(x1, . . . , xn).)

• Prove that X(1) := min(X1, . . . , Xn) is a sufficient statistic for θ.
• (Optional) If H0 is true, then does

2 log
supθ∈Θ fθ(X1, . . . , Xn)

supθ∈Θ0
fθ(X1, . . . , Xn)

converge in distribution to a chi-squared distribution as n → ∞?

Exercise 4.5. Let X1, . . . , Xn be a random sample from a Gaussian random variable with
unknown mean µ ∈ R and unknown variance σ2 > 0.

Fix µ0 ∈ R. Suppose we want to test that hypothesis H0 that µ = µ0 versus the alternative
H1 that µ ̸= µ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for this
hypothesis.

• Give an explicit formula for the p-value of this hypothesis test. (Hint: If S2 denotes
the sample variance and X denotes the sample mean, you should then be able to use

the statistic (X−µ0)2

S2 . Since we have an explicit formula for Snedecor’s distribution,
you should then be able to write an explicit integral formula for the p-value of this
test.)

4.2. Case Study: alpha particle emissions. The table below demonstrates counts for
alpha particle emissions of americium 241. During 1207 disjoint intervals of ten seconds, a
number m of alpha particle emission were observed.

m 0, 1 or 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
# of Intervals 18 28 56 105 126 146 164 161 123 101 74 53 23 15 9 5

The number of alpha particle emissions in each of the 1207 intervals is modeled as 1207
i.i.d. Poisson distributed random variables with unknown mean λ > 0. (So, Pλ(X = k) =

60



e−λλk/k! for any nonnegative integer k ≥ 0, and λ > 0 is unknown.) (There are both
mathematical and physical explanations for this assumption which we omit.)

The average number of alpha particles emitted in a ten-second interval of time (averaged
over all 1207 intervals) is observed to be 8.392, so we could naively predict that λ ≈ 8.392.

For any integer k ≥ 0, let qk ≥ 0 denote the probability of an alpha particle emission count
being k in a ten second time interval, so that

∑∞
k=0 qk = 1. And for any 1 ≤ j ≤ 16, let pj be

the probability of the count appearing in the jth column of the table. Then the probability
of a count appearing in the 0, 1, 2 cell in the table is p1 := q0 + q1 + q2, the probability of
that count appearing in the 3 cell in the table is p2 := q3, etc., and the probability of that
count appearing in the ≥ 17 cell in the table is p16 =

∑∞
j=17 qj.

Consider the null hypothesis that qk = e−λλk/k! for any λ > 0, k ≥ 0, versus the alterna-
tive, which includes the assumption that

∑16
j=1 pj = 1 and pj ≥ 0 for all 1 ≤ j ≤ 16. Since

the table has sixteen entries, we can model the probabilities of the counts by a multinomial
distribution, i.e. with 1207 trials of rolling a 16-sided die with unknown probabilities of
occurrence of the die rolls. That is, we consider random variables X1, . . . , X16 defined by the
joint distribution

fθ(x) = fθ(x1, . . . , x16) := P(X1 = x1, . . . , X16 = x16) = 1207!
16∏
j=1

pj(θ)
xj

xj!
,

∀xj ∈ Z, xj ≥ 0 ∀ 1 ≤ j ≤ 16,
16∑
j=1

xj = 1207.

To find the supremum of fθ over all θ, we use Lagrange multipliers with the constraint∑16
j=1 pj = 1 and p1, . . . , p16 ≥ 0 . We have ∂fθ(x)

∂pj
=

xj

pj
fθ(x) for all 1 ≤ j ≤ 16. Then there

exists δ ̸= 0 such that δ = ∂fθ(x)
∂pj

=
xj

pj
fθ(x) for all 1 ≤ j ≤ 16. That is, at the only interior

critical point, we have xj = pj
x1

p1
for all 1 ≤ j ≤ 16. Summing over j gives 1207 = x1

p1
. That

is, p1 =
x1

1207
. Repeating this argument for any index 1 ≤ j ≤ 16 gives

pj =
xj

1207
, ∀ 1 ≤ j ≤ 16.

Therefore

sup
θ∈Θ

fθ(x) = 1207!
16∏
j=1

pj(θ)
xj

xj!
= 1207!

16∏
j=1

(xj/1207)
xj

xj!
.

(We only found one interior critical point, so we should also argue that this critical point
actually is a maximum instead of a minimum. This holds since the likelihood is zero on the
boundary of the optimization region, i.e. fθ(x) = 0 whenever pj = 0 for some 1 ≤ j ≤ 16.)
Meanwhile, the supremum over θ ∈ Θ0 can be found by an unconstrained optimization

over λ > 0. (Recall that the first entry of the table has probability e−λ[1 + λ + λ2/2], and
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the last entry of the table has probability e−λ
∑∞

i=17
λk

k!
). So,

sup
θ∈Θ0

fθ(x)

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[e−λ

∑∞
i=17

λi

i!
]x16

x16!

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[e−λ(eλ −

∑16
i=0

λi

i!
)]x16

x16!

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[1− e−λ

∑16
i=0

λi

i!
)]x16

x16!
.

Using the data from the above table, with x1 = 18, x2 = 28, . . . , x16 = 5, we numerically
compute the maximum λ to be λ ≈ 8.366, which is very close to the sample mean of 8.392.
(Even if you remove the factorials that do not depend on λ, the product of the remaining
terms will evaluate to 0 or ∞ on a computer; to fix this issue you can e.g. take the 1/200
power of each product term.) The likelihood ratio is then

supθ∈Θ fθ(x)

supθ∈Θ0
fθ(x)

≈
[ 15∏
j=2

( xj/1207

e−8.378.37j+1/(j + 1)!

)xj
][ x1/1207

[e−8.37(1 + 8.37 + 8.372/2)]

]x1
[ x16/1207

[e−8.37
∑∞

i=17
8.37i

i!
]

]x16

The main question we want to answer is: Is the above Poisson model sensible? That is,
does the above Poisson assumption fit the data well? In order to answer this question, we
will examine more closely the generalized likelihood ratio. In the case that X1, . . . , X16 are
i.i.d. and X = (X1, . . . , X16), we know that the quantity

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

(∗)

is close to a chi-squared distribution with one degree of freedom, if 16 was replaced by a
much larger number. However, X1, . . . , X16 are not i.i.d., and 16 is not a very large number.
Still, 1207 is a fairly large number, so perhaps we can approximately find the distribution of
(∗) for this reason. Observe

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

= 2 log
16∏
j=1

(Xj/1207)
Xj

pj(λ)Xj
= 2 log

16∏
j=1

((Xj/1207)

pj(λ)

)Xj

= 2
16∑
j=1

Xj log
(Xj/1207

pj(λ)

)
= 2 · 1207

16∑
j=1

Xj

1207
log
(Xj/1207

pj(λ)

)
.

If H0 is true, i.e. the data does fit a Poisson distribution, then the MLE for θ ∈ Θ is
approximately the same as the MLE for λ > 0 (i.e. for θ ∈ Θ0), so we have the approximation
Xj/1207 ≈ pj(λ). So, using the Taylor expansion around b > 0 for h(a) := a log(a/b), we
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have h(b) = 0, h′(b) = 1 and h′′(b) = 1/b, so

a log(a/b) ≈ (a− b) +
1

2b
(a− b)2.

Substituting into the above with a = Xj/1207 and b = pj(λ), we get

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

≈ 2 · 1207
16∑
j=1

[( Xj

1207
− pj(λ)

)
+

1

2

(
Xj

1207
− pj(λ)

)2
pj(λ)

]
.

The first term in the sum is zero since
∑16

j=1 Xj = 1207 and
∑16

j=1 pj(λ) = 1. So,

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

≈ 1207
16∑
j=1

(
Xj

1207
− pj(λ)

)2
pj(λ)

=
16∑
j=1

(
Xj − 1207pj(λ)

)2
1207pj(λ)

.

The last quantity is known as Pearson’s chi-squared statistic. For each 1 ≤ j ≤ 16, Xj

is a binomial random variable with expected value 1207pj(λ) under H0. So we can rewrite
this statistic as

S :=
16∑
j=1

(
Xj − EλXj

)2
EλXj

.

We would like to use this statistic and report its p-value. If S is large, then the data does not
follow from a Poisson distribution, so the null hypothesis is false. That is, the test should
reject when S ≥ s for some s > 0. In order to compute the p-value, we will show that the
asymptotic distribution of this statistic (as the number of trials m = 1207 becomes large) is
a chi-squared distribution with 16− 1− 1 = 14 degrees of freedom.

For any given ten-second interval of time, we can record the number of alpha particle
emissions as a vector Y = (Y1, . . . , Y16) of zeros and ones, so Yk = 1 if the count of alpha
particles is placed in the kth column of the table, and all other entries of Y are zero. For
example, if three emissions are observe then Y = (0, 1, 0, 0, . . . , 0). We let Mij := E(Yi −
EYi)(Yj − EYj) for all 1 ≤ i, j ≤ 16 be the covariance matrix of Y . For example, EYi = pi,
EY 2

i = pi and EYiYj = 0 for all 1 ≤ i < j ≤ m. We then have

M =


p1(1− p1) −p1p2 −p1p3 · · · −p1p16
−p2p1 p2(1− p2) −p2p3 · · · −p2p16

...
...

. . . . . .
...

−p16p1 −p16p2 −p16p3 · · · p16(1− p16).


This matrix does not have full rank since

∑16
j=1 pj = 1 implies that M applied to the constant

vector is zero. Since this matrix does not have full rank, there will be a technical issue
involved in applying the multivariable central limit theorem. So, let us instead examine
Z := (Y1, . . . , Y15). If p1, . . . , p16 ̸= 0, the covariance matrix of Z is then

R :=


p1(1− p1) −p1p2 −p1p3 · · · −p1p15
−p2p1 p2(1− p2) −p2p3 · · · −p2p15

...
...

. . . . . .
...

−p15p1 −p15p2 −p15p3 · · · p16(1− p15)

 .
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We can explicitly write an inverse of this matrix, implying that it has full rank:

R−1 =


p−1
1 + p−1

16 p−1
16 p−1

16 · · · p−1
16

p−1
16 p−1

2 + p−1
16 p−1

16 · · · p−1
16

...
...

. . . . . .
...

p−1
16 p−1

16 p−1
16 · · · p−1

15 + p−1
16

 .

Using again
∑16

j=1Xj = 1207 and
∑16

j=1 pj(λ) = 1,

S =
16∑
j=1

(
Xj − 1207pj

)2
1207pj

=
15∑
j=1

(
Xj − 1207pj

)2
1207pj

+

(
X16 − 1207p16

)2
1207p16

=
15∑
j=1

(
Xj − 1207pj

)2
1207pj

+

(
[p16 − 1]1207−Xj + 1207

)2
1207p16

=
15∑
j=1

(
Xj − 1207pj

)2
1207pj

+

(∑15
i=1(Xi − 1207pi)

)2
1207p16

=
1

1207
(X ′ − 1207p′)TR−1(X ′ − 1207p′),

where X ′ = (X1, . . . , X15) and p′ = (p1, . . . , p15). Letting Z1, . . . , Z1207 be i.i.d. copies of Z,
we have Xj =

∑1207
i=1 (Zi)j = 1207Zi. We then have

S = 1207(Z − p′)TR−1(Z − p′) = [R−1/2
√
1207(Z − p′)]TR−1/2

√
1207(Z − p′).

From the multivariable Central Limit Theorem 1.101, R−1/2
√
1207(Z − p′) converges to a

standard Gaussian random vector, i.e. a vector of 15 i.i.d. standard Gaussian random
variables, as m = 1207 goes to infinity. It follows that, for fixed λ > 0, S has the distribution
of a chi-squared random variable with 15 degrees of freedom.

In the generalized likelihood ratio, we used λ that is a function of the data X1, . . . , X16,
since we estimated λ using the data. That is, under H0, we introduce an extra dependence
on the random variables X1, . . . , X16, resulting in one less degree of freedom in the limiting
distribution. (For a formal proof of that fact, see A. W. van der Vaart’s book, Asymptotic
Statistics, Corollary 17.5). So, the distribution of S is approximately a chi-squared random
variable with 14 degrees of freedom. From the data, we have

S =
16∑
j=1

(
Xj − 1207pj

)2
1207pj

=
(18− 1207e−8.366[1 + 8.366 + 8.3662/2])2

1207e−8.366[1 + 8.37 + 8.3662/2]

+
(28− 1207e−8.3668.3663/3!)2

1207e−8.3668.3663/3!
+ · · ·+ (9− 1207e−8.3668.36616/16!)2

1207e−8.3668.36616/16!

+
(5− 1207[1− e−8.366

∑16
j=0 8.366

j/j!])2

1207[1− e−8.366
∑16

j=0 8.366
j/j!]

We get S ≈ 8.95. And P(S ≥ 8.95) ≈ .834. This is a p-value, corresponding to a test that
rejects the null hypothesis (that the data follows from a Poisson distribution) when S is
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large. We therefore accept the null hypothesis, i.e. we believe that the data can be modelled
well from the Poisson distribution.

Exercise 4.6. Write down the generalized likelihood ratio estimate for the following alpha
particle data, as we did in class for a slightly different data set. The corresponding test
treats individual counts of alpha particles as independent Poisson random variables, versus
the alternative that the probability of a count appearing in each box of data is a sequence of
nonnegative numbers that sum to one. (In doing so, you should need to compute a maximum
likelihood estimate using a computer.)

m 0, 1 or 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
# of Intervals 16 26 58 102 125 146 163 164 120 100 72 54 20 12 10 4

Plot the MLE for the Poisson statistic (i.e. plot the denominator of the generalized

likelihood ratio test statistic
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

) as a function of λ.

Finally, compute the value s of Pearson’s chi-squared statistic S, and compute the proba-
bility that S ≥ s. Does the probability P(S ≥ s) give you confidence that the null hypothesis
is true?

4.3. Additional Comments.

Theorem 4.7 (Limiting Distribution of Generalized Likelihood Ratio Statistic).
Let X = (X1, . . . , Xn) be a random sample of size n from a family of distributions {fθ : θ ∈
Θ}. Fix θ0 ∈ Θ ⊆ R. Suppose we test the hypothesis H0 that {θ = θ0} versus the alter-

native {θ ̸= θ0}. Suppose the assumptions of Theorem 2.69 hold. Let λ(X) :=
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

denote the generalized likelihood ratio statistic. If H0 is true, then 2 log λ(X) converges in
distribution as n → ∞ to a chi-squared random variable with one degree of freedom.

Proof Sketch. Recall that ℓ(θ) := log fθ(x). Suppose we expand ℓ(θ) in a Taylor series around

the random point Y , i.e. assume there exists h : R → R such that limz→0
h(z)
z2

= 0 and, for
all θ0 ∈ R,

ℓ(θ0) = ℓ(Y ) + ℓ′(Y )(θ0 − Y ) + (1/2)ℓ′′(Y )(θ0 − Y )2 + h(Y − θ0).

As in Theorem 2.69, let Y be the MLE. By definition of Y , ℓ′(Y ) = 0. Since 2 log λ(X) =
−2ℓ(θ0) + 2ℓ(Y ), we rearrange the equality to get

2 log λ(X) ≈ −ℓ′′(Y )(θ0 − Y )2.

As mentioned in Definition 2.56, Eθ0ℓ
′′(θ0) = −IX(θ0) = −nIX1(θ0). By Theorem 2.68,

Y = Yn converges in probability to the constant θ0 with respect to Pθ0 as n → ∞. So, we
can approximate ℓ′′(Y ) by ℓ′′(θ0) ≈ −nIX1(θ0). That is,

2 log λ(X) ≈ nIX1(θ0)(θ0 − Y )2.

By Theorem 2.69,
√
n(Y−θ0) converges in distribution to a mean zero Gaussian with variance

1/IX1(θ0) as n → ∞. Therefore, 2 log λ(X) converges in distribution to a chi-squared random
variable with one degree of freedom as n → ∞. □
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5. Resampling, Bias Reduction and Estimation

The goal of bias reduction is to begin with an estimator and a random sample of fixed size
n, and to find a way to reduce the bias of the estimator. We already know that conditioning
as in the Rao-Blackwell Theorem 2.51 can allow us to reduce variance and maintain the bias
of an estimator. Unfortunately, reducing the bias can sometimes increase the variance of the
estimator. Recall that any random variable X can be written as

E(X − θ)2 = E(X − EX + EX − θ)2 = E(X − EX)2 + (EX − θ)2.

From this equality, we can intuitively assert that reducing the variance of an estimator could
increase its bias, while reducing the bias of an estimator could increase its variance. This
tradeoff is known as the bias-variance tradeoff.

A standard way to reduce bias is to resample from our random sample. In jackknife
resampling, we consider the sample of size n with one sample removed, and then average the
estimator over all n ways of removing one sample.

Another motivation for resampling methods (such as the jackknife or bootstrapping) is
approximating the variance of some estimators. When the assumed probability distribution
of an estimator is complicated, approximating the variance of an estimator might be com-
plicated to do directly or require a large sample size to obtain reasonable approximations.
Resampling methods allow us to approximate the variance of estimators in a way that avoids
these difficulties.

Intuitively, the “extra averaging” that occurs in resampling methods leads to more accurate
estimates.

5.1. Jackknife Resampling.

Definition 5.1. Let Θ ⊆ R. Let X1, X2, . . . : Ω → Rd be i.i.d random variables so that X1

has distribution fθ : Rd → [0,∞), θ ∈ Θ. Let Y1, Y2, . . . be a sequence of estimators for θ so
that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some tn : Rnd → Θ. For any n ≥ 1, define the
jackknife estimator of Yn to be

Zn := nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn).

Define also the jackknife estimator for the bias of Yn to be

Yn − Zn.

The jackknife estimator reduces the bias of the original estimator, as we now show.

Proposition 5.2. Assume that Y1, Y2, . . . are asymptotically unbiased, so that there exists
a, b ∈ R such that

EYn = θ + a/n+ b/n2 +O(1/n3), ∀n ≥ 1. (∗)

Then

EZn = θ +O(1/n2).

And if b = 0 and the O(1/n3) term is zero in (∗), then Zn is unbiased.
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Proof. Let n ≥ 1. Then

EZn
(∗)
= nθ + a+

b

n
+O(1/n2)− n− 1

n

n∑
i=1

Etn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

(∗)
= nθ + a+

b

n
+O(1/n2)− n− 1

n

n∑
i=1

(θ +
a

n− 1
+

b

(n− 1)2
+O(1/n3))

= θ +
b

n
− b

n− 1
+O(1/n2) = θ +O(1/n2).

□

Example 5.3. The jackknife estimator of the sample mean is the sample mean.

nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

=
n∑

i=1

Xi −
1

n

n∑
i=1

(X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn)

=
n∑

i=1

Xi −
n− 1

n

n∑
i=1

Xi =
1

n

n∑
i=1

Xi, ∀n ≥ 1.

Example 5.4. Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter 0 < θ <
1. The MLE for θ is the sample mean, so by the Functional Equivariance Property of the
MLE, Proposition 2.65, the MLE for θ2 is

Yn :=
( 1
n

n∑
i=1

Xi

)2
, ∀n ≥ 1.

This estimator is biased, since

EYn =
1

n2

(
nθ + n(n− 1)θ2

)
= θ2 +

1

n
(θ − θ2), ∀n ≥ 1.

By Proposition 5.2, the jackknife estimator

Zn := n
( 1
n

n∑
i=1

Xi

)2
− n− 1

n

n∑
i=1

( 1

n− 1

∑
j∈{1,...,n} : j ̸=i

Xj

)2
, ∀n ≥ 1.

is an unbiased estimator of θ2.

5.2. Jackknife Variance Estimator. We begin by rewriting the jackknife estimator from
Definition 5.1 as

Zn := nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

=
1

n

n∑
i=1

(
nYn − (n− 1)tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

)
=:

1

n

n∑
i=1

Yn,i.

Using the heuristic assumption that the terms in the sum behave as i.i.d. random vari-
ables with variance var(

√
nYn), we obtain the following estimator of var(Yn), which can be

considered a sample variance of Yn,1/
√
n, . . . , Yn,n/

√
n.
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Definition 5.5. The jackknife variance estimator of Yn is

Vn :=
1

n− 1

n∑
i=1

(Yn,i√
n
− 1

n

n∑
j=1

Yn,j√
n

)2
=

1

n(n− 1)

n∑
i=1

(
Yn,i −

1

n

n∑
j=1

Yn,j

)2
=

n− 1

n

n∑
i=1

(
tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)−

1

n

n∑
j=1

tn−1(X1, . . . , Xj−1, Xj+1, . . . , Xn)
)2
.

Example 5.6. The jackknife variance estimator of the sample mean is a multiple of the
sample variance itself.

n− 1

n

n∑
i=1

( 1

n− 1

∑
j ̸=i

Xj −
1

n

n∑
j=1

1

n− 1

∑
k ̸=j

Xk

)2
=

1

n(n− 1)

n∑
i=1

(∑
j ̸=i

Xj −
1

n

n∑
j=1

∑
k ̸=j

Xk

)2
=

1

n(n− 1)

n∑
i=1

(
− n− 1

n
Xi + (1− (n− 1)/n)

∑
j ̸=i

Xj

)2
=

1

n(n− 1)

n∑
i=1

(
− n− 1

n
Xi + (1/n)

∑
j ̸=i

Xj

)2
=

1

n(n− 1)

n∑
i=1

(
−Xi +

1

n

n∑
j=1

Xj

)2
.

Example 5.7. Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter 0 < θ <
1. The MLE for θ is the sample mean, so by the Functional Equivariance Property of the
MLE, Proposition 2.65, the MLE for θ2 is

Yn :=
( 1
n

n∑
i=1

Xi

)2
, ∀n ≥ 1.

