
408 Final Exam Solutions1

1. Question 1

True/False
(a) The negation of the statement

“There exists an integer j such that j2 − j < 3” is:
“For every integer j, we have j2 − j ≥ 3.”

TRUE, by the rules of negation, “There exists” is negated to“For every,” and the inequality
< is negated to ≥.

(b) Let P be the uniform probability law on [0, 1]. Let x1, x2, . . . ∈ [0, 1] be a countable
set of distinct points. Then

P (∪∞n=1{xn}) = 0.

TRUE. By the definition of P, P({xn}) = 0 for all n ≥ 1. So, from Axiom (ii) for
probability laws,

(c) Let X1, . . . , Xn be i.i.d random variables drawn from a family of probability density
functions {fθ : θ ∈ R} where fθ : R → [0,∞) for all θ ∈ R. Then there must exist some
integer k ≥ 1, ∃ some function t : Rn → Rk and there exists some statistic Y = t(X1, . . . , Xn)
such that Y is a sufficient statistic for θ.

TRUE. The statistic (X1, . . . , Xn) is always sufficient for θ.
(d) Suppose t(X) defined in the definition of p-value is a continuous random variable.

Then the p-value satisfies

Pθ(p(X) ≤ c) ≤ c, ∀ c ∈ (0, 1).

TRUE by Remark 5.19 in the notes.
(e) Let X1, . . . , Xn be positive random variables. Then Pearson’s chi-squared statistic

S :=
n∑
j=1

(
Xj − EXj

)2
EXj

has a chi-squared distribution.
FALSE. Just let n = 1 and let X1 be any non-Gaussian random variable.

2. Question 2

Let X1, . . . , Xn be a random sample of size n from a Poisson distribution with unknown
parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

• Find an MLE for λ. As usual, justify your answer.
• Is the MLE you found unique? That is, could there be more than one MLE for this

problem? Justify your answer.

Solution. Denote k = (k1, . . . , kn) ∈ Zn≥0. Then

fλ(k) =
n∏
i=1

e−λλki/ki! = e−λnλ
∑n

i=1 ki/

n∏
i=1

ki!.
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log fλ(k) = −λn+ log λ ·
n∑
i=1

ki −
n∑
i=1

log(ki!).

Differentiating in λ, we get

d

dλ
log fλ(k) = −n+

1

λ

n∑
i=1

ki

We get a single critical point for log fλ, when

λ =
1

n

n∑
i=1

ki.

Moreover, log fλ is (possibly increasing) then decreasing, as λ increases. We conclude that
the single critical point is then in fact a global maximum. So, the MLE is

1

n

n∑
i=1

Xi.

3. Question 3

Let X1, . . . , Xn be a random sample of size n from the uniform distribution on [θ−1/2, θ+
1/2] where θ ∈ R is unknown.

Show that
(X(1), X(n))

is a sufficient statistic for θ.
(Here X(1) = min1≤i≤nXi and X(n) = max1≤i≤nXi.)
Solution. Let x = (x1, . . . , xn) ∈ Rn. Using independence, we write the joint distribution

of X1, . . . , Xn as

f(x) =
n∏
i=1

1xi∈[θ−1/2,θ+1/2].

The quantity
∏n

i=1 1xi∈[θ−1/2,θ+1/2] is zero, except when x(1) ≥ θ − 1/2 and x(n) ≤ θ + 1/2.
That is,

f(x) = 1x(1)≥θ−1/21x(n)≤θ+1/2.

So, defining gθ(a, b) := 1a≥θ−1/21b≤θ+1/2, h(x) := 1, t(x) := (x(1), x(n)), we have written

f(x) = gθ(t(x)) · h(x), ∀x ∈ Rn.

So, by the factorization theorem, t(X) = (X(1), X(n)) is sufficient for θ.

4. Question 4

SupposeX is a binomial distributed random variable with parameters 2 and θ ∈ {1/2, 3/4}.
(So, X has the distribution of the number of heads that appears from flipping a coin twice,
where θ is the probability that a heads appears in a single coin flip.)

We want to test the hypothesis H0 that θ = 1/2 versus the hypothesis H1 that θ = 3/4.

• Explicitly describe the rejection region C of the UMP (uniformly most powerful) test
among all hypothesis tests with significance level at most 1/4.
• Suppose we observe that X = 2. Report a p-value for this observation, for the UMP

test you found.

