541A Final Solutiond]

1. QUESTION 1
Let X be a random variable uniformly distributed in [0, 1].
(That is, X has PDF fx(z) =1 when z € [0, 1], and fx(x) =0 when x ¢ [0, 1].)
Let Y be a random variable uniformly distributed in [0, 1].
Assume that X and Y are independent.

e Compute P(X > 3/4).
e Compute EX.
e Compute P(X +Y <1/2).

Solution. Since X has PDF fx = 1p 1], we have P(X > 3/4) = f31/4 dr = 1/4 and EX =
fol wdxr = 1/2. Since X and Y are independent, they have joint PDF fxy = 1jg1p2, so that

z=1/2 py=1/2—2z
P(X—l—YSl)—/ —/ / dydzx
{(z,y)€R2?: >0,y>0,z+y<1} z=0 y=0

z=1/2 =1/2
_ / (12 — 2)de = ((1/2)x — 22 /2)°=Y

=0

=(1/2)> - (1/2)*=1/4—1/8 =1/8.

2. QUESTION 2

Let X1, X5, ... be real-valued random variables. Let X be a real-valued random variable
with finite second moment. Assume that

lim E|X, — X|> = 0.

n—oo

e Prove that X, Xy, ... converges in probability to X.

e Does X1, X, ... converges in distribution to X7 Justify your answer.

Solution. From Markov’s inequality, we have, for any € > 0,

E|X, - X|?

P(]Xn—X]>&t)§—| "2 I

€
The right quantity converges to 0 as n — oo by assumption. We therefore conclude that
X1, X5, ... converges in probability to X. Since convergence in probability implies conver-
gence in distribution, X, X5, ... also converges in distribution to X.

3. QUESTION 3

Let n > 2 be an integer. Let Xi,...,X, be a random sample from the Gaussian dis-
_(@=w)?

tribution with mean y € R and variance ¢? > 0. That is, X; has PDF #ﬁe 202 Y
z € R.

Let X, = (X1 + -+ X,,)/n, and let S, = \/ﬁ S (X — X2

Show: (n — 1)S?/0? is a chi-squared distributed random variable with n — 1 degrees of
freedom.
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Hint: you can freely use the following fact:

nSfhLl =(n—1)S%+ -

You can also freely use that S, is independent of X,,.

You can freely use that: a chi-squared random variable with £ degrees of freedom has the
same distribution as a sum squares of k i.i.d. standard Gaussians.

Solution. Let X, :== 3"  X; and let S? := 53" (X; — X,)%. In the case n = 2,
we have S3 = 1(X; — X5)2 + (X, — X1)? = 2(X; — X5)?. From Example 1.108 in the
notes \%(Xl — X3) is a mean zero Gaussian random variable with variance 1. So, S? is a
chi-squared distributed random variable by the definition of a chi-squared random variable
with one degree of freedom. That is, the third item of this proposition holds when n = 2.
We now induct on n, using the hint.

Recall that S, is independent of X,,. Also, X, is independent of S, by Proposition 1.61
in the notes, since S, is a function of X,..., X,,, the latter being independent of X, .. In
summary, S, is independent of (X,,;; — X,)?. By the inductive hypothesis, (n — 1)S? is a
chi-squared distributed random variable with n —1 degrees of freedom. From Example 1.108
in the notes, X, 41 — X, is a Gaussian random variable with mean zero and variance 1+1/n,
so that \/n/(n +1)(X,11 — X,) is a mean zero Gaussian with variance 1. The definition
of a chi-squared random variable then implies that n.S,, ., is a chi-squared random variable
with n degrees of freedom, completing the inductive step.

4. QUESTION 4

Let X := (Xy,...,X,) be a random sample of size n from a binomial distribution with
parameters n and p. Here n is a positive (known) integer and 0 < p < 1 is unknown. (That
is, Xq,...,X, are i.i.d. and X, is a binomial random variable with parameters n and p, so

that P(X; = k) = (})p"(1 — p)"* for all integers 0 < k < n.)
You can freely use that EX; = np and VarX; = np(1 — p).

e Computer the Fisher information [x(p) for any 0 < p < 1.
(Consider n to be fixed.)

e Let Z be an unbiased estimator of p? (assume that Z is a function of Xi,...,X,,).
State the Cramér-Rao inequality for Z.

e Let W be an unbiased estimator of 1/p (assume that W is a function of Xi,..., X,,).
State the Cramér-Rao inequality for W.