The jackknife estimator for the variance of Yn is

Vn :=
n− 1

n

n∑
i=1

[( 1

n− 1

∑
k ̸=i

Xk

)2
− 1

n

n∑
j=1

( 1

n− 1

∑
k ̸=j

Xk

)2]2
, ∀n ≥ 1.

Despite its heuristic definition, the jackknife variance estimator does estimate the variance
of Yn as n → ∞, as the following Theorem demonstrates.

Theorem 5.8 (Consistency of Jackknife Variance Estimator). Let X1, X2, . . . : Ω →
Rd be i.i.d random variables. Let Y1, Y2, . . . be a sequence of real-valued estimators for θ so
that for any n ≥ 1, Yn = t(Xn) for some t : Rd → R. Assume that µ := EX1 ∈ Rd. Let

Σ ∈ Rd2 denote the covariance matrix of X1 (so that Σij := cov(X1i, X1j) is finite and exists
∀ 1 ≤ i, j ≤ d.) Assume that Σij ∈ R for all 1 ≤ i, j ≤ d. Assume that ∇t exists and is
continuous in a neighborhood of µ, and ∇t(µ) ̸= 0. Then V1, V2, . . . is strongly consistent, in
the sense that

Vn

1
n
[∇t(µ)]TΣ[∇t(µ)]
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converges almost surely to 1 as n → ∞.

Recall that almost sure convergence implies convergence in probability by Exercise 1.85,
so strong consistency as stated here implies consistency (see Definition 2.44).

Recall also that the multivariate Central Limit Theorem 1.101 implies that

Yn − t(µ)√
1
n
[∇t(µ)]TΣ[∇t(µ)]

converges in distribution to a standard Gaussian random vector in Rd as n → ∞, explaining
why we consider 1

n
[∇t(µ)]TΣ[∇t(µ)] to be the asymptotic variance of Yn as n → ∞.

Proof. Denote Xn,i := (X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn)/(n− 1) for all 1 ≤ i ≤ n. Denote
Tn,i := tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn) = t(Xn,i) and Tn := tn(X1, . . . , Xn) = t(Xn). Then

Tn,i−Tn = t(Xn,i)− t(Xn) = [∇t(ξn,i)]
T (Xn,i−Xn) = [∇t(Xn)]

T (Xn,i−Xn)+Rn,i. (∗)

Here ξn,i ∈ Rd lies on the straight line between Xn,i and Xn, and Rn,i := [∇t(ξn,i) −
∇t(Xn)]

T (Xn,i −Xn). Denote Rn := 1
n

∑n
i=1Rn,i. From the Mean Value Theorem,

Vn =
n− 1

n

n∑
i=1

(
Tn,i −

1

n

n∑
j=1

Tn,j

)2
=

n− 1

n

n∑
i=1

(
Tn,i − Tn −

1

n

n∑
j=1

[Tn,j − Tn]
)2

(∗)
=

n− 1

n

n∑
i=1

(
[∇t(Xn)]

T (Xn,i −Xn) +Rn,i −
1

n

n∑
j=1

[Tn,j − Tn]
)2

The last term simplifies since
n∑

i=1

[Tn,i − Tn]
(∗)
= [∇t(Xn)]

T

n∑
i=1

(Xn,i −Xn) +
n∑

i=1

Rn,i = nRn,

using
(Xn,i −Xn) = (n− 1)−1(Xn −Xi), ∀ 1 ≤ i ≤ n. (∗∗)

Therefore

Vn =
n− 1

n

n∑
i=1

(
[∇t(Xn)]

T (Xn,i −Xn) +Rn,i −Rn

)2
=

n− 1

n
[∇t(Xn)]

T
( n∑

i=1

(Xn,i −Xn)(Xn,i −Xn)
T
)
∇t(Xn)

+
n− 1

n

n∑
i=1

[∇t(Xn)]
T (Xn,i −Xn)[Rn,i −Rn] +

n− 1

n

n∑
i=1

[Rn,i −Rn]
2

We begin with the first term. From (∗∗), the first term can be written as

1

n(n− 1)
[∇t(Xn)]

T
( n∑

i=1

(Xi −Xn)(Xi −Xn)
T
)
∇t(Xn)
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The ∇t(Xn) term converges almost surely to ∇t(µ) as n → ∞ by the Strong Law of Large
numbers (Theorem 1.88), and continuity of ∇t at µ. Multiplying by n and applying the
Strong Law of Large numbers again to the sum over i, the entire term converges almost
surely to [∇t(µ)]TΣ[∇t(µ)] as n → ∞. (More specifically, apply the Law of Large numbers
first to

∑n
i=1 X

T
i Xi, and so on.)

We will show that the last term multiplied by n converges to zero almost surely, and this
completes the proof since then the middle term converges to zero by the Cauchy-Schwarz
inequality. To control the last term we write (first using E(Z − EZ)2 ≤ EZ2)

(n−1)
n∑

i=1

[Rn,i−Rn]
2 ≤ (n−1)

n∑
i=1

R2
n,i ≤ max

1≤j≤n
∥∇t(ξn,j)−∇t(Xn)∥2·(n−1)

n∑
i=1

∥Xn,i−Xn∥2.

From (∗∗), the right term satisfies

(n− 1)
n∑

i=1

∥Xn,i −Xn∥2 =
1

n− 1

n∑
i=1

∥Xi −Xn∥2,

which converges a.s. to the trace of Σ as n → ∞, by the Strong Law of Large Numbers.
Meanwhile, by definition of ξn,i, we have ∥ξn,i −Xn∥ going to zero a.s. as n → ∞ for each
fixed 1 ≤ i ≤ n, but we need this convergence to occur uniformly over all 1 ≤ i ≤ n, since
will take a maximum of these terms. To this end, observe that

∥ξn,i −Xn∥2 ≤ ∥Xn,i −Xn∥2
(∗∗)
=

1

(n− 1)2
∥Xi −Xn∥2 ≤

1

(n− 1)2
∥Xi∥2 , ∀ 1 ≤ i ≤ n.

This leads to a uniform bound in i since, for any s > 0,

P(max
1≤i≤n

∥Xi/n∥ > s) = 1−P(max
1≤i≤n

∥Xi/n∥ ≤ s) = 1− [P(∥X1∥ ≤ sn)]n

= 1− en log(1−P(∥X1∥>sn)) = 1− e−n[P(∥X1∥>sn)+o(P(∥X1∥>sn))].

Since E ∥X1∥ =
∫∞
0

P(∥X1∥ > s)ds < ∞, limn→∞ nP(∥X1∥ > n) = 0, so

lim
n→∞

P(max
1≤i≤n

∥Xi/n∥ > s) = 0, ∀ s > 0.

(If limn→∞ nP(∥X1∥ > n) ̸= 0, then there are n1, n2, . . . ≥ 5 with niP(∥X1∥ > ni) > ε > 0
for all i ≥ 1, so that for any 0 < s < 1, (ni−s)P(∥X1∥ > ni−s) ≥ (ni−s)P(∥X1∥ > ni) ≥ ε/2
for all i ≥ 1, so that E ∥X1∥ =

∫∞
0

P(∥X1∥ > s)ds = ∞, a contradiction.)

Consequently, max1≤i≤n ∥ξn,i − Xn∥2 converges to zero a.s. as n → ∞, so by continuity
of ∇t at µ, we conclude that max1≤j≤n ∥∇t(ξn,j) −∇t(Xn)∥2 also converges to zero a.s. as
n → ∞, as desired. □

5.3. Bootstrapping.

Definition 5.9. Let X1, . . . , Xn be a random sample of size n. Let m ≥ 1. We define the
bootstrap sample W1, . . . ,Wm as follows. Given X1, . . . , Xn, let W1, . . . ,Wm be a random
sample of size m uniformly distributed in the values {X1, . . . , Xn}.

We typically take m significantly larger than n.
For example, if we are given a sample of the form {3, 3, 5, 6}, then W1 has probability 1/2

of taking the value 3.
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Remark 5.10. Note that W1, . . . ,Wm are conditionally independent, by their definition.
Although the original sample consists of independent random variables, the bootstrap sample
does not. The easiest way to see this is to show that the covariance of W1 and W2 is nonzero.
Indeed, using the conditional independence, we have

EW1W2 = E
[
E(W1W2|X1, . . . , Xn)

]
= E

[
E(W1|X1, . . . , Xn) · E(W2|X1, . . . , Xn)

]
= E

[(
E(W1|X1, . . . , Xn)

)2]
= EX

2
.

Meanwhile

E(W |X1, . . . , Xn) =
1

n

n∑
i=1

( 1
n

n∑
j=1

Xj

)
= X. (‡)

So, the covariance of W1 and W2 is

E(W1 −EW1)(W2 −EW2) = EW1W2 − (EW1)(EW2) = EX
2 − (EX)2 = VarX =

Var(X1)

n
.

So, if X1 is nonconstant, this covariance is nonzero.

Definition 5.11. Let X1, X2, . . . : Ω → Rn be i.i.d random variables. Let Y1, Y2, . . . be a
sequence of real-valued estimators so that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some

tn : Rn2 → R. For any n ≥ 1, define the bootstrap variance estimator of Yn as

Var(tn(W1, . . . ,Wn) |X1, . . . , Xn),

where W1, . . . ,Wn is the bootstrap sample of X1, . . . , Xn.

Recall that Var(W |X) := E((W − E(W |X))2|X). The bootstrap variance estimator is
sometimes called a nonparametric bootstrap variance estimator, since we did not use any
assumptions about unknown parameters.

Example 5.12. Let X1, . . . , Xn be i.i.d. random variables with mean µ ∈ R. Denote
X := (X1, . . . , Xn). Let Yn denote the sample mean of X1, . . . , Xn. Then the bootstrap
variance estimator of Yn is

Var(tn(W1, . . . ,Wn) |X) = Var
( 1
n

n∑
i=1

Wi

∣∣∣X) = E
([ 1

n

n∑
i=1

Wi − E
( 1
n

n∑
i=1

Wi |X
)]2 ∣∣∣X)

= E
([ 1

n

n∑
i=1

Wi −
1

n

n∑
i=1

Xi

]2 ∣∣∣X) = E
([ 1

n

n∑
i=1

Wi

]2 ∣∣∣X)− ( 1
n

n∑
i=1

Xi

)2
= E

( 1
n
W 2

1 +
n2 − n

n2
W1W2

∣∣∣X)− ( 1
n

n∑
i=1

Xi

)2
=

1

n2

n∑
i=1

X2
i +

n2 − n

n2

( 1
n

n∑
i=1

Xi

)2
−
( 1
n

n∑
i=1

Xi

)2
=

1

n2

n∑
i=1

X2
i −

1

n

( 1
n

n∑
i=1

Xi

)2
=

1

n2

n∑
i=1

(
Xi −

1

n

n∑
j=1

Xj

)2
.
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In practice, the bootstrap variance estimator can be difficult to use directly, since the
conditional variance expression could become complicated. A more practical approximate
variance estimator is then

Vm :=
1

m

m∑
i=1

(
tn(W1i, . . . ,Wni)−

1

m

m∑
j=1

tn(W1j, . . . ,Wnj)
)2
.

Here (W1i, . . . ,Wni) are (conditionally) independent bootstrap samples from X1, . . . , Xn, for
each 1 ≤ i ≤ m. From this independence, the Strong Law of Large numbers (Theorem 1.88)
implies (under a finite second moment assumption) that Vm converges almost surely to the
bootstrap variance estimator as m → ∞.

Similarly, we could estimate the bias of the estimator by

1

m

m∑
i=1

(
tn(W1i, . . . ,Wni)− tn(X1, . . . , Xn)

)
.

Theorem 5.13 (Consistency of Bootstrap). Let X1, X2, . . . : Ω → Rd be i.i.d random
variables. Assume E ∥X1∥2 < ∞. Let Y1, Y2, . . . be a sequence of real-valued estimators so
that for any n ≥ 1, Yn = t(Xn) for some t : Rd → R. Let Z1, Z2, . . . be the corresponding
bootstrap estimators, so that Zn = t(W n). Assume that µ := EX1 ∈ Rd. Assume that ∇t
exists and is continuous in a neighborhood of µ, and ∇t(µ) ̸= 0. Then Z1, Z2, . . . is strongly
consistent, in the sense that

sup
a∈R

∣∣∣P(Yn ≤ a)−P(Zn ≤ a | (X1, . . . , Xn))
∣∣∣.

converges to zero almost surely as n → ∞.

5.4. Bootstrap Confidence Intervals. In Example 3.17, we constructed confidence in-
tervals for a real valued Gaussian with known variance σ2 and unknown mean µ using the
pivotal quantity (Xn−µ)/(σ/

√
n), since this quantity is a mean zero variance one Gaussian.

Let F : R → [0, 1] denote the CDF of a mean zero variance one Gaussian. For any a ≥ b, we
then had

P(Xn − aσ/
√
n ≤ µ ≤ Xn − bσ/

√
n) = F (−b)− F (−a).

Fix α ∈ (0, 1/2), and let a := −F−1(α) = F−1(1− α), b := −F−1(1− α) = F−1(α) to get

P(Xn − F−1(1− α)σ/
√
n ≤ µ ≤ Xn − F−1(α)σ/

√
n) = (1− α)− α = 1− 2α.

So, in this Gaussian setting, we have a 1− 2α confidence interval for µ of the form

[Xn − F−1(1− α)σ/
√
n, Xn − F−1(α)σ/

√
n].

We note in passing (with Theorem 5.14 below in mind) that

P(Xn − aσ/
√
n ≤ µ) = P(Xn − F−1(1− α)σ/

√
n ≤ µ) = F (F−1(1− α)) = 1− α.

We can mimic this approach for bootstrap estimators. Let X1, . . . , Xn ∈ Rd be i.i.d.
random variables. Let W1, . . . ,Wm be a bootstrap sample from X1, . . . , Xn. Let Tn ∈ R be
an estimator of θ, and let S2

n be an estimator of the variance of Tn. Let Tn,b be the bootstrap
version of Tn, and let S2

n,b be the bootstrap version of S2
n. Let Fb : R → [0, 1] denote the

CDF of (Tn,b − Tn)/Sn,b.

Fb(u) := P
(
(Tn,b − Tn)/Sn,b ≤ u

∣∣∣Tn

)
, ∀u ∈ R.
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Then

[Tn − F−1
b (1− α)Sn, Tn − F−1

b (α)Sn]

is an approximate 1− 2α confidence interval for θ.

Theorem 5.14 (Bootstrap Confidence Set Consistency). Let X1, . . . , Xn ∈ Rd be i.i.d.
random variables such that X1 has distribution {fθ} where θ ∈ R is unknown. Let Y1, Y2, . . .
be a sequence of real-valued estimators for θ. Let Z1, Z2, . . . be the corresponding bootstrap
estimators. Assume that

sup
a∈R

∣∣∣P(Yn ≤ a)−P(Zn ≤ a | (X1, . . . , Xn))
∣∣∣.

converges to zero almost surely as n → ∞. Then

lim
n→∞

P(Tn − F−1
b (1− α)Sn ≤ θ) = 1− α.

Exercise 5.15. Let X1, . . . , Xn be i.i.d. random variables. Let 0 < α < 1/2. Define the
α-trimmed sample mean to be

X
(α)

n :=
1

n− 2⌊nα⌋

n−⌊nα⌋∑
i=⌊nα⌋+1

X(i).

For any w = (w1, . . . , wn) ∈ {1, . . . , n}n, define the Winsorized sample mean to be

X
(w)

n :=
1

n

n∑
i=1

X(wi).

• Show that the jackknife estimator of X
(α)

n is

1

1− 2α
(X

(w)

n − 2αX
(α)

n ),

for some vector w.
• Show that the jackknife variance estimator of X

(α)

n is

1

n(n− 1)(1− 2α)2

n∑
i=1

(X(wi) −X
(w)

n )2,

for some vector w.

Exercise 5.16. Let X1, X2, X3 be i.i.d. continuous random variables such that X1 has PDF
{fθ : θ ∈ Θ}. Let W1,W2,W3 be a bootstrap sample from X1, X2, X3. Let Y denote the
sample median of X1, X2, X3. (That is, Y is the middle value among X1, X2, X3, which is
unique with probability one since the random variables are continuous.)

• Describe the distribution of (W(1),W(2),W(3)).
• Describe the bootstrap estimator of Y .
• Describe the bootstrap estimator of the variance of Y .
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6. Comparing Two Samples

6.1. Comparing Independent Gaussians. Suppose X1, . . . , Xn is a random sample from
a Gaussian random variable X with unknown mean µX ∈ R and known variance σ2

X > 0.
Suppose Y1, . . . , Ym is a random sample from a Gaussian random variable Y with unknown
mean µY ∈ R and known variance σ2

Y > 0.
Assume that X1, . . . , Xn is independent of Y1, . . . , Ym, i.e. assume that X, Y are indepen-

dent. Since X, Y are independent, X − Y is also a Gaussian random variable with mean
µX − µY and variance σ2

X + σ2
Y . Similarly,(

1
n

∑n
i=1Xi − 1

m

∑m
j=1 Yj

)
− µX + µY√

σ2
X

n
+

σ2
Y

m

is a Gaussian random variable with mean 0 and variance 1. So, for any t > 0, we have

P
( 1
n

n∑
i=1

Xi −
1

m

n∑
j=1

Yj − t

√
σ2
X

n
+

σ2
Y

m
< µX − µY

<
1

n

n∑
i=1

Xi −
1

m

n∑
j=1

Yj + t

√
σ2
X

n
+

σ2
Y

m

)
=

∫ t

−t

ez
2/2 dz√

2π
.

That is, we get confidence intervals for µX −µY , allowing us to obtain estimates on µX −µY .
In the case that the variances are unknown and equal, we can instead integrate Student’s

t-distribution.

Exercise 6.1. Suppose X1, . . . , Xn is a random sample from a Gaussian random variable X
with unknown mean µX ∈ R and unknown variance σ2 > 0. Suppose Y1, . . . , Ym is a random
sample from a Gaussian random variable Y with unknown mean µY ∈ R and unknown
variance σ2 > 0.

Assume that X1, . . . , Xn is independent of Y1, . . . , Ym, i.e. assume that X, Y are indepen-
dent.

Assume that n+m > 2. Define

X :=
1

n

n∑
i=1

Xi, Y :=
1

m

m∑
i=1

Yi,

S2
X :=

1

n− 1

n∑
i=1

(Xi −X)2, S2
Y :=

1

m− 1

m∑
i=1

(Yi − Y )2,

S2 :=
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
.

Show that

X − Y − µX + µY

S
√

1
n
+ 1

m
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has Student’s t-distribution with n+m− 2 degrees of freedom. Deduce the following confi-
dence intervals for the difference of the means

P
(
X − Y − tS

√
1

n
+

1

m
< µX − µY < X − Y + tS

√
1

n
+

1

m

)
=

Γ(p+1
2
)

√
p
√
πΓ(p/2)

∫ t

−t

(
1 +

s2

p

)−(p+1)/2

ds,

where p = n+m− 2.

Exercise 6.2. Suppose you have a random sample of size 6 from a Gaussian random variable
with unknown mean µ ∈ R and unknown variance σ2 > 0. Suppose this random sample is

1, 2, 3, 7, 8, 9.

Explicitly construct a 90% confidence interval for the mean µ.
Then, explicitly construct a 90% confidence interval for the variance σ2 > 0.
Your final answer might depend on the function Φ(t) :=

∫ t

−∞ e−x2/2dx/
√
2π, Φ: R → (0, 1),

and/or Φ−1 : (0, 1) → R, and/or the corresponding function for Student’s t-distribution.
You should not need to use a central limit theorem.

7. Analysis of Variance (ANOVA)

7.1. General Linear Model. Let A be an n × m real matrix of known (deterministic)
constants. Let β ∈ Rm be an unknown vector of (deterministic) constants. And let ε ∈ Rn

be a random vector. Our observation of the data is the vector Y ∈ Rn defined by

Y = Aβ + ε.

The goal is to try to estimate the vector β, when we only have access to Y and A.
In the case that ATA is invertible, we can multiply both sides of Y by (ATA)−1AT to get

β = (ATA)−1AT (Y − ε).

If ε is a mean zero vector, then the estimator

Z := (ATA)−1ATY

is unbiased, i.e. its expected value is β. Its covariance matrix Cov(Z) is

(ATA)−1ATCov(Y )A(ATA)−1 = (ATA)−1ATCov(ε)A(ATA)−1.

When ε is a vector of i.i.d. random variables each with variance σ2, this reduces to

σ2(ATA)−1.

Exercise 7.1. Under the above assumptions, show that the estimator( 1

n−m

n∑
i=1

(Yi − (AZ)i)
2
)
(ATA)−1

is an unbiased estimator of the covariance matrix of Z := (ATA)−1ATY .
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When A is a rank two matrix corresponding to linear regression (see Example 7.3), the
estimator (ATA)−1ATY has a simpler form since

ATA =

(
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x

2
i

)
.

(ATA)−1 =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
.

(ATA)−1ATY =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

(∑n
i=1 x

2
i

∑n
j=1 Yj −

∑n
i=1 xi

∑n
j=1 Yjxj

−
∑n

i=1 xi

∑n
j=1 Yj + n

∑n
i=1 Yixi

)
.

Theorem 7.9 demonstrates that this estimator has minimal variance among unbiased linear
estimators of β.
Suppose we want to estimate some real parameter g(β) where g : Rm → R. We could

estimate g(β) with g(Z). A jackknife estimator of the variance of g(Z) would be

n− 1

n

n∑
i=1

(
g(Zi)−

1

n

n∑
j=1

g(Zj)
)2
,

where Zj := (AT
j Aj)

−1AT
j Yj, and Aj denotes A with the jth row removed, for each 1 ≤ j ≤ n

(and similarly for Yj). This estimator is consistent under some reasonable assumptions, but
the jackknife mean bias estimator

n− 1

n

n∑
i=1

(
g(Zi)− g(Z)

)
,

is not consistent in general.

