
541A Final Solutions1

1. Question 1

Let X be a random variable uniformly distributed in [0, 1].
(That is, X has PDF fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 when x /∈ [0, 1].)
Let Y be a random variable uniformly distributed in [0, 1].
Assume that X and Y are independent.

• Compute P(X > 3/4).
• Compute EX.
• Compute P(X + Y ≤ 1/2).

Solution. Since X has PDF fX = 1[0,1], we have P(X > 3/4) =
∫ 1

3/4
dx = 1/4 and EX =∫ 1

0
xdx = 1/2. Since X and Y are independent, they have joint PDF fX,Y = 1[0,1]2 , so that

P(X + Y ≤ 1) =

∫
{(x,y)∈R2 : x≥0,y≥0,x+y≤1}

=

∫ x=1/2

x=0

∫ y=1/2−x

y=0

dydx

=

∫ x=1/2

x=0

(1/2− x)dx = ((1/2)x− x2/2)
x=1/2
x=0

= (1/2)2 − (1/2)3 = 1/4− 1/8 = 1/8.

2. Question 2

Let X1, X2, . . . be real-valued random variables. Let X be a real-valued random variable
with finite second moment. Assume that

lim
n→∞

E |Xn −X|2 = 0.

• Prove that X1, X2, . . . converges in probability to X.
• Does X1, X2, . . . converges in distribution to X? Justify your answer.

Solution. From Markov’s inequality, we have, for any ε > 0,

P(|Xn −X| > ε) ≤ E |Xn −X|2

ε2
.

The right quantity converges to 0 as n → ∞ by assumption. We therefore conclude that
X1, X2, . . . converges in probability to X. Since convergence in probability implies conver-
gence in distribution, X1, X2, . . . also converges in distribution to X.

3. Question 3

Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample from the Gaussian dis-

tribution with mean µ ∈ R and variance σ2 > 0. That is, X1 has PDF 1
σ
√
2π
e−

(x−µ)2

2σ2 , ∀
x ∈ R.

Let Xn := (X1 + · · ·+Xn)/n, and let Sn :=
√

1
n−1

∑n
i=1(Xi −Xn)2.

Show: (n − 1)S2
n/σ

2 is a chi-squared distributed random variable with n − 1 degrees of
freedom.
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Hint: you can freely use the following fact:

nS2
n+1 = (n− 1)S2

n +
n

n+ 1
(Xn+1 −Xn)2, ∀n ≥ 2.

You can also freely use that Sn is independent of Xn.
You can freely use that: a chi-squared random variable with k degrees of freedom has the

same distribution as a sum squares of k i.i.d. standard Gaussians.
Solution. Let Xn := 1

n

∑n
i=1Xi and let S2

n := 1
n−1

∑n
i=1(Xi − Xn)2. In the case n = 2,

we have S2
2 = 1

4
(X1 − X2)

2 + 1
4
(X2 − X1)

2 = 1
2
(X1 − X2)

2. From Example 1.108 in the

notes 1√
2
(X1 − X2) is a mean zero Gaussian random variable with variance 1. So, S2

2 is a

chi-squared distributed random variable by the definition of a chi-squared random variable
with one degree of freedom. That is, the third item of this proposition holds when n = 2.
We now induct on n, using the hint.

Recall that Sn is independent of Xn. Also, Xn+1 is independent of Sn by Proposition 1.61
in the notes, since Sn is a function of X1, . . . , Xn, the latter being independent of Xn+1. In
summary, Sn is independent of (Xn+1 −Xn)2. By the inductive hypothesis, (n − 1)S2

n is a
chi-squared distributed random variable with n−1 degrees of freedom. From Example 1.108
in the notes, Xn+1−Xn is a Gaussian random variable with mean zero and variance 1+1/n,

so that
√
n/(n+ 1)(Xn+1 − Xn) is a mean zero Gaussian with variance 1. The definition

of a chi-squared random variable then implies that nSn+1 is a chi-squared random variable
with n degrees of freedom, completing the inductive step.

4. Question 4

Let X := (X1, . . . , Xn) be a random sample of size n from a binomial distribution with
parameters n and p. Here n is a positive (known) integer and 0 < p < 1 is unknown. (That
is, X1, . . . , Xn are i.i.d. and X1 is a binomial random variable with parameters n and p, so
that P(X1 = k) =

(
n
k

)
pk(1− p)n−k for all integers 0 ≤ k ≤ n.)

You can freely use that EX1 = np and VarX1 = np(1− p).

• Computer the Fisher information IX(p) for any 0 < p < 1.
(Consider n to be fixed.)
• Let Z be an unbiased estimator of p2 (assume that Z is a function of X1, . . . , Xn).

State the Cramér-Rao inequality for Z.
• Let W be an unbiased estimator of 1/p (assume that W is a function of X1, . . . , Xn).