Solution. Using that the information of independent random variables is the sum of the
informations, using the alternate definition of Fisher information using the variance, and



using that the variance is unchanged by adding a constant inside the variance,

Ix(p) =nlx, (p) = nVarp<dip [log ((;)le(l - p)ni)(l)])

= nVarp<dip [log (;) + Xilogp+ (n— X7)log(1 — p)D
d

= nVarp<d—p [Xl logp + (n — X;)log(1 — p)])
= nVar <1X — ;(n—X )) nVar ([— + L}X )
- p P 1 1— D 1 - P 1 — D 1

1 2 1 2 n?
=n|—+——| Var,X; =n np(l —p) =

[p —p} v [p(l— )] =P =iy
The Cramér-Rao inequality says, if g(p) := E,Z, then
Var,(Z) > g ®)*
TUT Ix(p)
If g(p) = p?, then ¢'(p) = 2p, so we get
(2p)* _4p°(1—p)
Var,(Z) > = :
arp( ) = IX (p) TL2
If g(p) = 1/p, then ¢'(p) = —p 2, so we get
—4
p 3l —p
Var,(Z) > =
arp( ) - IX (p) P n2
5. QUESTION 5
Let X4,...,X, beiid. random variables. Let # > 0 be an unknown parameter. Assume

that X is uniform on the interval [0, 6].
Denote X := (Xy,...,X,).

e Is the Fisher Information Ix, (f) well-defined? Justify your answer. If Ix, () can be

computed, simplify Ix, () to the best of your ability.

e Is the Fisher Information Ix(0) well-defined? Justify your answer. If Ix () can be

computed, simplify Ix(f) to the best of your ability.

Solution. Ix,(0) is not well-defined, since the region where the PDF of X is nonzero is a
function of . We could try to start with the definition of Fisher information with fy(z1) =
0~ 11,4, so that Ix, (0) = Eg(d/dflog fo(X1))? = Eg(d/dflog~1)* = Eg(d/dOlog 6~ 1)?

6. QUESTION 6

Let Xi,...,X, be iid. random variables. Let 0 < p < 1 be an unknown parameter.

Assume that
P(X; =k) = (1-p)'p,
for all positive integers k > 1.
You can freely use the following facts: EX; = 1/p, Var(X;) = (1 — p)/p?
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e Find a statistic Z such that: Z is a method of moments estimator of p, and Z is a
function of X1, ..., X,,. Justify your answer.

e Find a statistic W such that W is an MLE for p, and W is a function of X;,..., X,,.
(Make sure to justify that an MLE exists. Is an MLE unique in this case?) (Here
MLE refers to a Maximum Likelihood Estimator.)

Solution. We have EX; = 1/p, so that p = 1/EX}, so a Method of moments estimate of
pis Z=1/((1/n)> ", Xi). The joint PMF of X;,..., X, is
fola) = ﬁ(l —p)flp =p' (1 —p) (1 — p) ==t
i=1
Viewed as a function of p, which we denote as ¢(p), we have
log ¢(p) = nlogp — nlog(1l — p) + log(1 — p) z”: k;.
i=1
Taking a derivative, we get
(log £(p))" =n/p+n/(1—p)—(1/(1=p)) i ki
i=1
Setting this equal to zero, we get

(l—p)n—l—pn—kai:O.
i=1

That is, n—p> .  ki=0,p=n/>" k. So, (logl(p)) >0forall 0 <p<n/> "  k and
(logf(p)) < 0 for all p > n/> " | k. (Since ky,...,k, > 1, we have n/> "  k; < 1 with
equaliy only when ky = --- =k, = 1.) So, the unique MLE exists, and it is equal to Z, so
that W = Z.

7. QUESTION 7

Let X4,..., X, be ii.d. random variables. Let A > 0 be an unknown parameter. Assume
that
)\k
PO =) = ()7
for all nonnegative integers k£ > 0.