Example 7.2 (One-Way ANOVA). Let n1, n2, n3 > 0 be integers and let n := n1+n2+n3.
Let β1, β2, β3 ∈ R be unknown. Let σ2 > 0 be fixed. Let Y1, . . . , Yn be independent random
variables such that

• For each 1 ≤ i ≤ n1, Yi is a Gaussian with mean β1 and variance σ2.
• For each n1 + 1 ≤ i ≤ n1 + n2, Yi is a Gaussian with mean β2 and variance σ2.
• For each n1 + n2 + 1 ≤ i ≤ n, Yi is a Gaussian with mean β3 and variance σ2.

Then define

A :=



1 0 0
...

...
...

1 0 0
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1


, β =

β1

β2

β3

 .

where the matrix A has n1 rows of the form (1, 0, 0), n2 rows of the form (0, 1, 0) and n3 rows
of the form (0, 0, 1). Finally, let ε ∈ Rn be a column vector of i.i.d. Gaussians with mean
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zero and variance σ2. Then we can write the assumptions of Y = (Y1, . . . , Yn) in matrix
form:

Y = Aβ + ε

More generally, define

A :=



1 0 0 · · · 0
...

...
... · · · ...

1 0 0 · · · 0
0 1 0 · · · 0
...

...
... · · · ...

0 1 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
...

...
... · · · ...

0 0 0 · · · 1.


, β =

β1
...
βp

 .

where the matrix A has nj rows with a 1 in the jth entry, for every 1 ≤ j ≤ p. Finally,
let ε ∈ Rn be a column vector of i.i.d. Gaussians with mean zero and variance σ2. Then
Y = (Y1, . . . , Yn) is a one-way ANOVA of the form

Y = Aβ + ε

We can identify two-way ANOVA as a special case of one-way ANOVA. One-way ANOVA
considers p groups of data (in the example above, p = 3, e.g. red birds, blue birds and
green birds). Two-way ANOVA also considers groups of data but sorted according to two
characteristics, e.g. red large birds, red small birds, blue large birds, blue small birds, etc.)

Example 7.3 (Linear Regression). Let β1, β2 ∈ R be unknown. Let x1, . . . , xn ∈ R be
fixed constants. Let σ2 > 0 be fixed. Then define

A :=


1 x1

1 x2
...

...
1 xn

 , β =

(
β1

β2

)
.

Finally, let ε ∈ Rn be a column vector of i.i.d. Gaussians with mean zero and variance σ2.
Then the equation

Y = Aβ + ε

can be written as

Yi = β1 + β2xi + εi, ∀ 1 ≤ i ≤ n.

That is, xi and Yi are observed for all 1 ≤ i ≤ n, and there is an (unknown) linear relationship
between these data.
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More generally, Let β0, . . . , βp ∈ R be unknown. Let {xij}1≤i≤n,1≤j≤p ∈ R be fixed con-
stants. Let σ2 > 0 be fixed. Then define

A :=


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
1 xn1 xn2 · · · xnp

 , β =


β0

β1
...
βp

 .

Finally, let ε ∈ Rn be a column vector of i.i.d. Gaussians with mean zero and variance σ2.
Then the equation

Y = Aβ + ε

can be written as

Yi = β0 + β1xi1 + · · ·+ βpxip + εi, ∀ 1 ≤ i ≤ n.

That is, {xij} and Yi are observed for all i, j, and there is an (unknown) linear relationship
between these data.

7.2. One-Way ANOVA Hypothesis Testing. For any 1 ≤ j ≤ p, denote mj := n1 +
· · · + nj. In One-Way ANOVA, we have unknown constants β1, . . . , βp that we would like
to find, we have i.i.d. Gaussians ε1, . . . , εmp with mean zero and variance σ2 > 0 and we
observe Y1, . . . , Ymp where

Yi = β1 + εi, ∀ 1 ≤ i ≤ m1

Yi = β2 + εi, ∀m1 + 1 ≤ i ≤ m2

...

Yi = βp + εi, ∀mp−1 + 1 ≤ i ≤ mp

Y j :=
1

nj

mj∑
i=mj−1+1

Yi.

That is, Y j is the sample mean of the random variables that each have mean βj. So,

EY j = βj, ∀ 1 ≤ j ≤ p.

We know from Section 6.1 that, for any 1 ≤ j < k ≤ p,

Y j − Y k − (βj − βk)

σ
√

1
nj

+ 1
nk

is a standard Gaussian random variable, so we can get confidence intervals for βj − βk from
this pivotal quantity. More generally, for any constants c1, . . . , cp that are not all zero,∑p

j=1 cjY j −
∑p

j=1 cjβj

σ

√∑p
j=1

c2j
nj

is a standard Gaussian random variable, so we can get confidence intervals for
∑p

j=1 cjβj

from this pivotal quantity.

78



For any 1 ≤ j ≤ p, denote the jth sample variance as

S2
j :=

1

nj − 1

mj∑
i=mj−1+1

(Yi − Y j)
2.

Recall also from Exercise 6.1 that, for any 1 ≤ j < k ≤ p,

Y j − Y k − (βj − βk)

S
√

1
nj

+ 1
nk

has Student’s t-distribution with nj + nk − 2 degrees of freedom, where

S2 :=
(nj − 1)S2

j + (nk − 1)S2
k

nj + nk − 2
.

More generally, for any constants c1, . . . , cp that are not all zero,∑p
j=1 cjY j −

∑p
j=1 cjβj

S

√∑p
j=1

c2j
nj

(∗)

has Student’s t-distribution with
(∑p

j=1 nj

)
− p = mp − p degrees of freedom, where

S2 :=

∑p
j=1(nj − 1)S2

j

mp − p
.

Now, suppose we want to test the hypothesis that β1 = · · · = βp, versus the alternative.
We then can consider the statistic (∗) for any c1, . . . , cp with

∑p
i=1 ci = 0, as the following

lemma shows.

Lemma 7.4. The following two conditions are equivalent.

• β1 = · · · = βp

• For any c1, . . . , cp ∈ R with
∑p

i=1 ci = 0, we have

p∑
i=1

ciβi = 0.

Proof. If the first condition holds, then
∑p

i=1 ciβi = β1

∑p
i=1 ci = 0.

If the second condition holds, then fix any 1 ≤ i < j ≤ p, and set ci = 1, cj = −1 and
ck = 0 for all other k ∈ {1, . . . , p}. The second condition says βi − βj = 0, i.e. βi = βj, i.e.
the first condition holds. □

The null hypothesis that β1 = · · · = βp is then equivalent to: For any c1, . . . , cp ∈ R with∑p
i=1 ci = 0, we have

p∑
i=1

ciβi = 0.
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Proposition 7.5. Define

F := sup
c1,...,cp∈R :

∑p
i=1 ci=0

(∑p
j=1 cjY j −

∑p
j=1 cjβj

)2
S2
∑p

j=1

c2j
nj

Then

F =
1

S2

p∑
j=1

nj((Yj − Y )− (βj − β))2,

where Y = 1
mp

∑mp

i=1 Yi, and β = EY = 1
mp

∑mp

i=1EYi =
1
mp

∑p
j=1 njβj.

Moreover, F/(p−1) has Snedecor’s f-distribution with p−1 and mp−p degrees of freedom.
(For a definition of this distribution, see Exercise 2.18.)

Proof. Apply Lemma 7.7 with ai = n−1
i , bi := Y i − βi ∀ 1 ≤ i ≤ p, noting that(∑p

j=1 cjY j −
∑p

j=1 cjβj

)2
∑p

j=1

c2j
nj

=
t2∑p

i=1 aic
2
i

=

p∑
ℓ=1

a−1
ℓ

(
bℓ −

∑p
j=1 bja

−1
j∑p

k=1 a
−1
k

)2
=

p∑
ℓ=1

nℓ

(
bℓ −

∑p
j=1 bjnj∑p
k=1 nk

)2
=

p∑
j=1

nj((Yj − Y )− (βi − β))2

Finally, (a generalization of) Proposition 2.15 implies that the numerator and denominator
of F are independent, and Exercise 2.18 completes the proof. □

Remark 7.6. Under the null hypothesis that β1 = · · · = βp, we have β1 = · · · = βp = β, so
that

F =
1

S2

p∑
j=1

nj(Yj − Y )2,

That is, F is now a statistic (since it no longer depends on any unknown parameters).

Lemma 7.7. Let a1, . . . , an > 0, let b1, . . . , bn ∈ R and let t ̸= 0. Suppose we minimize

1

2

n∑
i=1

aic
2
i

subject to the constraints
n∑

i=1

ci = 0,
n∑

i=1

cibi = t.

Then the minimum value of this problem occurs when
n∑

i=1

aic
2
i =

t2∑n
i=1 a

−1
i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 .

ci =
ta−1

i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)
∑n

ℓ=1 a
−1
ℓ

(
bℓ −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 , ∀ 1 ≤ i ≤ n.
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Proof. By Lagrange multipliers, there exists λ1, λ2 ∈ R such that

aici = λ1 + λ2bi, ∀ 1 ≤ i ≤ n.

Dividing by ai, summing over i and using the constraints we obtain

0 = λ1

n∑
i=1

a−1
i + λ2

n∑
i=1

bia
−1
i , λ1 = −λ2

∑n
i=1 bia

−1
i∑n

i=1 a
−1
i

Multiplying by ci and summing over i,
n∑

i=1

aic
2
i = λ2t.

So,

ci =
1

ai
(λ1 + λ2bi) =

1

ai
λ2

(
−
∑n

j=1 bja
−1
j∑n

k=1 a
−1
k

+ bi

)
=

∑n
ℓ=1 aℓc

2
ℓ

tai

(
−
∑n

j=1 bja
−1
j∑n

k=1 a
−1
k

+ bi

)
.

Squaring, multiplying by ai and summing over i,
n∑

i=1

aic
2
i =

1

t2
(

n∑
k=1

akc
2
k)

2

n∑
i=1

a−1
i

(
−
∑n

j=1 bja
−1
j∑n

k=1 a
−1
k

+ bi

)2
.

That is,
n∑

i=1

aic
2
i =

t2∑n
i=1 a

−1
i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 .
Finally,

ci =
ta−1

i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)
∑n

ℓ=1 a
−1
ℓ

(
bℓ −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 , ∀ 1 ≤ i ≤ n.

Since we are minimizing a convex function subject to a linear constraint, and we found
one critical point, this critical point must be the unique global minimum □

7.3. Linear Regression.

Exercise 7.8. In statistics and other applications, we can be presented with data points
(x1, y1), . . . , (xn, yn). We would like to find the line y = mx+ b which lies “closest” to all of
these data points. Such a line is known as a linear regression. There are many ways to
define the “closest” such line. The standard method is to use least squares minimization.
A line which lies close to all of the data points should make the quantities (yi −mxi − b) all
very small. We would like to find numbersm, b such that the following quantity is minimized:

f(m, b) =
n∑

i=1

(yi −mxi − b)2.

Using the second derivative test, show that the minimum value of f is achieved when

m =
(
∑n

i=1 xi)
(∑n

j=1 yj

)
− n (

∑n
k=1 xkyk)

(
∑n

i=1 xi)
2 − n

(∑n
j=1 x

2
j

) =

∑n
i=1(xi − x)(yi − y)∑n

j=1(xj − x)2
.
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b =
1

n

(
n∑

i=1

yi −m

n∑
j=1

xj

)
= y −mx.

Briefly explain why this is actually the minimum value of f(m, b). (You are allowed to use
the inequality (

∑n
i=1 xi)

2 ≤ n(
∑n

i=1 x
2
i ).)

From Example 7.3, we originally presented linear regression as the following problem. Let
β1, β2 ∈ R be unknown. Let x1, . . . , xn ∈ R be fixed constants. Let σ2 > 0 be fixed. Let
ε1, . . . , εn i.i.d. Gaussians with mean zero and variance σ2. Then suppose we observe

Yi = β1 + β2xi + εi, ∀ 1 ≤ i ≤ n.

That is, xi and Yi are observed for all 1 ≤ i ≤ n, and there is an (unknown) linear relationship
between these data.

The task is to estimate β1, β2. Suppose we restrict only to linear estimators, i.e. estimators
of the form

n∑
i=1

ciYi

where c1, . . . , cn ∈ R, and we try to find unbiased linear estimator of the smallest variance
(similar to a UMVU, but restricted to linear estimators).

Theorem 7.9. Let c1, . . . , cn ∈ R such that
∑n

i=1 ciYi is an unbiased estimator of β2. Suppose

Var(
n∑

i=1

ciYi) ≤ Var(
n∑

i=1

c′iYi),

for all c′1, . . . , c
′
n ∈ R. Then

n∑
i=1

ciYi =

∑n
i=1(Yi − 1

n

∑n
j=1 Yj)(xi − 1

n

∑n
j=1 xj)∑n

k=1(xk − 1
n

∑n
ℓ=1 xℓ)2

Let c1, . . . , cn ∈ R such that
∑n

i=1 ciYi is an unbiased estimator of β1. Suppose

Var(
n∑

i=1

ciYi) ≤ Var(
n∑

i=1

c′iYi),

for all c′1, . . . , c
′
n ∈ R. Then

n∑
i=1

ciYi =
1

n

n∑
i=1

Yi −
∑n

i=1(Yi −
∑n

j=1 Yj)(xi − 1
n

∑n
j=1 xj)∑n

k=1(xk − 1
n

∑n
ℓ=1 xℓ)2

· 1
n

n∑
i=1

xi.

Proof. Step 1. Since

E
n∑

i=1

ciYi =
n∑

i=1

ci(β1 + β2xi),

an unbiased linear estimator of β2 satisfies

n∑
i=1

ci = 0,
n∑

i=1

cixi = 1. (∗)
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and the variance of this estimator is

Var
n∑

i=1

ciYi =
n∑

i=1

c2iVarYi = σ2

n∑
i=1

c2i .

Suppose we minimize this quantity subject to the constraint (∗). Lemma 7.7 with t = 1,
bi = xi and ai = 1 for all i implies that this minimum occurs when

ci =
ta−1

i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)
∑n

ℓ=1 a
−1
ℓ

(
bℓ −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 =
xi − 1

n

∑n
j=1 xj∑n

ℓ=1

(
xℓ − 1

n

∑n
j=1 xj

)2 , ∀ 1 ≤ i ≤ n.

n∑
i=1

ciYi =

∑n
i=1 Yi(xi − 1

n

∑n
j=1 xj)∑n

k=1(xk − 1
n

∑n
ℓ=1 xℓ)2

=

∑n
i=1(Yi −

∑n
j=1 Yj)(xi − 1

n

∑n
j=1 xj)∑n

k=1(xk − 1
n

∑n
ℓ=1 xℓ)2

.

Step 2. Since

E
n∑

i=1

ciYi =
n∑

i=1

ci(β1 + β2xi),

an unbiased linear estimator of β1 satisfies

n∑
i=1

ci = 1,
n∑

i=1

cixi = 0. (∗∗)

and the variance of this estimator is

Var
n∑

i=1

ciYi =
n∑

i=1

c2iVarYi = σ2

n∑
i=1

c2i .

Suppose we minimize this quantity subject to the constraint (∗∗). Lemma 7.7 with variables
c′i = cixi, bi = 1/xi ai = 1/x2

i , with t = 1, for all i implies that this minimum occurs when

c′i =
ta−1

i

(
bi −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)
∑n

ℓ=1 a
−1
ℓ

(
bℓ −

∑n
j=1 bja

−1
j∑n

k=1 a
−1
k

)2 =
x2
i

(
x−1
i −

∑n
j=1 xj∑n
k=1 x

2
k

)
∑n

ℓ=1 x
2
ℓ

(
x−1
ℓ −

∑n
j=1 xj∑n
k=1 x

2
k

)2 =
xi

(
1− xi

∑n
j=1 xj∑n
k=1 x

2
k

)
∑n

ℓ=1

(
1− xℓ

∑n
j=1 xj∑n
k=1 x

2
k

)2 .

ci =

(
1− xi

∑n
j=1 xj∑n
k=1 x

2
k

)
∑n

ℓ=1

(
1− xℓ

∑n
j=1 xj∑n
k=1 x

2
k

)2 =

(
1− xi

∑n
j=1 xj∑n
k=1 x

2
k

)
∑n

ℓ=1

(
1− 2xℓ

∑n
j=1 xj∑n
k=1 x

2
k
+ x2

ℓ

(∑n
j=1 xj∑n
k=1 x

2
k

)2) =

(
1− xi

∑n
j=1 xj∑n
k=1 x

2
k

)
n−

(∑n
j=1 xj

)2

∑n
k=1 x

2
k

.
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n∑
i=1

ciYi =

∑n
i=1 Yi −

∑n
i=1 Yixi

∑n
j=1 xj∑n
k=1 x

2
k

n−

(∑n
j=1 xj

)2

∑n
k=1 x

2
k

=

∑n
i=1 Yi

∑n
k=1 x

2
k −

∑n
i=1 Yixi

∑n
j=1 xj

n
∑n

k=1 x
2
k − (

∑n
j=1 xj)2

=

∑n
i=1 Yi(

∑n
k=1 x

2
k − 1

n
(
∑n

j=1 xj)
2) +

∑n
i=1 Yi

1
n
(
∑n

j=1 xj)
2 −

∑n
i=1 Yixi

∑n
j=1 xj

n
∑n

k=1 x
2
k − (

∑n
j=1 xj)2

=
1

n

n∑
i=1

Yi +
1

n

n∑
ℓ=1

xℓ

∑n
i=1 Yi

∑n
j=1 xj − n

∑n
i=1 Yixi

n
∑n

k=1 x
2
k − (

∑n
j=1 xj)2

□

7.4. Logistic Regression. Denote the logistic function as

h(x) :=
1

1 + e−x
, ∀x ∈ R.

Note that limx→∞ h(x) = 1 and limx→−∞ h(x) = 0.
Let X1, . . . , Xn be i.i.d. real-valued random variables. Let g : R → {0, 1} be an unknown

function, and let Yi := g(Xi) for all 1 ≤ i ≤ n. For example, X1, . . . , Xn could be the blood
pressures of n people, and g(Xi) = 1 if person i ∈ {1, . . . , n} has had a heart attack, whereas
g(Xi) = 0 if person i has not had a heart attack. In this way, g classifies the data has having
or not having a certain trait. For another example, Xi could be some characteristic of the
ith received email, g(Xi) = 1 if email i ∈ {1, . . . , n} is spam, whereas g(Xi) = 0 if email i is
not spam.

By our assumptions, Y1, . . . , Yn are i.i.d. Bernoulli random variables with some unknown
probability 0 ≤ p ≤ 1 such that p = P(Y1 = 1). Since the logistic function smoothly
transitions from value 0 to value 1, we make the heuristic assumption that there are some
unknown parameters a, b ∈ R such that

p ≈ h(ax+ b) ≈ g(x).

The likelihood function is then

ℓ(a, b) :=
n∏

i=1

pyi(1− p)1−yi =
n∏

i=1

[h(axi + b)]yi [1− h(axi + b)]1−yi ,

∀x1, . . . , xn ∈ R, ∀ y1, . . . , yn ∈ {0, 1}.

From Exercise 7.10, the log-likelihood function has at most one global maximum. So, if
the MLE exists, it is unique.

Exercise 7.10. Let

h(x) :=
1

1 + e−x
, ∀x ∈ R.

Fix x ∈ R and y ∈ [0, 1]. Define t : R2 → R by

t(a, b) := log
(
[h(ax+ b)]y[1− h(ax+ b)]1−y

)
, ∀ a, b ∈ R.

Show that t is concave. Conclude that t has at most one global maximum.
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8. EM Algorithm

Let X : Ω → Rn be a discrete or continuous random variable. Let t : Rn → Rm be a
non-invertible function, and let Y := t(X). For example, let m < n, and define t by
t(x1, . . . , xn) := (x1, . . . , xm) ∀ (x1, . . . , xn) ∈ Rn. Suppose we would ideally observe the
sample X, but we can only observe the “incomplete” sample Y .
Suppose X has distribution from a family {fθ : θ ∈ Θ} where fθ : Rn → [0,∞) for all

θ ∈ Θ. To find the MLE of θ, we would ideally maximize

log ℓ(θ) = log fθ(X).

However, since X cannot be directly observed, we cannot compute ℓ(θ) directly, so we might
not be able to find the MLE. So, we instead approximate the maximum value of log ℓ(θ) by
conditioning on Y .

The following algorithm tries to find the MLE for Y .

Algorithm 8.1 (Expectation-Maximization (EM) Algorithm). Initalize θ0 ∈ Θ. Fix
k ≥ 1. For all 1 ≤ j ≤ k, repeat the following procedure:

• (Expectation) Given θj−1, let ϕj(θ) := Eθj−1
(log fθ(X)|Y ), for any θ ∈ Θ.

• (Maximization) Let θj ∈ Θ achieve the maximum value of ϕj (if it exists).

Remark 8.2. In the case that Y is constant, each step of the algorithm is identical by the
Likelihood Inequality, Lemma 2.66. In the case that Y = X, the algorithm just outputs the
MLE of Y = X in one step. In the case where m < n, X1, . . . , Xn : Ω → R are i.i.d. with
common density fθ : R → [0,∞) and t(x1, . . . , xn) := (x1, . . . , xm) ∀ (x1, . . . , xn) ∈ Rn, we
have

ϕj(θ) := Eθj−1

( n∑
i=1

log fθ(Xi)
∣∣∣(X1, . . . , Xm)

)
=

m∑
i=1

log fθ(Xi) + Eθj−1

n∑
i=m+1

log fθ(Xi).