State the Cramér-Rao inequality for W .

Solution. Using that the information of independent random variables is the sum of the
informations, using the alternate definition of Fisher information using the variance, and
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using that the variance is unchanged by adding a constant inside the variance,

IX(p) = nIX1(p) = nVarp

( d
dp

[
log
(( n

X1

)
pX1(1− p)n−X1

)])
= nVarp

( d
dp

[
log

(
n

X1

)
+X1 log p+ (n−X1) log(1− p)

])
= nVarp

( d
dp

[
X1 log p+ (n−X1) log(1− p)

])
= nVarp

(1

p
X1 −

1

1− p
(n−X1)

)
= nVarp

([1

p
+

1

1− p

]
X1

)
= n

[1

p
+

1

1− p

]2
VarpX1 = n

[ 1

p(1− p)

]2
np(1− p) =

n2

p(1− p)

The Cramér-Rao inequality says, if g(p) := EpZ, then

Varp(Z) ≥ |g
′(p)|2

IX(p)
.

If g(p) = p2, then g′(p) = 2p, so we get

Varp(Z) ≥ (2p)2

IX(p)
=

4p3(1− p)
n2

.

If g(p) = 1/p, then g′(p) = −p−2, so we get

Varp(Z) ≥ p−4

IX(p)
= p−3

1− p
n2

.

5. Question 5

Let X1, . . . , Xn be i.i.d. random variables. Let θ > 0 be an unknown parameter. Assume
that X1 is uniform on the interval [0, θ].

Denote X := (X1, . . . , Xn).

• Is the Fisher Information IX1(θ) well-defined? Justify your answer. If IX1(θ) can be
computed, simplify IX1(θ) to the best of your ability.
• Is the Fisher Information IX(θ) well-defined? Justify your answer. If IX(θ) can be

computed, simplify IX(θ) to the best of your ability.

Solution. IX1(θ) is not well-defined, since the region where the PDF of X1 is nonzero is a
function of θ. We could try to start with the definition of Fisher information with fθ(x1) =
θ−11[0,θ], so that IX1(θ) = Eθ(d/dθ log fθ(X1))

2 = Eθ(d/dθ log θ−1)2 = Eθ(d/dθ log θ−1)2

6. Question 6

Let X1, . . . , Xn be i.i.d. random variables. Let 0 < p < 1 be an unknown parameter.
Assume that

P(X1 = k) = (1− p)k−1p,
for all positive integers k ≥ 1.

You can freely use the following facts: EX1 = 1/p, Var(X1) = (1− p)/p2
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• Find a statistic Z such that: Z is a method of moments estimator of p, and Z is a
function of X1, . . . , Xn. Justify your answer.
• Find a statistic W such that W is an MLE for p, and W is a function of X1, . . . , Xn.

(Make sure to justify that an MLE exists. Is an MLE unique in this case?) (Here
MLE refers to a Maximum Likelihood Estimator.)

Solution. We have EX1 = 1/p, so that p = 1/EX1, so a Method of moments estimate of
p is Z = 1/((1/n)

∑n
i=1Xi). The joint PMF of X1, . . . , Xn is

fp(x) =
n∏
i=1

(1− p)ki−1p = pn(1− p)−n(1− p)
∑n
i=1 ki .

Viewed as a function of p, which we denote as `(p), we have

log `(p) = n log p− n log(1− p) + log(1− p)
n∑
i=1

ki.

Taking a derivative, we get

(log `(p))′ = n/p+ n/(1− p)− (1/(1− p))
n∑
i=1

ki

Setting this equal to zero, we get

(1− p)n+ pn− p
n∑
i=1

ki = 0.

That is, n− p
∑n

i=1 ki = 0, p = n/
∑n

i=1 ki. So, (log `(p))′ > 0 for all 0 < p < n/
∑n

i=1 ki and
(log `(p))′ < 0 for all p > n/

∑n
i=1 ki. (Since k1, . . . , kn ≥ 1, we have n/

∑n
i=1 ki ≤ 1 with

equaliy only when k1 = · · · = kn = 1.) So, the unique MLE exists, and it is equal to Z, so
that W = Z.

7. Question 7

Let X1, . . . , Xn be i.i.d. random variables. Let λ > 0 be an unknown parameter. Assume
that

P(X1 = k) = (e−λ)
λk

k!
,

for all nonnegative integers k ≥ 0.
You can freely use the following facts: EX1 = λ, Var(X1) = λ, IX1(λ) = 1

λ
.

You may assume that the MLE Yn for λ exists and is unique, and it is given by:

Yn =
1

n

n∑
i=1

Xi.