You can freely use the following facts: EX; = A, Var(X;) = A, Ix,(A) = ;.
You may assume that the MLE Y,, for A exists and is unique, and it is given by:

1 n
Y, = E;Xi.

e [s Y, unbiased for \?

e Is the sequence of estimators Y7,Y5, ... consistent? That is, does this sequence of
random variables converge in probability to A as n — oo? Justify your answer.

e What happens to the quantity Var(Y,,) as n — oo? More specifically, does this
quantity asymptotically achieve the lower bound in the Cramér-Rao Inequality (for
unbiased estimators of A\)? Justify your answer.
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e Describe all unbiased estimators of A that achieve equality in the Cramér-Rao in-
equality. (Assume such an estimator is a function of Xj, ..., X, for fixed n.)

Solution. Yes, Y, is unbiased, since EX; = X, so EY,, = X as well. Consistency follows from
the Weak Law of Large Numbers. The Cramér-Rao lower bound for unbiased estimators of
A would say that Var(Y,,) > 1/[nlx,(A)] = A\/n. And Var(Y,,) = A\/n, so that Y,, does achieve
equality in the Cramér-Rao inequality. Finally, we know that equality holds for an unbiased
estimator Z of A only when Z —EZ and (d/d\) log f,(X) are multiplies of each other, where

%mgﬁ 10gH -A ;‘(z d< An +log A - ZX)z—njL%;Xi)

That is, there must exist a constant ¢ € R such that Z — XA = c[-n+ 3> 1, Xj], i.e

Z:)\—cn+§iXi.

Since Z is an estimator, if cannot have any factors of A, and the only choice of ¢ eliminating
all of the A factors is the choice ¢ = An, so that Z =Y, is the unique unbiased estimator of
A achieving equality in the Cramér-Rao Inequality.

8. QUESTION 8

Let Xi,...,X, be iid. random variables. Let 0 < p < 1 be an unknown parameter.
Assume that

P(X,=k)=(1-p""p,
for all positive integers k > 1.

e Find a statistic Z such that: Z is complete for p, Z is sufficient for p, and 7 is a
function of Xi,...,X,. Justify your answer. (If you want to, you can use a result
from the homework to do this part of the question.)

e Find a statistic W such that W is unbiased for p, and such that W is UMVU for p.
Justify your answer.

(Hint: you can use that a sum of n independent geometric random variables has the same
distribution as Y where P(Y =m) = ("~ 1) "(1 — p)™™ for all integers m > n.)
Solution. The joint PMF of Xi,..., X, is

n

fole) =@ = p)"'p = p"(1 = p) (1 — p)>=i= i,

i=1

From the Factorization Theorem, we see that )., X; is therefore a sufficient statistic. To
see that this statistic is complete, we could either appeal to the homework (the result about
complete statistics for exponential families), or we could argue as follows: if E,f(Z) = 0 for
all 0 < p <1, then

0=E Zf ( f)"(l—p)m", VO <p<l.



Multiplying by p~™(1 — p)", we get

0=mﬂmziﬁm(

The expression on the right is a power series in 1 — p that converges for all 0 < p < 1, and
it is equal to zero, so all of its coefficients must be zero, i.e. f(Z) =0, so that Z is complete

for p. Now, since 1x,-; satisfies Elx,—; = P(X; = 1) = p, the Lehmann-Scheffé Theorem
implies that the following statistic is UMVU for p:

E(ly,—1| Y X))
i=1

To compute this conditional expectation, we perform the following computation:

E(ly,—1|Y Xi=t)=P(X;=1|) X;=t)=P(X;=1,) X;=1)/P>_X;=1)
=1 =1 1=1 =1

m—1

n—l)(l_p)m’ VOo<p<l.

— P(X, = 1,§:Xi —t- 1)/P(§:Xi — 1)

()t —pymontit o (173) t-2! (n=1Dln—-t) n-1

e e G I CER CED I S T S
So, the UMVU is

= n—1
E(lx,w| ) Xi) = (=~
1 ; _1+Z¢:1Xi

At least when n > 1. (When n = 1 this expression is zero, so it is not the UMVU.) In the
case n = 1, the statistic 1x,—; itself is UMVU for p, since it is unbiased and it is a function
of the complete, sufficient statistic Xj.
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