So, ϕj is the log likelihood for Y = (X1, . . . , Xm), plus the expected value of the log likelihood
for Xm+1, . . . , Xn.

Note that we cannot apply the Likelihood Inequality 2.66 directly to ϕj, i.e. the maximum
value of ϕj is not θj−1, in general.

Denote fX|Y (x|y) the conditional density (or conditional probability mass function) of X
given Y = y.

Lemma 8.3. Suppose X has density fθ and Y := t(X) has density hθ. We then denote
gθ(x|y) := fX|Y (x|y). Then for any θ ∈ Θ,

log hθ(Y )− log hθj−1
(Y ) ≥ ϕj(θ)− ϕj(θj−1).

Equality holds only when gθ(X|y) = gθj−1
(X|y) almost surely with respect to Pθj−1

(for fixed
y).

Proof. Since fX,Y (x, y) = fX|Y (x|y)fY (y), we have

log fY (y) = log fX,Y (x, y)− log fX|Y (x|y).
Since Y = h(X), fX,Y (x, y) = fX(x)1y=h(x). That is, when y = h(x), we have

log fY (y) = log fX(x)− log fX|Y (x|y) = log fθ(x)− log fX|Y (x|y).
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Using our streamlined notation, we write instead

log hθ(y) = log fθ(x)− log gθ(x|y).

Multiplying both sides by hθj−1
(x|y) and integrating in x, we get

Eθj−1

(
log hθ(Y )

∣∣∣Y = y
)
= Eθj−1

(
log fθ(X)

∣∣∣Y = y
)
− Eθj−1

(
log gθ(X|y)

∣∣∣Y = y
)

Setting also θ = θj−1 and subtracting one equality from the other, we get

log hθ(y)− log hθj−1
(y) = Eθj−1

(
log fθ(X)

∣∣∣Y = y
)
− Eθj−1

(
log fθj−1

(X)
∣∣∣Y = y

)
− Eθj−1

(
log gθ(X|y)

∣∣∣Y = y
)
+ Eθj−1

(
log gθj−1

(X|y)
∣∣∣Y = y

)
From the Likelihood Inequality, Lemma 2.66, the sum of the last two terms is nonnegative,
and it is zero only when log gθ(X|y) = log gθj−1

(X|y) almost surely with respect to Pθj−1
(for

fixed y). In summary,

log hθ(Y )− log hθj−1
(Y ) ≥ ϕj(θ)− ϕj(θj−1).

□

Proposition 8.4 (EM Algorithm Improvement). Let θ0, . . . , θk be an output of the EM
Algorithm 8.1. Then for all 1 ≤ j ≤ k,

log hθj(Y ) ≥ log hθj−1
(Y ).

Proof. By the definition of θj in Algorithm 8.1, ϕj(θj) ≥ ϕj(θj−1). So, Lemma 8.3 says that

log hθj(Y )− log hθj−1
(Y ) ≥ 0.

And equality occurs only when gθj(X|y) = gθj−1
(X|y) almost surely with respect to Pθj−1

(for fixed y), or when θj = θj−1. □

Proposition 8.4 says that the likelihood of Y improves monotonically at each iteration
of the EM Algorithm. Moreover, the EM algorithm converges, as the following Theorem
demonstrates.

Theorem 8.5 (EM Algorithm Convergence). Fix y ∈ Rm. Suppose Θ ⊆ Rd and hθ(y)
is a continuous and differentiable function of θ in the interior of Θ. Assume that, for any
θ0 ∈ Θ with hθ0(y) > 0, {θ ∈ Θ: hθ(y) ≥ hθ0(y)} is compact and contained in the interior of
Θ. Let θ0, θ1, . . . be an output of the EM Algorithm 8.1 (that is, we let k → ∞). Then any
limit point θ of the sequence {θ0, θ1, . . .} satisfies ∇hθ(y) = 0. (Here ∇ denotes the vector of
partial derivatives with respect to θ ∈ Rd.) Also, there exists θ′ ∈ Θ with ∇hθ′(y) = 0 such
that the sequence {hθ0(y), hθ1(y), . . .} converges monotonically to hθ′(y).

In particular, if hθ has a unique local maximum, then the EM algorithm converges to this
unique (global) maximum.
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9. Monte Carlo Simulation of Random Variables

In practice we often want to simulate random variables on a computer. The sampling of
random variables on a computer is also called Monte Carlo simulation. In this section, we
assume that a computer can simulate any number of independent random variable that are
uniformly distributed in (0, 1). From this assumption, we will try to transform that random
variable into other ones.

There are some caveats to our assumption that we can sample from the uniform distribu-
tion on (0, 1).

(1) Computers cannot deal with arbitrary real numbers. The most common number
system used on computers is instead double precision floating point arithmetic.
This number system includes zero and any number of the form

±(1.a1a2 · · · a52) · 2b1···b11−1023,

where a1, . . . , a52, b1, . . . , b11 ∈ {0, 1} are binary digits, and b1, . . . , b11 are not all 0
and not all 1. Consequently, a computer can at best simulate a number that is drawn
randomly from the 264 numbers of this form. Put another way, every random variable
simulated on a computer is automatically discrete.

(2) A computer cannot produce a truly random quantity. When we repeatedly sample
from a random variable on a computer, the computer uses a deterministic process
to produce a sequence of numbers that behaves as if it were random. For this rea-
son, random number generators on computers are said to produce pseudorandom
outputs. There are a various random number generating algorithms available.

We can verify that a random number generator behaves “as if it were random” by checking
for its agreement with the Law of Large Number and Central Limit Theorem.

Exercise 9.1. Using Matlab (or any other mathematical system on a computer), verify
that its random number generator agrees with the law of large numbers and central limit
theorem. For example, average 107 samples from the uniform distribution on [0, 1] and check
how close the sample average is to 1/2. Then, make a histogram of 107 samples from the
uniform distribution on [0, 1] and check how close the histogram is to a Gaussian.

Example 9.2 (Discrete Random Variables). If we want to simulate a random variable
that is uniformly distributed in {1, 2, 3}, and if U is uniform on (0, 1), we define

X(U) :=


1 ifU < 1/3

2 if 1/3 ≤ U < 2/3

3 if 2/3 ≤ U.

Then X(U) is uniformly distributed in {1, 2, 3}.
More generally, if we want to simulate a random variable taking values x1, . . . , xn ∈ R

with probabilities p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1, we define p0 := 0 and we define
X(U) so that

X(U) := xi if p1 + · · ·+ pi−1 ≤ U < p1 + · · ·+ pi ∀1 ≤ i ≤ n.

Then P(X(U) = xi) = pi for all 1 ≤ i ≤ n, as desired.
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More generally, if X : Ω → R is an arbitrary random variable with cumulative distribution
function F : R → [0, 1], then the function F−1 (if it exists) is a random variable on [0, 1] with
the uniform probability law on (0, 1) that is equal in distribution to X, since

P(s ∈ [0, 1] : F−1(s) ≤ t) = P(s ∈ [0, 1] : F (t) > s)
(∗)
= F (t) = P(ω ∈ Ω: X(ω) ≤ t).

Here (∗) used the definition of the uniform probability law on (0, 1). In general, F−1 may not
exist, but we can still construct a generalized inverse of F and obtain the same conclusion
as follows.

Exercise 9.3. Let X : Ω → R be a random variable on a sample space Ω equipped with a
probability law P. For any t ∈ R let F (t) := P(X ≤ t). For any s ∈ (0, 1) define

Y (s) := sup{t ∈ R : F (t) < s}.

Then Y is a random variable on (0, 1) with the uniform probability law on (0, 1). Show that
X and Y are equal in distribution. That is, P(Y ≤ t) = F (t) for all t ∈ R.

Exercise 9.3 then suggest the following method for simulating a random variable on a
computer.

Algorithm 9.4 (Sampling a Random Variable). Let X : Ω → R be a random variable.
Let P be a probability law on Ω. For any t ∈ R, let F (t) := P(X ≤ t). Let U be a random
variable uniformly distributed in (0, 1). For any s ∈ (0, 1), let

Y (s) := sup{t ∈ R : F (t) < s}.

To sample X on a computer, sample Y (U).

Example 9.5. Let X be an exponential random variable with parameter 1, so that for any
t > 0, P(X ≤ t) =

∫ t

0
e−xdx = 1−e−t =: F (t). Then F−1(s) = − log(1−s) for any 0 < s < 1,

since F (F−1(s)) = s. By Exercise 9.3, F−1 is an exponential random variable with parameter
1 if P is the uniform probability law on (0, 1). Or by Algorithm 9.4, F−1(U) = − log(1−U)
is an exponential random variable with parameter 1.

When an explicit formula can be given for Y in Algorithm 9.4, the random variable can be
simulated efficiently. However, if Y cannot be accurately or efficiently computed, Algorithm
9.4 may not be a sensible way to simulate a random variable. For example, consider a
standard Gaussian random variable. The inverse of its cumulative distribution function
cannot be described using elementary formulas. Here are some possible ways to simulate a
standard Gaussian.

• Approximate the inverse cumulative distribution function and apply Algorithm 9.4.
The quality of the approximation then correspond to the quality of the simulation.

• Sample many independent uniform random variables U1, . . . , Un in (0, 1). Form the

sum U1+···+Un−n/2

n
√

1/12
. By the Central Limit Theorem 1.90, this random variable is close

to a standard Gaussian. In fact, explicit error bounds can be given by Theorem 1.98.
Moreover, if we perform this same procedure where U1, . . . , Un are i.i.d. and the first
k moments of U1 agree with the first k moments of a standard Gaussian, the error in
Theorem 1.98 will be a constant times n−(k−1)/2. (This follows from the Edgeworth
expansion, an asymptotic expansion for the error in the Central Limit Theorem.)
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However, if we only want a few samples from the Gaussian, this procedure is very
inefficient, since it requires many samples from other random variables.

Perhaps the best way to simulate a standard Gaussian random variable is the Box-Mueller
algorithm.

Exercise 9.6 (Box-Muller Algorithm). Let U1, U2 be independent random variables uni-
formly distributed in (0, 1). Define

R :=
√

−2 logU1, Ψ := 2πU2.

X := R cosΨ, Y := R sinΨ.

Show that X, Y are independent standard Gaussian random variables. So, we can simulate
any number of independent standard Gaussian random variables with this procedure.

Now, let {aij}1≤i,j≤n be an n×n symmetric positive semidefinite matrix. That is, for any
v ∈ Rn, we have

vTav =
n∑

i,j=1

vivjaij ≥ 0.

We can simulate a Gaussian random vector with any such covariance matrix {aij}1≤i,j≤n

using the following procedure.

• Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian random variables
(which can be sampled using the Box-Muller algorithm above).

• Write the matrix a in its Cholesky decomposition a = rr∗, where r is an n × n real
matrix. (This decomposition can be computed efficiently with about n3 arithmetic
operations.)

• Let e(1), . . . , e(n) be the rows of r. For any 1 ≤ i ≤ n, define

Zi := ⟨X, e(i)⟩.

Show that Z := (Z1, . . . , Zn) is a mean zero Gaussian random vector whose covariance matrix
is {aij}1≤i,j≤n, so that

E(ZiZj) = aij, ∀ 1 ≤ i, j ≤ n.

9.1. Accept/Reject Sampling. As mentioned above, one downside of Algorithm 9.4 is
that the “inverse” CDF might be difficult to compute directly. For example, the Gaussian
inverse CDF has no elementary formula. For continuous random variables, an alternative
method of simulation is often easier to use. For simplicity, we state the algorithm first just
for continuous random variables with compactly supported PDFs.

Algorithm 9.7 (Accept/Reject Sampling). Let −∞ < a < b < ∞. Let f : [a, b] →
[0,∞) be the PDF of a real-valued random variableX with maximum valuem := maxx∈[a,b] f(x) <
∞. Let n ≥ 1. Let (X1, Y1), (X2, Y2), . . . be i.i.d random variables uniformly distributed in
the rectangle [a, b]× [0,m]. Define I := inf{n ≥ 1: Yn ≤ f(Xn)}.

Output Z := XI .

In this algorithm, we simulate a uniformly distributed random variable in a rectangle, and
we only “accept” the first point (Xi, Yi) that lies under the graph of the PDF f .
Claim. Z has PDF f .
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Proof of Claim. Let z ∈ R. Define ε := 1
m(b−a)

∫ b

a
f(x)dx = 1

m(b−a)
. Then

P(Z ≤ z) =
∞∑
i=1

P(Z ≤ z, Z = Xi) =
∞∑
i=1

P(Xi ≤ z, Yi ≤ f(Xi))
i−1∏
j=1

P(Yj > f(Xj))

=
∞∑
i=1

∫ z

−∞ f(x)dx

m(b− a)
(1− ε)i−1 =

∫ z

−∞
f(x)dx

∞∑
i=1

ε(1− ε)i−1 =

∫ z

−∞
f(x)dx.

□

9.2. Markov Chain Monte Carlo Introduction. Algorithm 9.7 works well for continuous
random variables with PDFs that have fairly simple formulas. Algorithm 9.4 works well when
the CDF or “inverse” CDF have fairly simple formulas. If a discrete random variable has
a fairly complicated definition, Algorithms 9.7 and 9.4 may not perform very well. An
alternative method to simulate a discrete random variable X of this type involves creating
a sequence of random variables that become progressively closer and closer in distribution
to X. This sequence of random variables we construct in this way will be a Markov Chain.
So, let us now review the theory of Markov Chains.

9.3. Some Linear Algebra.

Definition 9.8 (Eigenvector, Eigenvalue). Let A be an m×m real matrix, let x ∈ Rm

be a column vector, and let y ∈ Rm be a row vector. We say x is a (right) eigenvector of
A with eigenvalue λ ∈ C if x ̸= 0 and

Ax = λx.

We say y is a (left) eigenvector of A with eigenvalue λ ∈ C if y ̸= 0 and

yA = λy.

Note that x is a right eigenvector for A if and only if xT is a left eigenvector of AT .

Definition 9.9. The null space (or kernel) of an m × n real matrix A is the set of all
column-vectors x ∈ Rn such that Ax = 0. The nullity of A is the number of nonzero vectors
that can form a basis of the null space of A

The column space is the set of all linear combinations of the columns of the matrix A.
The rank of A is the number of nonzero vectors that can form a basis of the column space
of A.

Theorem 9.10 (Rank-Nullity Theorem). Let A be an m×n real matrix. Then the rank
of A plus the nullity of A is equal to n.

9.4. Markov Chains. Before defining a Markov chain formally, we give an example of one.
Notation. In the sections below, we denote the sample space as S and we denote the

state space as Ω, since we will often be considering probability distributions on the state
space.

Example 9.11 (Frog on two Lily Pads). Suppose there are two different lily pads labelled
e (for east) and w (for west). Suppose the frog starts on one of the two lily pads. Let
0 < p, q < 1. There is a coin on the lily pad e which has probability p of landing heads
and probability 1− p of landing tails. Similarly, there is a coin on the lily pad w which has
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probability q of landing heads and probability 1− q of landing tails. Every day, the frog flips
the coin on the lily pad it currently occupies. If the coin lands heads, the frog goes to the
other lily pad. If the coin lands tails, the frog stays on its current lily pad.

For any n ≥ 0, let Xn be the (random) location of the frog at the beginning of day n.
Then the sequence of random variables X0, X1, X2, . . . describes the sequence of positions
that the frog takes. Note that if S is the sample space, then for any n ≥ 0, Xn : S → {e, w}
is a random variable, taking either the value e or w. We would like to find the probabilities
that X1, X2, . . . take the values e and w. To this end, let P be a real 2× 2 matrix such that
P (x, y) = P(X1 = y |X0 = x), for all x, y ∈ {e, w}. That is,

P =

(
P (e, e) P (e, w)
P (w, e) P (w,w)

)
=

(
1− p p
q 1− q

)
.

More generally, note that for any integer n ≥ 1, P (x, y) = P(Xn = y |Xn−1 = x), since the
location of the frog tomorrow only depends on its location today.

Then the random variables (X0, X1, . . .) is a Markov Chain with transition matrix P .

Definition 9.12 (Finite Markov Chain). A finite Markov Chain is a stochastic process
(X0, X1, X2, . . .) together with a finite set Ω, which is called the state space of the Markov
Chain, and an |Ω| × |Ω| real matrix P . The random variables X0, X1, . . . take values in the
finite set Ω. The matrix P is stochastic, that is all of its entries are nonnegative and∑

y∈Ω

P (x, y) = 1, ∀x ∈ Ω.

And the stochastic process satisfies the following Markov property: for all x, y ∈ Ω, for
any n ≥ 1, and for all events Hn−1 of the form Hn−1 = ∩n−1

k=0{Xk = xk}, where xk ∈ Ω for all
0 ≤ k ≤ n− 1, such that P(Hn−1 ∩ {Xn = x}) > 0, we have

P(Xn+1 = y |Hn−1 ∩ {Xn = x}) = P(Xn+1 = y |Xn = x) = P (x, y).

That is, the next location of the Markov chain only depends on its current location. And
the transition probability is defined by P (x, y).

Exercise 9.13. Let P,Q be stochastic matrices of the same size. Show that PQ is a
stochastic matrix. Conclude that, if r is a positive integer, then P r is a stochastic matrix.

Exercise 9.14. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n} with i ̸= j, and such that ∪n

i=1Ci is the whole sample
space. Show:

P(A|B) =
n∑

i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem 1.9 and Proposition 1.57.)

Example 9.15. Returning to the frog example, we have

P =

(
1− p p
q 1− q

)
.

Note that each row of this matrix sums to 1, so P is stochastic. We can then compute the
probabilities that X2 takes various values, by conditioning on the two possible values of X1.
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Using Exercise 9.14, the Markov Property, and the definition of P ,

P(X2 = w |X0 = e) = P(X2 = w |X1 = e,X0 = e)P(X1 = e |X0 = e)

+P(X2 = w |X1 = w,X0 = e)P(X1 = w |X0 = e)

= P(X2 = w |X1 = e)P(X1 = e |X0 = e) +P(X2 = w |X1 = w)P(X1 = w |X0 = e)

= P (e, w)P (e, e) + P (w,w)P (e, w) = p(1− p) + (1− q)p. (2)

More generally, for any n ≥ 1, define the 1× 2 row vector

µn :=
(
P(Xn = e |X0 = e), P(Xn = w |X0 = e)

)
.

Also, assume the frog starts on the lily pad e, so that µ0 = (1, 0). Then (2) generalizes to

µn = µn−1P, ∀n ≥ 1.

Iteratively applying this identity,

µn = µ0P
n, ∀n ≥ 0.

What happens when n becomes large? In this case, we might expect the vector µn to
converge to something as n → ∞. That is, when n becomes very large, the probability that
Xn takes a particular value converges to a number. Suppose the vector µn converges to some
1× 2 row vector π as n → ∞. Note that the entries of µn sum to 1 and are nonnegative, so
the same is true for π. We claim that

π = πP.

That is, π is a (left)-eigenvector of P with eigenvalue 1. To see why π = πP should be true,
note that

π = lim
n→∞

µn = lim
n→∞

µ0P
n = ( lim

n→∞
µ0P

n)P = ( lim
n→∞

µn)P = πP.

The equation π = πP allows us to solve for π, since it says(
π(e), π(w)

)
=
(
π(e)(1− p) + π(w)q, π(e)p+ π(w)(1− q)

)
.

So, 0 = −pπ(e) + π(w)q, π(w) = π(e)(p/q), and π(e) + π(w) = 1, so π(e)(1 + p/q) = 1, so

π(e) =
q

p+ q
, π(w) =

p

p+ q
.

That is, when n becomes very large, the frog has probability roughly q/(q + p) of being on
the e pad, and it has probability roughly p/(q + p) of being on the w pad.

We can actually say something a bit more precise. For any n ≥ 0, define

∆n = µn(e)−
q

p+ q
.

Then, using the definition of µn+1, and µn(w) = 1− µn(e), we have, for any n ≥ 0

∆n+1 = (µnP )(e)− q

p+ q
= µn(e)(1− p) + q(1− µn(e))−

q

p+ q
= (1− p− q)∆n.

So, iterating this equality, we have

∆n = (1− p− q)n∆0, ∀n ≥ 1.
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Since 0 < p, q < 1, this means that the quantity ∆n is converging exponentially fast to 0. In
particular,

lim
n→∞

∆n = 0, lim
n→∞

µn = π.

(A similar argument shows that µn(w)− p
p+q

converges exponentially fast to zero)

Exercise 9.16. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of

P , and find the eigenvalues of P . By writing any row vector x ∈ R2 as a linear combination
of eigenvectors of P (whenever possible), find an expression for xP n for any n ≥ 1. What is
limn→∞ xP n? Is it related to the vector π = (q/(p+ q), p/(p+ q))?

Unfortunately, not all Markov chains converge when n becomes large, as we now demon-
strate.

Example 9.17. Consider the Markov chain defined by the matrix P =

(
0 1
1 0

)
. Note that

P n = P for any positive odd integer n, and P n =

(
1 0
0 1

)
for any positive even integer n.

So, if µ is any 1× 2 row vector with unequal entries, it is impossible for µP n to converge as
n → ∞.