• Is Yn unbiased for λ?
• Is the sequence of estimators Y1, Y2, . . . consistent? That is, does this sequence of

random variables converge in probability to λ as n→∞? Justify your answer.
• What happens to the quantity Var(Yn) as n → ∞? More specifically, does this

quantity asymptotically achieve the lower bound in the Cramér-Rao Inequality (for
unbiased estimators of λ)? Justify your answer.
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• Describe all unbiased estimators of λ that achieve equality in the Cramér-Rao in-
equality. (Assume such an estimator is a function of X1, . . . , Xn, for fixed n.)

Solution. Yes, Yn is unbiased, since EX1 = λ, so EYn = λ as well. Consistency follows from
the Weak Law of Large Numbers. The Cramér-Rao lower bound for unbiased estimators of
λ would say that Var(Yn) ≥ 1/[nIX1(λ)] = λ/n. And Var(Yn) = λ/n, so that Yn does achieve
equality in the Cramér-Rao inequality. Finally, we know that equality holds for an unbiased
estimator Z of λ only when Z−EZ and (d/dλ) log fλ(X) are multiplies of each other, where

d

dλ
log fλ(X) =

d

dλ
log

n∏
i=1

(e−λ)
λXi

Xi!
=

d

dλ

(
− λn+ log λ ·

n∑
i=1

Xi

)
= −n+

1

λ

n∑
i=1

Xi

)
That is, there must exist a constant c ∈ R such that Z − λ = c[−n+ 1

λ

∑n
i=1Xi], i.e.

Z = λ− cn+
c

λ

n∑
i=1

Xi.

Since Z is an estimator, if cannot have any factors of λ, and the only choice of c eliminating
all of the λ factors is the choice c = λn, so that Z = Yn is the unique unbiased estimator of
λ achieving equality in the Cramér-Rao Inequality.

8. Question 8

Let X1, . . . , Xn be i.i.d. random variables. Let 0 < p < 1 be an unknown parameter.
Assume that

P(X1 = k) = (1− p)k−1p,
for all positive integers k ≥ 1.

• Find a statistic Z such that: Z is complete for p, Z is sufficient for p, and Z is a
function of X1, . . . , Xn. Justify your answer. (If you want to, you can use a result
from the homework to do this part of the question.)
• Find a statistic W such that W is unbiased for p, and such that W is UMVU for p.

Justify your answer.

(Hint: you can use that a sum of n independent geometric random variables has the same
distribution as Y where P(Y = m) =

(
m−1
n−1

)
pn(1− p)m−n for all integers m ≥ n.)

Solution. The joint PMF of X1, . . . , Xn is

fp(x) =
n∏
i=1

(1− p)ki−1p = pn(1− p)−n(1− p)
∑n
i=1 ki .

From the Factorization Theorem, we see that
∑n

i=1Xi is therefore a sufficient statistic. To
see that this statistic is complete, we could either appeal to the homework (the result about
complete statistics for exponential families), or we could argue as follows: if Epf(Z) = 0 for
all 0 < p < 1, then

0 = Epf(Z) =
∞∑
m=n

f(m)

(
m− 1

n− 1

)
pn(1− p)m−n, ∀ 0 < p < 1.

5



Multiplying by p−n(1− p)n, we get

0 = Epf(Z) =
∞∑
m=n

f(m)

(
m− 1

n− 1

)
(1− p)m, ∀ 0 < p < 1.

The expression on the right is a power series in 1 − p that converges for all 0 < p < 1, and
it is equal to zero, so all of its coefficients must be zero, i.e. f(Z) = 0, so that Z is complete
for p. Now, since 1X1=1 satisfies E1X1=1 = P(X1 = 1) = p, the Lehmann-Scheffé Theorem
implies that the following statistic is UMVU for p:

E(1X1=1|
n∑
i=1

Xi).

To compute this conditional expectation, we perform the following computation:

E(1X1=1|
n∑
i=1

Xi = t) = P(X1 = 1 |
n∑
i=1

Xi = t) = P(X1 = 1,
n∑
i=1

Xi = t)/P(
n∑
i=1

Xi = t)

= P(X1 = 1,
n∑
i=2

Xi = t− 1)/P(
n∑
i=1

Xi = t)

= p

(
t−2
n−2

)
pn−1(1− p)m−n+1−1(
t−1
n−1

)
pn(1− p)m−n

=

(
t−2
n−2

)(
t−1
n−1

) =
(t− 2)!

(n− 2)!(n− t)!
(n− 1)!(n− t)!

(t− 1)!
=
n− 1

t− 1
.

So, the UMVU is

E(1X1=1|
n∑
i=1

Xi) =
n− 1

−1 +
∑n

i=1Xi

At least when n > 1. (When n = 1 this expression is zero, so it is not the UMVU.) In the
case n = 1, the statistic 1X1=1 itself is UMVU for p, since it is unbiased and it is a function
of the complete, sufficient statistic X1.
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