Example 9.18 (Random Walk on a Graph). A (finite, undirected, simple) graph G =
(V,E) consists of a finite vertex set V and an edge set E. The edge set consists of
unordered pairs of vertices, so that E ⊆ {{x, y} : x, y ∈ V, x ̸= y}. We think of distinct
vertices as distinct nodes, where two nodes x, y ∈ V are joined by an edge if and only if
{x, y} ∈ E. When {x, y} ∈ E, we say that y is a neighbor of x (and x is a neighbor of
y). The degree deg(x) of a vertex x ∈ V is the number of neighbors of x. We assume that
deg(x) > 0 for every x ∈ V , so that G has no isolated vertices.
Given a graph G = (V,E), we define the simple random walk on G to be the Markov

chain with state space V and transition matrix

P (x, y) =

{
1

deg(x)
, if x and y are neighbors

0 , otherwise.

In this Markov chain, starting from any position x, the next state is then any neighbor y
of x, each with equal probability. More generally, a random walk on a vertex set V is any
Markov chain with state space V .

1

2

P (1, 2)

P (2, 1)
3

4

5
P (3, 5)

P (4, 3)

P (4, 5)P (5, 4)

P (1, 3)

Exercise 9.19. Let G = (V,E) be a graph. Let |E| denote the number of elements in the
set E, i.e. |E| is the number of edges of the graph. Prove:

∑
x∈V deg(x) = 2 |E|.
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Example 9.20 (Lazy Random Walk). Let P be the matrix defined by a simple random
walk on a graph G = (V,E). Let I denote the |V | × |V | identity matrix. The lazy random
walk is the Markov chain with transition matrix (P + I)/2. That is, with probability 1/2,
the next state is your current state, and with probability 1/2, the next state is any neighbor
of the current state, each chosen with equal probability.

Example 9.21 (Google’s PageRank Algorithm). We can think of the set of all websites
on the internet as a graph, where each website is a vertex in V , and {x, y} ∈ E if and only if
there is a hyperlink on page x that links to page y (or if there is a hyperlink on page y that
links to page x). Let P denote the normalized adjacency matrix, so that P (x, y) = 1/deg(x)
if {x, y} ∈ E, and P (x, y) = 0 otherwise. Note that P is a stochastic matrix. Let Q be the
|V | × |V | matrix such that all entries of Q are 1. Consider the matrix

N := (.85)P + (.15)Q/ |V | .

Then N is a stochastic matrix. We can think of the Markov chain associated to N as follows:
85% of the time, you move from one website to another by one of the hyperlinks on that site,
each with equal probability. And 15% of the time, you go to any website on the internet,
uniformly at random. The PageRank vector π is then a 1 × |V | vector with π(x) ≥ 0 for
all x ∈ V , and

∑
x∈V π(x) = 1 such that π = πN . That is, the PageRank value of website

x ∈ V is π(x). The most “relevant” websites x have the largest values of π(x).
The idea here is that if π(x) is large, then the Markov chain will often encounter the website

x, so we think of x as being an important website. At the moment, π is not guaranteed to
exist. We will return to this issue in Theorem 9.43 below.

9.5. Classification of States.

Definition 9.22. Suppose we have a Markov chain (X0, X1, X2, . . .) with state space Ω. Let
x ∈ Ω be fixed. For any set A in the sample space, define a probability law Px such that

Px(A) := P(A|X0 = x).

Similarly, we define Ex to be the expected value with respect to the probability law Px.
More generally, if µ is a probability distribution on Ω, we let Pµ denote the probability

law, given that the Markov chain started from the probability distribution µ, so that P(X0 =
x0) = µ(x0) for any x0 ∈ Ω. So, for example,

Pµ(X1 = x1) =
∑
x0∈Ω

P (x0, x1)µ(x0), ∀x1 ∈ Ω.

Note also that if x ∈ Ω is fixed, and if µ is defined so that µ(x) = 1 and µ(y) = 1 for all
y ̸= x, then Pµ = Px.

Definition 9.23 (Return Time). Suppose we have a Markov Chain X0, X1, . . . with state
space Ω. Let y ∈ Ω. Define the first return time of y to be the following random variable:

Ty := min{n ≥ 1: Xn = y}.

Also, define

ρyy := Py(Ty < ∞).

That is, ρyy is the probability that the chain starts at y, and it returns to y in finite time.
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Definition 9.24 (Stopping Time). A stopping time for a Markov chain X0, X1, . . . is a
random variable T taking values in 0, 1, 2, . . . ,∪{∞} such that, for any integer n ≥ 0, the
event {T = n} is determined by X0, . . . , Xn. More formally, for any integer n ≥ 1, there is
a set Bn ⊆ Ωn+1 such that {T = n} = {(X0, . . . , Xn) ∈ Bn}. Put another way, the indicator
function 1{T=n} is a function of the random variables X0, . . . , Xn.

Example 9.25. Fix y ∈ Ω. The first return time Ty is a stopping time since

{Ty = n} = {X1 ̸= y, X2 ̸= y, . . . , Xn−1 ̸= y, Xn = y}
= {(X0, . . . , Xn) ∈ Ω× {y}c × · · · {y}c × {y}}, ∀n ≥ 0.

For an intuitive example of a stopping time, suppose X0, X1, . . . is a Markov chain where
Xn is the price of a stock at time n ≥ 0. Then a stopping time could be the first time that the
stock price reaches either $90 or $100. That is, a stopping time is a stock trading strategy,
or a way of “stopping” the random process, but only using information from the past and
present. An example of a random variable T that is not a stopping time is to let T be the
time that stock price becomes highest, before the price drops to 0. (For example, {T = 100}
could depend on X104.) So, since T relies on future information, T is not a stopping time.

Theorem 9.26 (Strong Markov Property). Let T be a stopping time for a Markov chain.
Let ℓ ≥ 1, and let A ⊆ Ωℓ. Fix n ≥ 1. Then, for any x0, . . . , xn ∈ Ω,

Px0((XT+1, . . . , XT+ℓ) ∈ A |T = n and (X0, . . . , Xn) = (x0, . . . , xn))

= Pxn((X1, . . . , Xℓ) ∈ A).

That is, if we know T = n, Xn = xn and if we know the previous n states of the Markov
chain, then this is exactly the same as starting the Markov chain from the state xn.

Proof. By the definition of the stopping time, there exists Bn ⊆ Ωn+1 such that {T = n} =
{(X0, . . . , Xn) ∈ Bn}. If (x0, . . . , xn) ∈ Bn, we then have (using Exercise 9.27)

Px0((XT+1, . . . , XT+ℓ) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((XT+1, . . . , XT+ℓ) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+ℓ) ∈ A |T = n, (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+ℓ) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+ℓ) ∈ A |Xn = xn) , by Exercise 1.70

= P((X1, . . . , Xℓ) ∈ A |X0 = xn) , by Exercise 1.70

= Pxn((X1, . . . , Xℓ) ∈ A), , by definition of Pxn .

Finally, if (x0, . . . , xn) /∈ Bn, then {T = n} ∩ {(X0, . . . , Xn) = (x0, . . . , xn)} = ∅, so the
conditional probability of this event is undefined, and there is nothing to prove. □

Exercise 9.27. Let A,B be events such that B ⊆ {X0 = x0}. Then P(A|B) = Px0(A|B).
More generally, if A,B are events, then Px0(A|B) = P(A|B,X0 = x0).

Exercise 9.28. Suppose we have a Markov Chain with state space Ω. Let n ≥ 0, ℓ ≥ 1, let
x0, . . . , xn ∈ Ω and let A ⊆ Ωℓ. Using the (usual) Markov property, show that

P((Xn+1, . . . , Xn+ℓ) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+ℓ) ∈ A |Xn = xn).
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Then, show that

P((Xn+1, . . . , Xn+ℓ) ∈ A |Xn = xn) = P((X1, . . . , Xℓ) ∈ A |X0 = xn).

(Hint: it may be helpful to use the Multiplication Rule (Proposition 1.8).)

Exercise 9.29. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.

Example 9.30. If y is in the state space of a Markov chain, recall we defined the return

time to be Ty = min{n ≥ 1: Xn = y}. We also verified Ty is a stopping time. Let T
(1)
y = Ty,

and for any k ≥ 2, define a random variable

T (k)
y = min{n > T (k−1)

y : Xn = y}.

So, T
(k)
y is the time of the kth return of the Markov chain to state y. Just as before, we can

verify that T
(k)
y is a stopping time for any k ≥ 1.

Let T := T
(k−1)
y . Note that if T < ∞, then T

(k)
y − T = min{n ≥ 1: XT+n = y}. Let

A ⊆ Ωℓ such that A = {y}c×· · ·×{y}c×{y}. From the Strong Markov Property (Theorem
9.26), for any n ≥ 1,

Px0((XT+1, . . . , XT+ℓ) ∈ A |T = n and (X0, . . . , Xn) = (x0, . . . , xn))

= Pxn((X1, . . . , Xℓ) ∈ A).

Since {T (k)
y − T = ℓ} = {(XT+1, . . . , XT+ℓ) ∈ A}, and {Ty = ℓ} = {(X1, . . . , Xℓ) ∈ A}, if we

use x0 = xn = y, we get

Py(T
(k)
y − T = ℓ |T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y) = Py(Ty = ℓ), ∀ ℓ, n ≥ 1.

From the definition of conditional probability,

Py(T
(k)
y − T = ℓ, T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)

= Py(T = n, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)Py(Ty = ℓ) ∀ ℓ, n ≥ 1.

Summing over all x1, . . . , xn−1 such that {X1 = x1, . . . , Xn−1 = xn−1, Xn = y} ⊆ {T = n},
Py(T

(k)
y − T = ℓ, T = n) = Py(T = n)Py(Ty = ℓ), ∀ ℓ, n ≥ 1.

Taking the union over all ℓ ≥ 1,

Py(T
(k)
y − T < ∞, T = n) = Py(T = n)Py(Ty < ∞) = Py(T = n)ρyy, ∀n ≥ 1.

Then, summing over all n ≥ 1,

Py(T
(k)
y − T < ∞, T < ∞) = ρyyPy(T < ∞).

Using the definition of conditional probability again,

Py(T
(k)
y − T < ∞|T < ∞) = ρyy. (∗)

So, using the multiplication rule (Proposition 1.8) and recalling the definition of T ,

Py(T
(k)
y < ∞) = Py(T

(k)
y − T (k−1)

y < ∞)

= Py(T
(k)
y − T (k−1)

y < ∞|T (k−1)
y < ∞)Py(T

(k−1)
y < ∞)

= ρyyPy(T
(k−1)
y < ∞) , by (∗)

Iterating this equality k − 1 times, we have shown:
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Proposition 9.31. For any integer k ≥ 1,

Py(T
(k)
y < ∞) = [Py(Ty < ∞)]k = ρkyy.

In particular, if ρyy = 1, then the Markov chain returns to y an infinite number of times.
But if ρyy < 1, then eventually the Markov chain will not return to y:

Py(T
(k)
y = ∞ ∀ k ≥ j) = Py(T

(j)
y = ∞) = 1− ρjyy → 1 as j → ∞.

For this reason, we make the following definitions.

Definition 9.32 (Recurrent State, Transient State). If ρyy = 1, we say the state y ∈ Ω
is recurrent. If ρyy < 1, we say the state y ∈ Ω is transient.

Example 9.33 (Gambler’s Ruin). Consider the Markov Chain defined by the following
5× 5 stochastic matrix

P =


1 0 0 0 0
.6 0 .4 0 0
0 .6 0 .4 0
0 0 .6 0 .4
0 0 0 0 1

 .

We label the rows and columns of this matrix as {1, 2, 3, 4, 5}, so that we consider the Markov
chain to have state space {1, 2, 3, 4, 5}. We think of state 1 as a Gambler going bankrupt,
state 5 as a Gambler reaching a high amount of money and cashing out. And at each of the
states 2, 3, 4, the gambler can either win a round of some game with probability .4, or lose
a round of the game with probability .6.

We will show that states 1 and 5 are recurrent, whereas states 2, 3, 4 are transient.
Since P (1, 1) = 1, P1(T1 = 1) = 1, so P1(T1 < ∞) = 1. Similarly, P (5, 5) = 1, so

P5(T5 = 1) and P5(T5 < ∞) = 1. So, states 1 and 5 are recurrent.
Now, P (2, 1) = .6, and since P (1, 1) = 1, if the Markov chain reaches 1 it will never return

to 2. So, using the Multiplication rule and the Markov property,

P2(T2 = ∞) ≥ P2(X1 = 1, X2 = 1, X3 = 1, . . .)

= P(X1 = 1 |X0 = 2)P(X2 = 1 |X1 = 1)P(X3 = 1 |X2 = 1) · · ·
= lim

n→∞
P (2, 1)P (1, 1)n = P (2, 1) = .6 > 0.

That is, P2(T2 < ∞) = 1−P(T2 = ∞) ≤ 1− .6 < 1, so that state 2 is transient. Similarly,
P (4, 5) = .4, and P (5, 5) = 1, so P4(T4 = ∞) ≥ P (4, 5) > 0, so P4(T4 < ∞) < 1, so state 4
is transient. Using similar reasoning again,

P3(T3 = ∞) ≥ lim
n→∞

P (3, 2)P (2, 1)P (1, 1)n = P (3, 2)P (2, 1) > 0.

So, P3(T3 < ∞) < 1, so state 3 is transient.

We defined the transition matrix P so that P (x, y) = P(X1 = y |X0 = x), for any x, y in
the state space of the Markov chain. Powers of the matrix P have a similar interpretation.
For any n ≥ 1, x, y ∈ Ω, define p(n)(x, y) := P(Xn = y |X0 = x).
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Proposition 9.34 (Chapman-Kolmogorov Equation). Let n,m ≥ 1. Let x, y ∈ Ω be
states of a finite (or countable) Markov chain. Then

p(m+n)(x, y) =
∑
z∈Ω

p(m)(x, z)p(n)(z, y)

So, for any x, y, z ∈ Ω, p(m+n)(x, y) ≥ p(m)(x, z)p(n)(z, y).

Corollary 9.35. Let m ≥ 1. Let x, y ∈ Ω be states of a finite Markov chain. Then

Pm(x, y) = p(m)(x, y).

Proof of Corollary 9.35. We induct on m. The case m = 1 follows since by definition,
p(1)(x, y) = P (x, y) for all x, y ∈ Ω. We now perform the inductive step. From Proposition
9.34 with n = 1,

p(m+1)(x, y) =
∑
z∈Ω

p(m)(x, z)p(1)(z, y) =
∑
z∈Ω

Pm(x, z)P (z, y) = Pm+1(x, y).

The second equality is the inductive hypothesis, and the last equality is the definition of
matrix multiplication. □

Proof of Proposition 9.34. Let x, y ∈ Ω. Using the Total Probability Theorem, we have

p(m+n)(x, y) = P(Xm+n = y |X0 = x) =
∑
z∈Ω

P(Xm+n = y,Xm = z |X0 = x)

=
∑
z∈Ω

P(Xm+n = y,Xm = z,X0 = x)

P(X0 = x)

=
∑
z∈Ω

P(Xm+n = y,Xm = z,X0 = x)

P(Xm = z,X0 = x)

P(Xm = z,X0 = x)

P(X0 = x)

=
∑
z∈Ω

P(Xm+n = y |Xm = z,X0 = x)P(Xm = z |X0 = x).

Finally, the Markov property and Exercise 9.28 imply that

p(m+n)(x, y) =
∑
z∈Ω

P(Xm+n = y |Xm = z)P(Xm = z |X0 = x)

=
∑
z∈Ω

P(Xn = y |X0 = z)P(Xm = z |X0 = x) =
∑
z∈Ω

p(n)(z, y)p(m)(x, z).

(Since we only condition on events with positive probability, we did not divide by zero.) □

Definition 9.36 (Irreducible). A Markov chain with state space Ω and with transition
matrix P is called irreducible if, for any x, y ∈ Ω, there exists an integer n ≥ 1 (which is
allowed to depend on x, y) such that P n(x, y) > 0. That is the Markov chain is irreducible
if any state can reach any other state, with some positive probability, if the chain runs long
enough.

Lemma 9.37. Suppose we have a finite irreducible Markov chain with state space Ω. Then
there exists 0 < α < 1 and there exists an integer j > 0 such that, for any x, y ∈ Ω,

Px(Ty > kj) ≤ αk, ∀ k ≥ 1.

98



Proof. As a consequence of irreducibility, there exists ε > 0 and integer j > 0 such that, for
any x, y ∈ Ω, there exists r(x, y) ≤ j such that P r(x,y)(x, y) > ε. That is, after at most j
steps of the Markov chain, the chain will move from x to y with some positive probability.

Px(Ty > kj) = Px(Ty > kj |Ty > (k − 1)j)Px(Ty > (k − 1)j)

≤ max
z∈Ω

Pz(Ty > j)Px(Ty > (k − 1)j), by Exercise 9.38

≤ max
z∈Ω

Pz(Ty > r(z, y))Px(Ty > (k − 1)j), since r(z, y) ≤ j

= max
z∈Ω

(1−Pz(Ty ≤ r(z, y)))Px(Ty > (k − 1)j)

≤ max
z∈Ω

(1− P r(z,y)(z, y))P(Ty > (k − 1)j), by Exercise 9.39

≤ (1− ε)P(Ty > (k − 1)j).

Iterating this inequality k − 1 times concludes the Lemma with α := 1− ε. □

Exercise 9.38. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .).
Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let j, k be positive integers.
Show that

Px(Ty > kj |Ty > (k − 1)j) ≤ max
z∈Ω

Pz(Ty > j).

(Hint: use Exercise 9.28)

Exercise 9.39. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .)
with transition matrix P . Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let
j be a positive integer. Show that

P j(x, y) ≤ Px(Ty ≤ j).

(Hint: can you induct on j?)

Example 9.40. Consider the Markov Chain with state space Ω = {1, 2, 3} and transition
matrix

P =

.2 .3 .5
.3 .3 .4
.4 .5 .1

 .

Then for any x, y in the state space of the Markov chain, P (x, y) ≥ .1. So, we can use
j = r = 1 and ε = .1, α = .9 in Lemma 9.37 to get

Px(Ty > k) ≤ (.9)k, ∀ k ≥ 1, ∀x, y ∈ Ω.

In particular, Py(Ty < ∞) = 1, so all states are recurrent.

Exercise 9.41. Let x, y be any states in a finite irreducible Markov chain. Show that
ExTy < ∞. In particular, Py(Ty < ∞) = 1, so all states are recurrent.

9.6. Stationary Distribution.

Definition 9.42 (Stationary Distribution). Let P be the m×m transition matrix of a
finite Markov chain with state space Ω. Let π be a 1 × m row vector. We say that π is a
stationary distribution if π(x) ≥ 0 for every x ∈ Ω,

∑
x∈Ω π(x) = 1, and if π satisfies

π = πP.
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As discussed above, if a stationary distribution exists, we can think of π(x) as roughly the
fraction of time that the Markov chain spends in x, when the Markov chain runs for a long
period of time. Put another way, after the Markov chain has run for a long period of time,
π(x) is the probability that the Markov chain is in state x. In fact, π defines a probability
law on the state space Ω: for any A ⊆ Ω, define π(A) :=

∑
x∈A π(x). Then π is a probability

law on Ω.
Unfortunately, even if the stationary distribution exists, it may not be unique! If there is

more than one stationary distribution, then there may not be a sensible way of describing
where the Markov chain could be, after a long time has passed.

In this section, we address the existence and uniqueness of a stationary distribution π.

Theorem 9.43 (Existence). Suppose we have a finite irreducible Markov chain (X0, X1, . . .)
with state space Ω and transition matrix P . Then there exists a stationary distribution π
such that π = πP and π(x) > 0 for all x ∈ Ω.

Proof. Let y, z ∈ Ω. Let let Tz = min{n ≥ 1: Xn = z}. We define π̃(y) to be the expected
number of times the chain visits y before returning to z. That is, define

π̃(y) = Ez

(
∞∑
n=0

1{Xn=y, Tz>n}

)
=

∞∑
n=0

Pz(Xn = y, Tz > n). (∗)

First, note that since the Markov chain is irreducible, there is always some probability that
the chain starts at z and visits y before returning to z. Therefore, π̃(y) > 0 for any y ∈ Ω.
Now, using Remark 1.34, and then Exercise 9.41,

π̃(y) ≤
∞∑
n=0

Pz(Tz > n) = EzTz < ∞, ∀ y ∈ Ω.

We now show that π̃ satisfies π̃ = π̃P . By definition of π̃,∑
x∈Ω

π̃(x)P (x, y) =
∑
x∈Ω

∞∑
n=0

Pz(Xn = x, Tz > n)P (x, y). (∗∗)

Consider the event {Tz > n} = {Tz ≥ n+ 1} = {Tz ≤ n}c. That is, {Tz > n} only depends
on X0, . . . , Xn. So, the usual Markov property (rearranged a bit) says

Pz(Xn+1 = y, Xn = x, Tz ≥ n+ 1) = Pz(Xn = x, Tz ≥ n+ 1)P (x, y).

Substituting this into (∗∗) and first changing the order of summation,∑
x∈Ω

π̃(x)P (x, y) =
∞∑
n=0

∑
x∈Ω

Pz(Xn+1 = y, Xn = x, Tz ≥ n+ 1)

=
∞∑
n=0

Pz(Xn+1 = y, Tz ≥ n+ 1) =
∞∑
n=1

Pz(Xn = y, Tz ≥ n)

= π̃(y)−Pz(X0 = y, Tz > 0) +
∞∑
n=1

Pz(Xn = y, Tz = n), by (∗)

= π̃(y)−Pz(X0 = y) +Pz(XTz = y), substituting n = Tz.

100



We now split into two cases. If y = z, then Pz(X0 = y) = 1 by definition of Pz, and also
XTz = z = y by definition of Tz, so Pz(XTz = y) = 1. If y ̸= z, then by similar reasoning,
Pz(X0 = y) = Pz(XTz = y) = 0 In any case −Pz(X0 = y, Tz > 0) + Pz(XTz = y) = 0. In
conclusion, we have shown that

π̃ = π̃P.

Finally, to get a stationary distribution π also satisfying π = πP , we just define π(x) :=
π̃(x)/

∑
y∈Ω π̃(y) for any x ∈ Ω. □

Remark 9.44. We note in passing the following identity. By (∗) and Remark 1.34,∑
y∈Ω

π̃(y) =
∞∑
n=0

∑
y∈Ω

Pz(Xn = y, Tz > n) =
∞∑
n=0

Pz(Tz > n) = EzTz.

Lemma 9.45. Let P be the transition matrix of a finite irreducible Markov chain with state
space Ω. Let f : Ω → R be a harmonic function, so that

f(x) =
∑
y∈Ω

P (x, y)f(y), ∀x ∈ Ω.

Then f is a constant function.

Proof. Since Ω is finite, there exists x0 ∈ Ω such that M := maxx∈Ω f(x) = f(x0). Let z ∈ Ω
with P (x0, z) > 0, and assume that f(z) < M . Then since f is harmonic,

f(x0) = P (x0, z)f(z) +
∑

y∈Ω: y ̸=z

P (x0, y)f(y) < M
∑
y∈Ω

P (x0, y) = M,

a contradiction. Thus, f(z) = M for any z ∈ Ω with P (x0, z) > 0.
Finally, for any z ∈ Ω, irreducibility of P implies that there is a sequence of points

x0, x1, . . . , xk = z in Ω such that P (xi, xi+1) > 0 for every 0 ≤ i < k. So, by repeating the
above argument k − 1 times, M = f(x0) = f(x1) = · · · = f(xk) = f(z). That is, f(z) = M
for every z ∈ Ω. □

Theorem 9.46 (Uniqueness). Let P be the transition matrix of a finite irreducible Markov
chain. Then there exists a unique stationary distribution π such that π = πP .

Proof. By Theorem 9.43, there exists at least one stationary distribution π such that π = πP .
Let I denote the |Ω| × |Ω| identity matrix. Lemma 9.45 implies that the null-space of P − I
has dimension 1. So, by the rank-nullity theorem, the column rank of P − I is |Ω|− 1. Since
row rank and column rank are equal, the row rank of P − I is |Ω| − 1. That is, the space of
solutions of the row-vector equation µ = µP is one-dimensional (where µ denotes a 1× |Ω|
row vector.) Since this space is one-dimensional, it has only one vector whose entries sum
to 1. □

The following Corollary gives a sensible way of computing the stationary distribution of
an irreducible Markov chain.

Corollary 9.47. Let P be the transition matrix of a finite irreducible Markov chain with
state space Ω. If π is the unique solution to π = πP , then

π(x) =
1

ExTx

, ∀x ∈ Ω.
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Proof. Let y, z ∈ Ω and define π̃z(y) := π̃(y), where π̃(y) is defined in (∗) in Theorem
9.43. Also, define πz(y) := π̃z(y)/EzTz. Theorem 9.43 and Remark 9.44 imply that πz is a
stationary distribution such that πz = πzP . Theorem 9.46 implies that πz does not depend
on z. That is, for any x ∈ Ω, if we define π(x) := πz(x) (for any particular z ∈ Ω, since the
expression does not depend on z), then we have π = πP , and

π(x) = πx(x) =
π̃x(x)

ExTx

=
1

ExTx

.

In the last equality, we used π̃x(x) = 1, which follows by the definition of π̃x. (The n = 0
term in

∑∞
n=0Px(Xn = x, Tx > n) is 1, and all other terms in the sum are zero.) □

Exercise 9.48 (Knight Moves). Consider a standard 8 × 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V has 64 elements). Any two vertices
x, y ∈ V are connected by an edge if and only if a knight can move from x to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time ExTx for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)

Exercise 9.49 (Simplified Monopoly). Let Ω = {1, 2, . . . , 10}. We consider Ω to be the
ten spaces of a circular game board. You move from one space to the next by rolling a fair
six-sided die. So, for example P (1, k) = 1/6 for every 2 ≤ k ≤ 7. More generally, for every
j ∈ Ω with j ̸= 5, P (j, k) = 1/6 if k = (j+ i)mod 10 for some 1 ≤ i ≤ 6. Finally, the space 5
forces you to return to 1, so that P (5, 1) = 1. (Note that mod 10 denotes arithmetic modulo
10, so e.g. 7 + 5 = 2mod 10.)

Using a computer, find the unique stationary distribution of this Markov chain. Which
point has the highest stationary probability? The lowest?

Compare this stationary distribution to the stationary distribution that arises from the
doubly stochastic matrix: for all j ∈ Ω, P (j, k) = 1/6 if k = (j+i)mod 10 for some 1 ≤ i ≤ 6.
(See Exercise 9.52.)

Exercise 9.50. Give an example of a Markov chain where there are at least two different
stationary distributions.

Exercise 9.51. Is there a finite Markov chain where no stationary distribution exists? Either
find one, or prove that no such finite Markov chain exists.

(If you want to show that no such finite Markov chain exists, you are allowed to just prove
the weaker assertion that: for every stochastic matrix P , there always exists a nonzero vector
π with π = πP .)

Exercise 9.52. Let P be the transition matrix for a finite Markov chain with state space Ω.
We say that the matrix P is doubly stochastic if the columns of P each sum to 1. (Since
P is a transition matrix, each of its rows already sum to 1.) Let π such that π(x) = 1/ |Ω|
for all x ∈ Ω. That is, π is uniform on Ω. Show that π = πP .
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Remark 9.53. If a finite Markov chain is not irreducible, we can divide the state space into
pieces, each of which is irreducible (or transient), and then study how the Markov chain acts
on each individual piece. (For a precise statement, see Theorem 1.8 in the Durrett book.)

Definition 9.54 (Reversible). Let P be the transition matrix of a finite Markov chain
with state space Ω. We say that the Markov chain is reversible if there exists a probability
distribution π on Ω satisfying the following detailed balance condition:

π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω.

Exercise 9.55. Give an example of a random walk on a graph that is not reversible.

Proposition 9.56 (Reversible Implies Stationary). Let π be a probability distribution
satisfying the detailed balance condition for a finite Markov chain. Then π is a stationary
distribution.

Proof. We sum both sides of the detailed balance condition over y, and use that P is sto-
chastic to get

(πP )(x) =
∑
y∈Ω

π(y)P (y, x) = π(x)
∑
y∈Ω

P (x, y) = π(x).

□

Exercise 9.57. Let P be the transition matrix of a finite, irreducible, reversible Markov
chain with state space Ω and stationary distribution π. Let f, g ∈ R|Ω| be column vectors.
Consider the following bilinear function on f, g, which is referred to as an inner product (or
dot product):

⟨f, g⟩ :=
∑
x∈Ω

f(x)g(x)π(x).

Show that P is self-adjoint (i.e. symmetric) in the sense that

⟨f, Pg⟩ = ⟨Pf, g⟩.
In particular (for those that have taken 115A), the spectral theorem implies that all eigen-
values of P are real.

Finally, find a transition matrix P such that at least one eigenvalue of P is not real.

Proposition 9.58. Suppose we have a finite irreducible Markov chain with state space Ω,
transition matrix P and stationary distribution π. Fix n ≥ 1, and for any 0 ≤ m ≤ n, define

X̂m = Xn−m. Then X̂m is a Markov chain with transition probabilities given by

P̂ (x, y) =
π(y)P (y, x)

π(x)
, ∀x, y ∈ Ω.

Moreover, π is stationary for P̂ , and we have

Pπ(X0 = x0, . . . , Xn = xn) = Pπ(X̂0 = xn, . . . , X̂n = x0), ∀x0, . . . , xn ∈ Ω.

Proof. First, from Theorem 9.43, π(x) > 0 for all x in the state space of the Markov chain,

so we have not divided by zero. Now, we first check π is stationary for P̂ :∑
y∈Ω

π(y)P̂ (y, x) =
∑
y∈Ω

π(y)
π(x)P (x, y)

π(y)
= π(x).
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Using similar reasoning, we know that
∑

y∈Ω P̂ (x, y) = 1, so that P̂ is itself a stochastic

matrix. Finally, noting that P (xi−1, xi) = π(xi)P̂ (xi, xi−1)/π(xi−1) for each 1 ≤ i ≤ n,

Pπ(X0 = x0, . . . , Xn = xn) = π(x0)P (x0, x1) · · ·P (xn−1, xn)

= π(xn)P̂ (xn, xn−1) · · · P̂ (x1, x0)

= Pπ(X̂0 = xn, . . . , X̂n = x0).

□

Remark 9.59. If the Markov chain is reversible, then P̂ = P . So, being reversible means
that the Markov chain can be run backwards or forwards in the same way, if we start the
Markov chain from the stationary distribution.

Example 9.60. We return to Example 9.18. Let G = (V,E) be a graph with at least one
edge, and let P correspond to the simple random walk on G. So, P (x, y) = 1/deg(x) if x and
y are neighbors, and P (x, y) = 0 otherwise. For any x ∈ V , define π(x) := deg(x)/(2 |E|).
We show π is stationary. From Proposition 9.56, it suffices to show the detailed balance
condition holds.

If x and y are not neighbors, then P (x, y) = P (y, x) = 0, and both sides of the detailed
balance condition are equal. If x and y are neighbors, then

π(x)P (x, y) =
deg(x)

2 |E|
1

deg(x)
=

1

2 |E|
=

deg(y)

2 |E|
1

deg(y)
= π(y)P (y, x).

Exercise 9.61 (Ehrenfest Urn Model). Suppose we have two urns and n spheres. Each
sphere is in either of the first or the second urn. At each step of the Markov chain, one of
the spheres is chosen uniformly at random and moved from its current urn to the other urn.
Let Xn be the number of spheres in the first urn at time n. A state of the Markov chain is
an integer in {0, 1, . . . , n}, which represents the number of spheres in the first urn. Then for
any j, k ∈ {1, . . . , n}, the transition matrix defining the Markov chain is

P (j, k) =


n−j
n

, if k = j + 1
j
n

, if k = j − 1

0 , otherwise.

Show that the unique stationary distribution for this Markov chain is a binomial PMF with
parameters n and 1/2.

Exercise 9.62. Let V = {0, 1}n be a set of vertices. We construct a graph from V as
follows. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n. Then x and y are connected by an
edge in the graph if and only if

∑n
i=1 |xi − yi| = 1. That is, x and y are connected if and

only if they differ by a single coordinate.
For any x ∈ V , define f(x) =

∑n
i=1 xi, f : V → {0, 1, . . . , n}. Given x ∈ V , we identify

x with the state in the Ehrenfest urn model where the first urn has exactly f(x) spheres.
Show that the Ehrenfest urn model is a projection of the simple random walk on V in
the following sense. The probability that x ∈ V transitions to any state z ∈ V such that
y = f(z) is equal to: the probability that Ehrenfest model with state f(x) transitions to
state y.
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Moreover, the unique stationary distribution for the simple random walk on V can be
projected to give the unique stationary distribution in the Ehrenfest model. That is, if
π is the unique stationary distribution for the simple random walk on V , and if for any
A ⊆ {0, 1, . . . , n}, we define µ(A) := π(f−1(A)), then µ is a Binomial PMF with parameters
n and 1/2. (Here f−1(A) = {x ∈ V : f(x) ∈ A}.)

Exercise 9.63 (Birth-and-Death Chains). A birth-and-death chain can model the size
of some population of organisms. Fix a positive integer k. Consider the state space Ω =
{0, 1, 2, . . . , k}. The current state is the current size of the population, and at each step the
size can increase or decrease by at most 1. We define {(pn, rn, qn)}kn=0 such that pn+rn+qn =
1 and pn, rn, qn ≥ 0 for each 0 ≤ n ≤ k, and

• P (n, n+ 1) = pn > 0 for every 0 ≤ n < k.
• P (n, n− 1) = qn > 0 for every 0 < n ≤ k.
• P (n, n) = rn ≥ 0 for every 0 ≤ n ≤ k.
• q0 = pk = 0.

Show that the birth-and-death chain is reversible.

9.7. Limiting Behavior. From Theorem 9.46, we know an irreducible Markov chain has
a unique stationary distribution, and Corollary 9.47 gives a sensible way of computing that
stationary distribution. But what does this distribution tell us about the Markov chain’s
behavior? In general, it might not say anything! For example, recall Example 9.17, where

we considered the transition matrix P =

(
0 1
1 0

)
. If µ = (µ(1), µ(2)) is any 1×2 row vector,

then µP n = µ for n even, and µP n = (µ(2), µ(1)) for n odd. So, if the Markov chain starts
at the probability distribution µ where µ(1) ̸= µ(2), then it is impossible for limn→∞ µP n to
exist. That is, there is no sensible way of talking about the limiting behavior of this Markov
chain.

Put another way, we need to eliminate this “periodic” behavior to hope to get convergence
of the Markov chain. Thankfully, if an irreducible Markov chain has no “periodic” behavior
as in the above example, then it does actually converge as n → ∞. In fact, we will be
able to give an exponential rate of convergence of the Markov chain. Before doing so, we
formally define periodic behavior, and we formally define periodicity and how the Markov
chain converges.

Definition 9.64 (Period, Aperiodic). Let P be the transition matrix of a finite Markov
chain with state space Ω. For any x ∈ Ω, let N (x) := {n ≥ 1: P n(x, x) > 0}. The period of
state x ∈ Ω is the largest integer that divides all of the integers in N (x). That is, the period
of x, denoted gcdN (x), is the greatest common divisor of N (x). (If N (x) = ∅, we leave
gcdN (x) undefined.) (We say an integer m divides an integer n if there exists an integer k
such that n = km.)

A Markov chain is called aperiodic if all x ∈ Ω have period 1.

Exercise 9.65. Give an explicit example of a Markov chain where every state has period
100.

Lemma 9.66. Let P be the transition matrix of an irreducible, finite Markov chain with
state space Ω. Then gcdN (x) = gcdN (y) for all x, y ∈ Ω.
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Proof. Let x, y ∈ Ω. Since the Markov chain is irreducible, there exist r, ℓ ≥ 1 such that
P r(x, y) > 0 and P ℓ(y, x) > 0. Let m = r + ℓ. Then m ∈ N (x) ∩ N (y) (since Pm(x, x) ≥
P r(x, y)P ℓ(y, x) > 0, and Pm(y, y) ≥ P ℓ(y, x)P r(x, y) > 0), and N (x) ⊆ N (y) − m. (If
P k(x, x) > 0, then P k+m(y, y) ≥ P ℓ(y, x)P k(x, x)P r(x, y) > 0.) Since gcdN (y) divides
m and all elements of N (y), we conclude that gcdN (y) divides all elements of N (x). In
particular, gcdN (y) ≤ gcdN (x). Reversing the roles of x and y in the above argument,
gcdN (x) ≤ gcdN (y). □

Lemma 9.67. Let P be the transition matrix of an aperiodic, irreducible, finite Markov
chain with state space Ω. Then there exists an integer r > 0 such that P r(x, y) > 0 for all
x, y ∈ Ω. (That is, we can choose the r to not depend on x, y.)

Proof. Since the Markov chain is aperiodic, gcdN (x) = 1. The set N (x) is closed under
addition, since if n,m ∈ N (x), then P n+m(x, x) ≥ P n(x, x)Pm(x, x) > 0, so that n +m ∈
N (x). From Lemma 9.68 with g = 1, there exists n(x) such that if n ≥ n(x), then n ∈ N (x).
Since the Markov chain is irreducible, for any y ∈ Ω there exists r = r(x, y) such that
P r(x, y) > 0. So, if n ≥ n(x) + r, we have

P n(x, y) ≥ P n−r(x, x)P r(x, y) > 0.

So, if n ≥ n′(x) := n(x) + maxx,y∈Ω r(x, y), then P n(x, y) > 0 for all y ∈ Ω. Then, if
n ≥ maxx∈Ω n′(x), then P n(x, y) > 0 for all x, y ∈ Ω. □

Lemma 9.68. Let S be a nonempty subset of the positive integers. Let g = gcd(S). Then
there exists some integer nS such that, for all m ≥ nS, the product mg can be written as a
linear combination of elements of S, with nonnegative integer coefficients.

Proof. Let g∗ be the smallest positive integer which is an integer combination of elements
of S. Then g∗ ≤ s for every s ∈ S. Also, g∗ divides every element of S (if s ∈ S and if g∗

does not divide s, then the remainder obtained by dividing s by g∗ would be smaller than
g∗, while being an integer combination of elements of S). So, g∗ ≤ g. Since g divides every
element of S as well, g divides g∗, and g ≤ g∗. So, g = g∗.
Now, without loss of generality, we can assume S is finite, since the case that S is infinite

follows from the case that S is finite. The case when S has one element is clear. As a base
case, we consider when S = {a, b}, where a, b are distinct positive integers. Let m > 0. Since
g = g∗ and mg ≥ g∗, we can write mg = ca+ db for some integers c, d. Since mg = ca+ db,
we can also write mg = (c+kb)a+(d−ka)b for any k. That is, we can write mg = ca+db for
integers c, d with 0 ≤ c ≤ b−1. If mg > (b−1)a−b, then db = mg−ca ≥ mg−a(b−1) > −b.
So, d ≥ 0 as well. That is, we can choose nS such that nS ≥ ((ab− a− b)/g) + 1.
We now induct on the size of S, by adding one element a to S. Let gS := gcd(S)

and let g := gcd({a} ∪ S). For any positive integer a, the definition of gcd implies that
gcd({a} ∪ S) = gcd(a, gS). Suppose m satisfies mg ≥ n{a,gS}g + nSgS. Then we can write
mg−nSgS = ca+dgS for integers c, d ≥ 0, from the case when S could be {a, gS}. Therefore,
mg = ca + (d + nS)gS = ca +

∑
s∈S css for some integers cs ≥ 0, by definition of nS, and

using d+ nS ≥ nS. In conclusion, we can choose n{a}∪S = n{a,gS} + nSgS/g, completing the
inductive step. □
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Definition 9.69 (Total Variation Distance). Let µ, ν be probability distributions on a
finite state space Ω. We define the total variation distance between µ and ν to be

∥µ− ν∥TV := max
A⊆Ω

|µ(A)− ν(A)| .

Exercise 9.70. Let Ω be a finite state space. This exercise demonstrates that the total
variation distance is a metric. That is, the following three properties are satisfied:

• ∥µ− ν∥TV ≥ 0 for all probability distributions µ, ν on Ω, and ∥µ− ν∥TV = 0 if and
only if µ = ν.

• ∥µ− ν∥TV = ∥ν − µ∥TV

• ∥µ− ν∥TV ≤ ∥µ− η∥TV + ∥η − ν∥TV for all probability distributions µ, ν, η on Ω.

(Hint: you may want to use the triangle inequality for real numbers: |x− y| ≤ |x− z| +
|z − y|, ∀ x, y, z ∈ R.)

Exercise 9.71. Let µ, ν be probability distributions on a finite state space Ω. Then

∥µ− ν∥TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

(Hint: consider the set A = {x ∈ Ω: µ(x) ≥ ν(x)}.)

Theorem 9.72 (The Convergence Theorem). Let P be the transition matrix of a fi-
nite, irreducible, aperiodic Markov chain, with state space Ω and with (unique) stationary
distribution π. Then there exist constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω

∥P n(x, ·)− π(·)∥TV ≤ Cαn, ∀n ≥ 1.

Proof. Since the Markov chain is irreducible and aperiodic, Lemma 9.67 implies there exists
r > 0 such that all entries of P r are positive. Let Π be the matrix with |Ω| rows, each of
which is the row vector π (so Π = (1, . . . , 1)Tπ). From Theorem 9.43 (and Theorem 9.46),
minz∈Ω π(z) > 0. So, there exists 0 < δ < 1 such that

P r(x, y) ≥ δπ(y), ∀x, y ∈ Ω.

From Exercise 9.13, P r is a stochastic matrix. Also, Π is a stochastic matrix. Let θ := 1− δ.
Define Q := θ−1(P r − (1− θ)Π). Then Q is a stochastic matrix, and

P r = (1− θ)Π + θQ.

If M is an |Ω| × |Ω| stochastic matrix, then MΠ = Π (since MΠ = M(1, . . . , 1)Tπ =
(1, . . . , 1)Tπ = Π.) Similarly, if M satisfies πM = π, then ΠM = Π. We now prove by
induction that, for all k ≥ 1,

P rk = (1− θk)Π + θkQk. (∗)
We already know k = 1 holds, by the definition of Q. Assume (∗) holds for all 1 ≤ k ≤ n.
Then using (∗) twice,
P r(n+1) = P rnP r = [(1− θn)Π + θnQn]P r

= (1− θn)ΠP r + (1− θ)θnQnΠ+ θn+1Qn+1

= (1− θn)Π + (1− θ)θnΠ+ θn+1Qn+1, since πP = π, so πP n = π, and Qn is stochastic

= (1− θn+1)Π + θn+1Qn+1.
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So, we have completed the inductive step, i.e. we have shown (∗) holds for all k ≥ 1.
Let j ≥ 1. Multiplying (∗) by P j on the right and rearranging,

P rk+j − Π = θk(QkP j − Π). (∗∗)
From Exercise 9.13, QkP j is a stochastic matrix. Fix x ∈ Ω. Sum up the absolute values
of all the entries in row x of both sides of (∗∗) and divide by 2. By Exercise 9.71, the term
on the right is then θk multiplied by the total variation distance between two probability
distributions, which is at most 1, by definition of total variation distance. That is, the right
side is at most θk. So, using Exercise 9.71 for the left side as well,∥∥P rk+j(x, ·)− π(·)

∥∥
TV

≤ θk, ∀ j, k ≥ 1.

Taking the maximum of both sides over x ∈ Ω, and writing an arbitrary positive integer n
as n = rk + j where 0 ≤ j < r by Euclidean division of n by r (so that k = (n/r)− (j/r) ≥
(n/r)− 1), we get the bound

max
x∈Ω

∥P n(x, ·)− π(·)∥TV ≤ θ−1(θ1/r)n.

Setting C := θ−1 and α := θ1/r completes the proof. □

9.8. Markov Chain Monte Carlo. We are now ready to describe the Markov Chain Monte
Carlo method for simulating random variables. The Markov Chain Monte Carlo method
constructs a Markov Chain with a (hopefully unique) stationary distribution that is equal to
a given probability distribution. Simulation of the Markov chain itself then approximately
simulates the given probability distribution. We introduce this topic by example.

Recalling the notation of Example 9.18, let G = (V,E) be a finite graph. The hard
core model µ is a probability measure on the set {0, 1}V . We can think of an element of
ξ ∈ {0, 1}V as particles lying on the graph G, so that ξ(v) = 1 if the vertex v ∈ V contains
a particle, and ξ(v) = 0 if the vertex v ∈ V does not contain a particle. In this particle
model, particles have repulsion, so that adjacent vertices cannot both contain particles. Let
A denote the set of all elements of ξ ∈ {0, 1}V such that, if (v, w) ∈ E then ξ(v), ξ(w) are
not both equal to 1. Let z denote the number of elements of A. Then µ is defined to be the
uniform distribution on A, i.e. µ(ξ) = 1/z for all ξ ∈ A, and µ(ξ) = 0 for all ξ ∈ {0, 1}V ∖A.

The measure µ we just defined is sufficiently complicated that, when G is a large graph,
it is not easy to simulate µ using our previous simulation methods. Thankfully, there is an
easy way to construct a Markov Chain X0, X1, . . . such that the distribution of Xn becomes
close to that of µ as n → ∞. This Markov Chain is constructed in the following way. Below,
Xn will be a random element of {0, 1}V for each n ≥ 0. We also initialize X0 to be the zero
function on V . For any n ≥ 0, we will define Xn+1 using Xn.

For each integer n ≥ 0, repeat the following procedure.

• Select one v ∈ V uniformly at random.
• Let Yn be uniformly distributed in {0, 1} and independent of all previously defined
random variables.

• If Yn = 1, and if all vertices w ∈ V adjacent to v satisfy Xn(w) = 0, then set
Xn+1(v) := 1. Otherwise, set Xn+1(v) := 0.

• For all w ∈ V with w ̸= v, define Xn+1(w) := Xn(w).

Exercise 9.73. Show that the Markov Chain with state space A defined in our discussion
of the hard core model is actually a Markov chain that is irreducible and aperiodic.
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The Markov Chain X0, X1, . . . was created precisely because of the following fact.

Proposition 9.74. The Markov chain X0, X1, . . . constructed above with state space A has
unique stationary distribution µ.

Proof. The above Markov chain X0, X1, . . . is irreducible by Exercise 9.73, so it has a unique
stationary distribution π by Theorem 9.46. It remains to show that π = µ. Since the
stationary distribution is unique, it suffices to show that µ is stationary. It further suffices
to show that µ is reversible, by Proposition 9.56. That is, it remains to show that

µ(ξ)P (ξ, ζ) = µ(ζ)P (ζ, ξ), ∀ ξ, ζ ∈ A, (∗)

where P is the transition matrix of the Markov chain P . Let d be the number of v ∈ V
such that ξ(v) ̸= ζ(v). If d = 0, then ξ = ζ, so both sides of (∗) are equal. If d ≥ 2,
then P (ξ, ζ) = P (ζ, ξ) = 0 by definition of the Markov chain, so both sides of (∗) are zero.
To prove (∗) holds, it therefore remains to consider the case d = 1. If d = 1, then there
exists exactly one vertex v ∈ V such that ξ(v) ̸= ζ(z), i.e. ξ(w) = ζ(w) for all other
w ∈ V . Without loss of generality, assume ξ(v) = 1. Since ξ ∈ A, each neighbor w of v
satisfies ξ(w) = 0, so that µ(ξ) = µ(ζ) > 0 (recalling ξ, ζ ∈ A), and P (ξ, ζ) = P (ζ, ξ) since
ξ(w) = ζ(w) = 0 for all neighbors w of v, so (∗) holds. □

Remark 9.75. In fact, µ is stationary when the above Markov chain has state space {0, 1}V .

The Markov Chain we constructed above is a special case of a Gibbs Sampler where
S = {0, 1}.

Algorithm 9.76 (Gibbs Sampling Algorithm). Let S, V be finite sets. Let Ω := SV be
a state space. Let π be a probability distribution on Ω. The Gibbs Sampling Algorithm
constructs a Markov Chain X0, X1, . . . with stationary distribution π. In this algorithm, Xn

is a random element of SV for each n ≥ 0. We also initialize X0 to be a constant function
on V . For any n ≥ 0, we will define Xn+1 using Xn.
For each integer n ≥ 0, repeat the following procedure.

• Select one v ∈ V uniformly at random.
• Let π be the marginal distribution of π on v, given that all other vertex values are

fixed by Xn. That is, π(s) := π
(
(Xn(w))w∈V ∖{v}, s

)
, ∀ s ∈ S.

• Select Xn+1(v) according to π, i.e. P(Xn+1(v) = s) = π(s), for all s ∈ S.
• For all w ∈ V with w ̸= v, define Xn+1(w) := Xn(w).

Exercise 9.77. Show that the Gibbs Sampling Algorithm for a probability distribution π
on Ω creates an aperiodic Markov Chain and π is reversible with respect to this Markov
Chain. Conclude that π is a stationary distribution for the Markov Chain.
If it occurs that the Markov Chain is irreducible, conclude that π is the unique station-

ary distribution, so that the Gibbs Sampling Algorithm is a Markov Chain Monte Carlo
Algorithm for simulating π.

Exercise 9.78. Let G = (V,E) be a finite graph. Let λ > 0. The generalized hard core
model µλ is a probability measure on the set {0, 1}V . Let A denote the set of all elements
of ξ ∈ {0, 1}V such that, if (v, w) ∈ E then ξ(v), ξ(w) are not both equal to 1. Then µ is
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defined so that µ(ξ) := 0 for any ξ /∈ A, and

µ(ξ) :=
λ
∑

v∈V ξ(v)

z
, z :=

∑
ξ∈A

λ
∑

v∈V ξ(v).

• Show that, if ξ ∈ {0, 1}V , and if v ∈ V is fixed with ξ(w) = 0 for all neighboring
vertices w of v, then the probability that ξ(v) = 1 is λ/(λ+ 1).

• Construct an MCMC algorithm for the generalized hard cord model.

The Metropolis Algorithm begins with a finite Markov Chain with transition matrix Q
and state space Ω. Given a probability distribution π on Ω, the goal is to modify the Markov
chain to obtain another Markov chain with stationary distribution π.

Algorithm 9.79 (Metropolis Algorithm, Symmetric Case). Suppose the matrix Q
is symmetric. The Metropolis Algorithm constructs a Markov Chain X0, X1, . . . with
stationary distribution π. The transition matrix P is defined so that

P (x, y) :=

Q(x, y) ·min
(
1, π(y)

π(x)

)
, if y ̸= x.

1−
∑

z∈Ω: z ̸=x Q(x, z) ·min
(
1, π(z)

π(x)

)
, if y = x.

To explain the choice of P , consider a : Ω×Ω → [0, 1]. If x ∈ Ω is the current state of the
original Markov chain and if y ∈ Ω is another state to move to, then a(x, y) represents the
probability that the state y is “accepted” by the new Markov Chain, and with remaining
probability 1− a(x, y) the chain is kept in its current state. With this intuition in mind, we
create a transition matrix P of a more general form than above:

P (x, y) :=

{
Q(x, y)a(x, y) , if y ̸= x.

1−
∑

z∈Ω: z ̸=xQ(x, z)a(x, z) , if y = x.

In order for P to be reversible, we need

π(x)Q(x, y)a(x, y) = π(y)Q(y, x)a(y, x), ∀x, y ∈ Ω, x ̸= y.

Since Q is assumed to be symmetric, reversibility follows if and only if

π(x)a(x, y) = π(y)a(y, x), ∀x, y ∈ Ω, x ̸= y.

Since a(x, y) ∈ [0, 1], we must have the constraints

π(x)a(x, y) ≤ π(x), π(x)a(x, y) = π(y)a(y, x) ≤ π(y), ∀x, y ∈ Ω, x ̸= y.

We would like to choose values of a(x, y) to be as large as possible, since rejecting moves
from the original Markov Chain leads to slower simulations. The largest choice of a according
to the above is a(x, y) := min(1, π(y)/π(x)) for all x, y ∈ Ω with x ̸= y.

Since P is reversible, recall that π is stationary for P by Proposition 9.56. However, the
stationary distribution might not be unique.

Algorithm 9.80 (Metropolis Algorithm, General Case). The Metropolis Algo-
rithm constructs a Markov Chain X0, X1, . . . with stationary distribution π. The transition
matrix P is defined so that

P (x, y) :=

Q(x, y) ·min
(
1, π(y)Q(y,x)

π(x)Q(x,y)

)
, if y ̸= x.

1−
∑

z∈Ω: z ̸=x Q(x, z) ·min
(
1, π(z)Q(z,x)

π(x)Q(x,z)

)
, if y = x.
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Exercise 9.81. Show that the transition matrix P constructed by the general case of the
Metropolis Algorithm is reversible. Conclude that π is a stationary distribution for P .

Example 9.82. Suppose Q corresponds to the simple random walk on a large graph (such
as a social network). In this case, Q might be easy to sample since neighbors of vertices
are easy to find, but the global structure of the graph might be complicated. Suppose we
want to sample from the uniform distribution on the graph. In general, this distribution will
not be stationary for Q. In order to sample from the uniform distribution, we modify the
simple random walk by using an acceptance probability a(x, y) := min(1, deg(x)/deg(y)) for
all x ̸= y, x, y ∈ V . The Metropolis Algorithm constructs a Markov chain with this a with
uniform stationary distribution. In words, this Markov Chain is biased against moving to
high degree vertices.

Above we discussed how to construct Markov chains with a given stationary distribution
π. An important question is then: given ε > 0, what is the smallest integer n > 0 such that
maxx∈Ω ∥P n(x, ·)− π(·)∥TV < ε? That is, how long does it take for the Markov Chain P to
closely resemble the given distribution π? That is, what is the mixing time of the Markov
chain P?

10. Appendix: Results from Analysis

Theorem 10.1 (Fubini Theorem). Let h : R2 → R be a continuous function such that∫∫
R2 |h(x, y)| dxdy < ∞. Then∫∫

R2

h(x, y)dxdy =

∫
R

(∫
R
h(x, y)dx

)
dy =

∫
R

(∫
R
h(x, y)dy

)
dx.

Theorem 10.2. (Minkowski’s Inequality) Let 1 ≤ p ≤ ∞, and let f : R2 → R be
measurable. Then ∥∥∥∥∫

R
f(x, y)dx

∥∥∥∥
p,dy

≤
∫
R
∥f(x, y)∥p,dy dx.

In particular, the integrand on the right is measurable, so if the right side is finite, then∫
R f(x, y)dx is defined for almost every y ∈ R.

Proof. The right side is unchanged by replacing f with |f |, so without loss of generality we
assume f : R2 → [0,∞). The case p = 1 follows from Fubini’s Theorem, Theorem 10.1. If
1 < p < ∞, measurability follows from Fubini’s Theorem, and the inequality follows from
Fubini’s Theorem and the Hölder inequality for y, Theorem 1.71 (for Lebesgue measure),
with exponents p, p′ (using (p− 1)p′ = p).∫

R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p dy =

∫
R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1 ∣∣∣∣∫
R
f(x′, y)dx′

∣∣∣∣ dy
=

∫
R

(∫
R
f(x′, y)

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1

dy
)
dx′

≤
∫
R

(∫
R
|f(x′, y)|p dy

)1/p(∫
R
|
∫
R
f(x, y)dx|p′(p−1)dy

)1/p′
dx′

=

∫
R
∥f(x′, y)∥p,dy dx

′ ·
(∫

R
|
∫
R
f(x, y)dx|pdy

)1/p′
.
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If the right-most term is nonnegative and finite, we divide both sides by it to conclude, using
1− 1/p′ = 1/p. If the right-most term is zero, there is nothing to prove. In the case that f
is the indicator function of a rectangle, the right-most term is finite, so the Theorem holds
in this case. The Monotone Convergence Theorem then implies that the Theorem holds for
more general functions f .
The case p = ∞ takes more work. Measurability follows by approximating f by simple

functions, and using that the limit of measurable functions is measurable. We then use
duality. Let g : R → [0,∞) be measurable with

∫
R g(y)dy ≤ 1. Then by Fubini’s Theorem

and Hölder’s inequality for y, Theorem 1.71 (for Lebesgue measure)∫
R
g(y)

(∫
R
f(x, y)dx

)
dy =

∫
R

(∫
R
f(x, y)g(y)dy

)
dx ≤

∫
R
∥f(x, y)∥∞,dy dx. (∗)

From the Reverse Hölder inequality, if h : R → R is measurable, then

∥h∥∞ = sup
g : R→[0,∞)∫
R g(y)dy≤1

∫
R
g(x)h(x)dx.

So, taking the supremum over such g in (∗),
∥∥∫

R f(x, y)dx
∥∥
∞,dy

≤
∫
R ∥f(x, y)∥∞,dy dx. □

We say f : R → R is a Schwartz function if, for any integers j, k ≥ 1, f is k times
continuously differentiable and there exists cj,k ∈ R such that∣∣f (k)(x)

∣∣ ≤ cjk

1 + |x|j
, ∀x ∈ R.

Proposition 10.3 (Properties of Convolution on R). Let 1 ≤ p ≤ ∞, let p′ with
1/p+ 1/p′ = 1. Let ϕ : R → R with

∫
R |ϕ(x)| dx < ∞, let ε > 0 and define ϕε(x) :=

1
ε
ϕ(x/ε)

for any x ∈ R and c :=
∫
R ϕ(x)dx. Let f, g : R → R be Schwartz functions.

(a) For any 1 ≤ p < ∞, limε↓0 ∥ϕε ∗ f − cf∥p = 0.

(b) limε→0+ ∥ϕε ∗ f − cf∥∞ = 0.
(c) For any x ∈ R, limε→0+(ϕε∗f)(x) = cf(x) (using only that f is bounded, continuous).
(d) The convergence in (c) is uniform on R (using only that f is uniformly continuous).
(e) ∀ m ≥ 1, f ∗ g is m times continuously differentiable, and (f ∗ g)(m) = f (m) ∗ g.

Proof of (a),(b):

∥ϕε ∗ f − cf∥p =
∥∥∥∥∫

R
ϕε(y)(f(x− y)− f(x))dy

∥∥∥∥
p,dx

≤
∫
R
|ϕε(y)| ∥f(x− y)− f(x)∥p,dx dy , by Theorem. 10.2

=

∫
R
|ϕ(y)| ∥f(x− εy)− f(x)∥p,dx dy, changing variables.

The y-integrand is bounded by 2 ∥f∥p
∫
R |ϕ(y)| dy < ∞ and by |ϕ(y)| |εy| ∥f ′∥∞ by the Fun-

damental Theorem of Calculus. Since f is Schwartz, the latter quantity is bounded, so it
goes to zero pointwise as ε → 0. So, the Dominated Convergence Theorem, Theorem 2.5,
implies (a) and (b).
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Proof of (c): Arguing as in (a) (taking absolute values, changing variables, and applying
Dominated Convergence),

|(ϕε ∗ f)(x)− cf(x)| ≤
∫
R
|ϕ(y)| |f(x− εy)− f(x)| dy → 0.

Proof of (d): Let η > 0. Choose m > 0 so that 2 ∥f∥∞
∫
|y|>m

|ϕ(y)| ≤ η. Choose δ > 0 by

uniform continuity of f so that for any x ∈ R, if |u| ≤ δ then |f(x+ u)− f(x)| ≤ η/ ∥ϕ∥1.
Then for any 0 < ε ≤ δ/m and for any x ∈ R, if |y| ≤ m, then |f(x− εy)− f(x)| ≤ η/ ∥ϕ∥1.
So, continuing the calculation of (c), and applying the definition of m,∫

R
|ϕ(y)| |f(x− εy)− f(x)| dy =

∫
{y∈R : |y|>m}

(· · · ) +
∫
{y∈R : |y|≤m}

(· · · )

≤ 2 ∥f∥∞
∫
{y∈R : |y|>m}

|ϕ(y)| dy +
∫
{y∈R : |y|≤m}

|ϕ(y)| η

∥ϕ∥1
≤ η + η = 2η.

Proof of (e): Let h > 0 and x ∈ R. Then∣∣∣∣(f ∗ g)(x+ h)− (f ∗ g)(x)
h

− (f ′ ∗ g)(x)
∣∣∣∣ ≤ ∥∥∥∥f(x+ h)− f(x)

h
− f ′(x)

∥∥∥∥
∞,dx

∥g∥1

≤
∥∥∥∥1h
∫ x+h

x

(x+ h− t)f ′′(t)dt

∥∥∥∥
∞,dx

∥g∥1 ≤ |h| ∥f ′′∥∞ ∥g∥1 .

Since f is a Schwartz function, ∥f ′′∥∞ < ∞, so the case m = 1 follows by letting h → 0+.
The case of larger m follows by iteration. □
Let f : R → R with

∫
R |f(x)| dx < ∞. For any ξ ∈ R, we define

f̂(ξ) = F(f)(ξ) :=

∫
R
eixξf(x)dx.

Then f̂ : R → R is called the Fourier Transform of f .

Proposition 10.4 (Properties of Fourier Transform). Let f, g be Schwartz functions.
Let ξ ∈ R and let λ > 0.

(a) |f̂(ξ)| ≤
∫
R |f(x)| dx, ∀ ξ ∈ R.

(b) F [f(x− h)](ξ) = eiξhf̂(ξ), F [eixhf(x)](ξ) = f̂(ξ + h), ∀ h ∈ R.
(c) F [f(x/λ)](ξ) = λf̂(λξ).

(d) (̂f ∗ g) = f̂ ĝ

(e) ∂f̂/∂ξ = F(ixf(x))

(f) F [f ′](ξ) = −iξf̂(ξ).

(g)
∫
R f(x)ĝ(x)dx =

∫
R f̂(x)g(x)dx.

Proof of (a): |f̂(ξ)| =
∣∣∫

R e
ixξf(x)dx

∣∣ ≤ ∫R |f(x)| dx.
Proof of (b): By the change of variables formula, if ξ ∈ R,

F [f(x− h)](ξ) =

∫
R
eixξf(x− h)dx = eixh

∫
R
eixξf(x)dx = eixhf̂(ξ).

F [eixhf(x)](ξ) =

∫
R
eix(ξ+h)f(x)dx = f̂(ξ + h).
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Proof of (c): By the change of variables formula,

F [f(x/λ)](ξ) =

∫
R
eixξf(x/λ)dx = λ

∫
R
eixξλf(x)dx = λf̂(ξλ).

Proof of (d): Applying Fubini’s Theorem, Theorem 10.1, and part (b) give∫
R
eixξ

(∫
R
f(x− y)g(y)dy

)
dx =

∫
R

∫
R
eixξf(x− y)dxg(y)dy

(b)
=

∫
R
eiξyf̂(ξ)g(y)dy = f̂(ξ)

∫
R
eiξyg(y)dy = f̂(ξ)ĝ(ξ).

Proof of (e): Let h > 0. Using part (b) and the Dominated Convergence Theorem 2.5,

f̂(ξ + h)− f̂(ξ)

h

(b)
= F

[(
eixh − 1

h

)
f(x)

]
(ξ) → F [ixf(x)](ξ) , as h → 0.

We now justify the use of the Dominated Convergence Theorem. By the Mean Value Theo-
rem,

∣∣Re(eixh − 1)/h
∣∣ = |(cos(xh)− 1)/h| ≤ |x| and

∣∣Im(eixh − 1)/h
∣∣ = |(sin(xh)− 1)/h| ≤

|x|, so
∣∣(eixh − 1)/h

∣∣ ≤ 2 |x| and
∣∣f(x)(eixh − 1)/h

∣∣ ≤ 2 |x| |f(x)|.
Proof of (f): Integrating by parts and then using that f is a Schwartz function

F [f ′(x)](ξ) = lim
N→∞

∫ N

−N

f ′(x)eixξdx = lim
N→∞

−
∫ N

−N

f(x)(iξ)eixξdx = −iξf̂(ξ).

Proof of (g): Apply Fubini’s Theorem 10.1. □

Proposition 10.5. Let f, g be Schwartz functions. Let ξ ∈ R.
(a) F [e−x2/2](ξ) =

√
2πe−ξ2/2.

(b) limξ→∞ f̂(ξ) = 0.

(c) f̂ is a Schwarz function.

Proof. Let ξ ∈ R. Completing the square, and then shifting the contour in the complex
plane, ∫

R
e−x2/2+ixξdx = e−ξ2/2

∫
R
e−(x−iξ)2/2dx = e−ξ2/2

∫
R
e−x2/2dx =

√
2πe−ξ2/2.

Now, let ϕ(x) := e−x2/2/
√
2π for any x ∈ R and denote ϕε(x) := ε−1ϕ(x/ε) for any x ∈ R.

Note that
∫
R ϕε(x)dx = 1. From Proposition 10.4(a),(d) and Proposition 10.3(a),∣∣∣ϕ̂ε(ξ)f̂(ξ)− f̂(ξ)

∣∣∣ = ∣∣∣ϕ̂ε ∗ f(ξ)− f̂(ξ)
∣∣∣ ≤ ∫

R
|ϕε ∗ f(x)− f(x)| dx → 0,

as ε → 0. Combining this statement with Proposition 10.4(c) and part (a) of the current

Proposition, e−ε2ξ2/2f̂(ξ) converges to f̂(ξ) uniformly over all ξ ∈ R, as ε → 0. Since f̂ itself

is bounded by Proposition 10.4(a), e−ε2ξ2/2f̂(ξ) vanishes at ξ = ∞, for every ε > 0. So, the

uniform convergence implies that f̂(ξ) also vanishes as ξ → ∞, proving (b).

To prove (c), note that repeated application of Proposition 10.4 shows that f̂ is k times
differentiable for any k ≥ 1, since f is a Schwartz function. And part (b) of the current
Proposition says that f (k) vanishes at infinity for any k ≥ 1, so repeated application of

Proposition 10.4(f) shows that f̂ is a Schwartz function. □
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Exercise 10.6. Give an alternate proof of the fact F [e−x2/2](ξ) =
√
2πe−ξ2/2 using the

following strategy:

• Let g(ξ) := (2π)−1/2F [e−x2/2](ξ). Show that g′(ξ) = −ξg(ξ) for all ξ ∈ R.
• Deduce that (d/dξ)(g(ξ)eξ

2/2) = 0.

• Finally, conclude that g(ξ) = e−ξ2/2.

Theorem 10.7 (Fourier Inversion). Let f : R → R be a Schwartz function. Then

f(x) =
1

2π

∫
R
e−ixξf̂(ξ)dξ, ∀x ∈ R.

Proof. let ϕ(x) := e−x2/2/
√
2π for any x ∈ R and denote ϕε(x) := ε−1ϕ(x/ε) for any x ∈ R.

Note that
∫
R ϕε(x)dx = 1. By Proposition 10.4(c) and Proposition 10.5(a), F [ϕ](ξ) = e−ξ2/2,

F [ϕε](ξ) = e−ε2ξ2/2, and F(F(ϕε)) = 2πϕε. So, using Theorem 10.4(g), we get

2π

∫
R
f(x)ϕε(x)dx =

∫
R
f̂(ξ)e−ε2ξ2/2dξ. (∗)

Using this equality for f(x + y), applying Theorem 10.4(b), and using ϕε(−y) = ϕε(y) ∀
y ∈ R,

1

2π

∫
R
f̂(ξ)e−ixξe−ε2ξ2/2dξ

(∗)
=

∫
R
f(x+ y)ϕε(y)dy =

∫
R
f(x− y)ϕε(y)dy = (ϕε ∗ f)(x).

As ε → 0, the left side converges to 1
2π

∫
R f̂(ξ)e

ixξdξ by the Dominated Convergence Theorem
2.5. And the right side tends to f uniformly in x by Proposition 10.3(d). So f(x) =
1
2π

∫
f̂(ξ)e−ixξdξ almost everywhere in x ∈ R, hence everywhere since f is Schwartz. □

Lemma 10.8 (Stirling’s Formula). Let n ∈ N. Then n! ∼
√
2πnnne−n. That is,

lim
n→∞

n!√
2πnnne−n

= 1.

Proof. We prove the weaker estimate that ∃ c ∈ R such that

n! = (1 +O(1/n))e1−c
√
nnne−n. (∗)

Note that log(n!) =
∑n

m=1 logm. We use integral comparison for this sum. On the interval
[m,m+1] the function x 7→ log x has second derivative O(1/m2). So, Taylor expansion (i.e.
the trapezoid rule) gives∫ m+1

m

log xdx =
1

2
log(m+ 1) +

1

2
logm+O(1/m2).

∫ n

1

log xdx =
n−1∑
m=1

∫ m+1

m

log xdx =
n−1∑
m=1

logm+
1

2
log n+ c+O(1/n).

Since
∫ n

1
log xdx = n(log(n)− 1) + 1, log(n!) =

∑n
m=1 logm, exponentiating proves (∗). □

Proposition 10.9 (Differentiating under the Integral Sign). Let f : R × Rn → R.
Suppose

• For all θ ∈ R,
∫
Rn |f(θ, x)| dx < ∞.

• For almost all θ ∈ R, the derivative ∂f(θ, x)/∂θ exists for all x ∈ Rn.
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• There is a function g : Rn → [0,∞) with
∫
Rn |g(x)| dx < ∞ and |∂f(θ, x)/∂θ| ≤ g(x)

for all θ ∈ R, x ∈ Rn.

Then for all θ ∈ R,
∂

∂θ

∫
Rn

f(θ, x)dx =

∫
Rn

∂

∂θ
f(θ, x)dx.

Proof. Let h(θ, x) := ∂
∂θ
f(θ, x) and let h0(θ, x) :=

∫ θ

0
h(t, x)dt for any θ ∈ R, x ∈ Rn. By

assumption,
∫
Rn |h(θ, x)| dx < ∞ for any θ ∈ R, so that

∫ θ

0

∫
Rn |h(t, x)| dxdt < ∞ for any

θ ∈ R. By Fubini’s Theorem 10.1,∫ θ

0

∫
Rn

h(t, x)dxdt =

∫
Rn

∫ θ

0

h(t, x)dtdx =

∫
Rn

h0(θ, x)dx < ∞.

Taking derivatives in θ of both sides and applying Lebesgue’s Fundamental Theorem of
Calculus, Theorem 10.10 (twice) concludes the proof. □

Theorem 10.10 (Fundamental Theorem of Calculus). Let f be a probability density

function. Then the function g(t) =
∫ t

−∞ f(x)dx is continuous at any t ∈ R. Also, if f is
continuous at a point x, then g is differentiable at t = x, and g′(x) = f(x).

11. Appendix: Convergence in Distribution, Characteristic Functions

Definition 11.1 (Vague Convergence of Measures). Let µ, µ1, µ2, . . . be a sequence of
finite measures on R (i.e. µ(R), µn(R) < ∞ for all n ≥ 1). We say that µ1, µ2, . . . converges
vaguely (or converges weakly, or converges in the weak∗ topology) to µ if, for any
continuous compactly supported function g : R → R,

lim
n→∞

∫
R
g(x)dµn(x) =

∫
R
g(x)dµ(x).

In functional analysis, there is a subtle but important distinction between weak and weak∗

convergence, though this difference of terminology seems to be ignored in the probability
literature.

As we will show below, convergence in distribution of random variables X1, X2, . . . to a
random variable X is equivalent to µX1 , µX2 , . . . converging vaguely to µX .

Proposition 11.2. Let X,X1, X2, . . . be random variables with values in R. Then the fol-
lowing are equivalent

• X1, X2, . . . converges in distribution to X.
• µX1 , µX2 , . . . converges vaguely to µX .

Proof. Assume thatX1, X2, . . . converges in distribution toX. Let g : R → R be a continuous
compactly supported function. Then g is uniformly continuous. So, if ε > 0, there exist t1 <
· · · < tm and c1, . . . , cm ∈ R such that gε(t) :=

∑m−1
i=1 ci1(ti,ti+1](t) satisfies |gε(t)− g(t)| < ε

for all t ∈ R. Since FX : R → [0, 1] is monotone increasing and bounded, any point of
discontinuity of FX is a jump discontinuity. So, FX has at most a countable set of points of
discontinuity. Therefore, t1 < · · · < tm can be chosen to all be points of continuity of FX .
By the definition of the expected value,∣∣∣∣∣Eg(X)−

m−1∑
i=1

ci

(
FX(ti+1)− FX(ti)

)∣∣∣∣∣ = |Eg(X)− Egε(X)| ≤ E |g(X)− gε(X)| ≤ ε.
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The same holds replacing X with any of X1, X2, . . .. So, applying the triangle inequality,

lim sup
n→∞

|Eg(Xn)− Eg(X)|

≤ lim sup
n→∞

|Eg(Xn)− Egε(Xn)|+ |Egε(Xn)− Egε(X)|+ |Egε(X)− Eg(X)|

≤ 2ε+ lim sup
n→∞

m−1∑
i=1

|ci| |FXn(ti+1)− FX(ti+1)− [FXn(ti)− FX(ti)]| = 2ε.

Since ε > 0 is arbitrary limn→∞Eg(Xn) = Eg(X) as desired.
Now, suppose for any continuous, compactly supported g : R → R, limn→∞Eg(Xn) =

Eg(X). Let t ∈ R be a point of continuity of FX . Then, for any ε > 0, there exists δ > 0
such that if |s− t| < 2δ, then |FX(s)− FX(t)| < ε. By continuity of the probability law,
let m > 0 such that P(|X| > m) < ε. By choice of δ, ε we have P(|X − t| < δ) < ε. Let
g : R → [0, 1] so that g = 0 on (−∞,−2m], g = 1 on (−m, t − δ], g = 0 on (t,∞) and g is
linear otherwise. Then

Eg(X) = Eg(X)(1−2m<X≤−m + 1−m<X≤t−δ + 1t−δ<X≤t)

= O(ε) + FX(t− δ) +O(ε) = FX(t) +O(ε).

Since limn→∞ Eg(Xn) = Eg(X), there exists n0 = n0(ε) > 0 such that, for all n > n0,
Eg(Xn) = FX(t) +O(ε). By the definition of g,

P(Xn ≤ t) ≥ Eg(Xn) ≥ FX(t)−O(ε), ∀n > n0(ε).

Repeating the above with g where g = 1 on (t+ δ,m] and g = 0 on (−∞, t] ∪ [2m,∞) gives

P(Xn > t) ≥ 1− FX(t)−O(ε), ∀n > n0(ε).

Combining these inequalities gives

FXn(t) = FX(t) +O(ε), ∀n > n0(ε).

Letting ε → 0+ concludes the proof. □

Lemma 11.3. Let µ1, µ2, . . . be a sequence of probability measures on R. Then any subse-
quential limit of the sequence (with respect to vague convergence) is a probability measure if
and only if µ1, µ2, . . . is tight: ∀ ε > 0, ∃ m = m(ε) > 0 such that

lim sup
n→∞

(1− µn([−m,m])) ≤ ε.

Exercise 11.4. Let X,X1, X2, . . . and let Y, Y1, Y2, . . . be random variables with values in
R.

(i) Assume that X is constant almost surely. Show that X1, X2, . . . converges to X in
distribution if and only if X1, X2, . . . converges to X in probability.

(ii) Prove Lemma 11.3.
(iii) Suppose that X1, X2, . . . converges in distribution to X. Show there exist random

variables Z,Z1, Z2, . . . : Ω → R such that µZ = µX , µZn = µXn for any n ≥ 1, and
such that Z1, Z2, . . . converges almost surely to Z. (Hint: use Exercise 9.3.)

(iv) (Slutsky’s Theorem) Suppose X1, X2, . . . converges in distribution to X and Y1, Y2, . . .
converges in probability to Y . Assume Y is constant almost surely. Show that
X1+Y1, X2+Y2, . . . converges in distribution toX+Y . Show also thatX1Y1, X2Y2, . . .
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converges in distribution to XY . (Hint: either use (iii) or use (ii) to control error
terms.) What happens if Y is not constant almost surely?

(v) (Fatou’s lemma) If g : R → [0,∞) is continuous, and if X1, X2, . . . converges in dis-
tribution to X, show that lim infn→∞Eg(Xn) ≥ Eg(X).

(vi) (Bounded convergence) If g : R → C is continuous and bounded, and if X1, X2, . . .
converges in distribution to X, show that limn→∞Eg(Xn) = Eg(X).

(vii) (Dominated convergence) If X1, X2, . . . : Ω → R converges in distribution to X, and
if there exists a random variable Y : Ω → [0,∞) with |Xn| ≤ Y for all n ≥ 1 and
EY < ∞, show that limn→∞EXn = EX.

Theorem 11.5 (Lévy Continuity Theorem, Special Case). Let X,X1, X2, . . . be real-
valued random variables (possibly on different sample spaces). The following are equivalent.

• For every t ∈ R, limn→∞ ϕXn(t) = ϕX(t).
• X1, X2, . . . converges in distribution to X.

Proof. The second condition implies the first by Exercise 11.4(vi).
Now, assume the first condition holds. Let g : R → R be a Schwartz function (for any

integers j, k ≥ 1, g is k times continuously differentiable and there exists cj,k ∈ R such that
|g(k)(x)| ≤ cjk

1+|x|j , ∀x ∈ R.) The Fourier Inversion Formula, Theorem 10.7, implies that

g(Xn) =
1

2π

∫
R
e−iXnyĝ(y)dy.

where ĝ(y) =
∫
R e

ixyg(x)dx for all y ∈ R. From the Fubini Theorem 10.1,

Eg(Xn) =
1

2π

∫
R
Ee−iXnyĝ(y)dy =

1

2π

∫
R
ϕXn(−y)ĝ(y)dy.

Similarly, Eg(X) = 1
2π

∫
R ϕX(−y)ĝ(y)dy. So, limn→∞Eg(Xn) = Eg(X) by the Dominated

Convergence Theorem, Theorem 2.5 (and Proposition 10.5(c)). Since any continuous, com-
pactly supported function g can be uniformly approximated by Schwartz functions in the
L∞ norm (by e.g. replacing g with g ∗ ϕε, where ϕε(x) = ε−1e−x2/(2ε2)/

√
2π, letting ε → 0+

and applying Proposition 10.3(d)), the identity limn→∞ Eg(Xn) = Eg(X) holds for any
continuous, compactly supported g : R → R. We then conclude by Proposition 11.2. □

Remark 11.6. In particular, if Y = X1 = X2 = · · · , the above Theorem implies that if
ϕX(t) = ϕY (t) for all t ∈ R, then X and Y have the same distribution.

Exercise 11.7 (Lévy Continuity Theorem). Let X,X1, X2, . . . be real-valued random
variables (possibly on different sample spaces). Assume that, ∀ t ∈ R, ϕ(t) := limn→∞ ϕXn(t)
exists. Then the following are equivalent.

(i) ϕ is continuous at 0.
(ii) µX1 , µX2 , . . . is tight. (∀ ε > 0, ∃ m = m(ε) > 0 such that lim supn→∞(1 −

µXn([−m,m])) ≤ ε.)
(iii) There exists a random variable X such that ϕX = ϕ.
(iv) X1, X2, . . . converges in distribution to X.

(Hint: Use Lemma 11.3 to get from (ii) to other conditions.)
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12. Appendix: Moment Generating Functions

Exercise 12.1. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√
2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x)− n.)

For any w ∈ Rk define

a(w) := log

∫
Rn

h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

Define now

W := {w ∈ Rk : a(w) < ∞}.

Lemma 12.2. The function a(w) is continuous and has continuous partial derivatives of all
orders on the interior of W . Moreover, we can compute these derivatives by differentiating
under the integral sign.

Proof. We prove only the case of a first order partial derivative. Consider the case of the
partial derivative with respect to w1 at w in the interior of W . Let e1 = (1, 0, . . . , 0) ∈ Rk.
Since the exponential function is analytic, it suffices to show that the partial derivative of
ea(w) exists in the direction e1. We form the difference quotient for ea(w) as follows.

exp
(
a(w + εe1)

)
− exp(a(w))

ε

=
1

ε

∫
Rn

h(x)
[
exp

(
εt1(x) +

k∑
i=1

witi(x)
)
− exp

( k∑
i=1

witi(x)
)]

dµ(x)

=

∫
Rn

h(x)
exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)
dµ(x).

By the Mean Value Theorem, for any 0 < α < 1 and for any β ∈ R∣∣eαβ − 1
∣∣ ≤ |αβ|max(1, eαβ) ≤ |αβ| e|β| ≤ |α| e2|β| ≤ |α| (e2β + e−2β), (∗)
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So, using δ > 0, α := ε/δ and β := δt1(x)∣∣∣∣∣h(x)exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)∣∣∣∣∣

≤ h(x)

∣∣∣∣exp(εt1(x))− 1

ε

∣∣∣∣ exp( k∑
i=1

witi(x)
)
dµ(x)

(∗)
≤ 1

δ
h(x)

(
e2δt1(x) + e−2δt1(x)

)
exp

( k∑
i=1

witi(x)
)
dµ(x)

So, if

Xε := h(x)
exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)
,

Y :=
1

δ
h(x)

(
e2δt1(x) + e−2δt1(x)

)
exp

( k∑
i=1

witi(x),

then |Xε| ≤ Y for any 0 < ε < δ < 1. We then conclude by the Dominated Convergence
Theorem 2.5 that

∂

∂w1

ea(w) = lim
ε→0

∫
Rn

∣∣∣∣∣h(x)exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)∣∣∣∣∣ dµ(x)

=

∫
Rn

t1(x)h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

Here we also use that
∫
Rn Y (x)dµ(x) = ea(w+2δe1) + ea(w−2δe1) < ∞ for sufficiently small δ

(depending only on w), since w is in the interior of W .
Using the right part of inequality (∗), we can similarly show that∫

Rn

k∏
j=1

|tj(x)|mj h(x) exp
( k∑

i=1

witi(x)
)
dµ(x) < ∞,

for any positive integers m1, . . . ,mk, so that an inductive argument completes the above
proof for any iterated partial derivative. □

Theorem 12.3 (Inversion of Moment Generating Function). Let X, Y be random
variables. Denote MX(t) := EetX for any t ∈ R. Suppose MX(t) = MY (t) for all t ∈ (−ε, ε).
Then X and Y have the same distribution.

Proof. From (the proof of) Lemma 12.2 with µ = P, h = 1, k = 1, t(x) = x, MX(t) is
complex-differentiable in a neighborhood of the origin. From a well-known theorem from
complex analysis, MX(z) is then equal to its power series for all z ∈ C with |z| < ε. That
is, its power series is absolutely convergence for all |z| < ε, and

MX(z) =
∞∑
k=0

(d/dt)k|t=0MX(t)

k!
zk, ∀ |z| < ε.
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By Lemma 12.2 again, (d/dt)k|t=0MX(t) = EXk for all k ≥ 0. Since the series converges
absolutely, we have

lim
k→∞

EXk

k!
xk = 0, ∀ 0 < x < ε. (∗)

Fix 0 < r < s < ε. If k is an odd integer, then (k + 1)rk < εk+1 for sufficiently large k, and

for all 0 < x < r, |x|k ≤ 1 + |x|k+1, so multiplying these inequalities and taking expected
values gives

E |X|k rk

k!
≤ rk

k!
+

E |X|k+1 sk+1

(k + 1)!
.

That is, (∗) implies that

lim
k→∞

E |X|k

k!
xk = 0, ∀ 0 < x < ε. (∗∗)

Let i :=
√
−1. Let x, t, h ∈ R. From the Taylor expansion of the exponential function,∣∣∣∣∣eitx(eihx −

n∑
k=0

(ihx)n

n!

)∣∣∣∣∣ =
∣∣∣∣∣eihx −

n∑
k=0

(ihx)k

k!

∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!
.

We denote ϕX(t) := EeitX . So, taking expected values of these same quantities with x = X,∣∣∣∣∣ϕX(t+ h)−
n∑

k=0

(i)kEeitXXk

k!

∣∣∣∣∣ ≤ |h|n+1 E |X|n+1

(n+ 1)!
, ∀ t ∈ R, ∀h ∈ (−ε, ε).

By (∗∗), the series then converges, so that

ϕX(t+ h) =
∞∑
k=0

ikEeitXXk

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε).

By Lemma 12.2, differentiating ϕX can occur under the expected value, so that

ϕX(t+ h) =
∞∑
k=0

ϕ
(k)
X (t)

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε). (∗ ∗ ∗)

Similarly,

ϕY (t+ h) =
∞∑
k=0

ϕ
(k)
Y (t)

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε). (‡)

Setting t = 0, using these equalities and our assumption, we see that for any k ≥ 0,

dk

dtk
|t=0ϕX(t) = ikEXk = ik

dk

dtk
|t=0Ee

tX = ik
dk

dtk
|t=0Ee

tY =
dk

dtk
|t=0Ee

itY .

Therefore, ϕX(t) = ϕY (t) for all t ∈ (−ε, ε) by (∗ ∗ ∗) and (‡), since each coefficient of their
power series also agrees. Consequently, ϕX(t) = ϕY (t) for all t ∈ (−2ε, 2ε) by (∗∗∗) and (‡).
Iterating this argument, ϕX(t) = ϕY (t) for all t ∈ R. We then conclude by Remark 11.6. □
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13. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b ̸= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”
∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R∀ 1 ≤ i ≤ n}
f : A → B means f is a function with domain A taking values in B. For example,

f : R2 → R means that f is a function with domain R2 with values in R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

A∖B := {a ∈ A : a /∈ B}
Ac := Ω∖ A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (A∖B) ∪ (B ∖ A)

P denotes a probability law on Ω

Let n ≥ m ≥ 0 be integers. We define(
n

m

)
:=

n!

(n−m)!m!
=

n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · (2)(1)
.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) := ∞.
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Let A ⊆ R.
supA denotes the supremum of A, i.e. the least upper bound of A.

inf A denotes the infimum of A, i.e. the greatest lower bound of A.

Let X : Ω → R be a random variable on a probability space (Ω,F , µ).

E(X) denotes the expected value of X

∥X∥p := (E |X|p)1/p, denotes the Lp-norm of X when 1 ≤ p < ∞
∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}, denotes the L∞-norm of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

Let A ⊆ Ω.

E(X|A) := E(X1A)/P(A) denotes the expected value of X conditioned on the event A.

1A : Ω → {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A

0 , otherwise.

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x, t ∈ R.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R

Let g, h : R → R. Let t ∈ R.

(g ∗ h)(t) =
∫ ∞

−∞
g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

Let θ ∈ Θ

Pθ denotes probability law corresponding to fθ.

Eθ denotes expected value with respect to fθ.
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