2



Solution. The Neyman-Pearson Lemma says that the UMP test for the class of tests with
an upper bound on the significance level must be a likelihood ratio test. The likelihood ratio
test has rejection region

C = {x ∈ R : fθ1(x) ≥ kfθ0(x)} = {x ∈ R : f3/4(x) ≥ kf1/2(x)}.
There are only three values that X can take, so we examine the likelihood ratios explicitly:

f3/4(0)

f1/2(0)
=

(1− 3/4)2

(1− 1/2)2
=

1

4
,

f3/4(1)

f1/2(1)
=

2(1− 3/4)(3/4)

2(1− 1/2)(1/2)
=

3

4
,

f3/4(2)

f1/2(2)
=

(3/4)2

(1/2)2
=

9

4
.

We then get different likelihood ratio tests according to the choice of k > 0.

• If 3/4 < k ≤ 9/4, then H0 is rejected if and only if X = 2, and this test is the unique
UMP for tests with significance level at most P1/2(X = 2) = 1/4.
• If 1/4 < k ≤ 3/4, then H0 is rejected if and only if X = 1 or 2, and this test is the

unique UMP for tests with significance level at most P1/2(X ∈ {1, 2}) = 3/4.

In the case k = 2, we get (using the table of values of f3/4(X)/f1/2(X)),

p(2) = P1/2

(f3/4(X)

f1/2(X)
≥
f3/4(2)

f1/2(2)

)
= P1/2

(f3/4(X)

f1/2(X)
≥ 9

4

)
= P1/2(X = 2) = (1/2)2 = 1/4.

5. Question 5

Let X1, . . . , Xn be a random sample of size n from a Poisson distribution with unknown
parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

Let Y be the estimator Y = 1{X1=0}.
(That is, Y = 1 when X1 = 0, and otherwise Y = 0.)

• Explicitly compute Wn := Eλ(Y |
∑n

i=1Xi).
• State an inequality comparing Varλ(Y ) and Varλ(Wn).
• What happens to Wn as n → ∞? Does it converge to something? Justify your

answer.

(Hint: a sum of n independent Poissons with parameter λ is a Poisson with parameter
nλ.)

Solution. A sum of n independent Poisson random variables, each with parameter λ > 0,
is a Poisson random variable with parameter nλ. That is,

P(
n∑
i=1

Xi = x) = e−λn(λn)x/x!, ∀x ∈ Z≥0.

So, the conditional PMF satisfies

P
(

1{X1=0} = 1 |
n∑
i=1

Xi = x
)

=
P(1{X1=0} = 1,

∑n
i=1Xi = x)

P(
∑n

i=1Xi = x)

=
P(X1 = 0,

∑n
i=2Xi = x)

e−λn(λn)x/x!
=
e−λe−λ(n−1)(λ(n− 1))x/x!

e−λn(λn)x/x!
=
(

1− 1

n

)x
.

Then, since 1{X1=0} only takes values 0 and 1, the conditional expectation is

E
(

1{X1=0} |
n∑
i=1

Xi = x
)

= P
(

1{X1=0} = 1 |
n∑
i=1

Xi = x
)

=
(

1− 1

n

)x
.
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That is,

E
(

1{X1=0} |
n∑
i=1

Xi

)
=
(

1− 1

n

)∑n
i=1Xi

.

That is,

Wn =
(

1− 1

n

)n 1
n

∑n
i=1Xi

.

As n→∞,
(

1− 1
n

)n
converges to e−1, and 1

n

∑n
i=1Xi converges in probability to the constant

EX1 = λ, by the weak law of large numbers. So, as n→∞, Wn converges in probability to
the constant e−λ. That is, W1,W2, . . . is consistent.

Finally, Varλ(Y ) ≥ Varλ(Wn) by Rao-Blackwell, since Y is unbiased, as EY = P(X1 =
0) = λ.

6. Question 6

Suppose X1, X2 is a random sample from a Gaussian random variable X with unknown
mean µX ∈ R and unknown variance σ2 > 0. Suppose Y1, Y2 is a random sample from a
Gaussian random variable Y with unknown mean µY ∈ R and unknown variance σ2 > 0.
Assume that X1, X2 is independent of Y1, Y2, i.e. assume that X, Y are independent.

Suppose you find that X1 = 1, X2 = 3, Y1 = 2 and Y2 = 4.
Explicitly construct a confidence interval of the form [a, b] for µX − µY , so that

P(a ≤ µX − µY ≤ b) =
1

2
√

2

∫ 3

−3

(
1 +

s2

2

)−3/2
ds.

Hint: Γ(1/2) =
√
π, Γ(1) = 1, Γ(3/2) =

√
π/2, Γ(2) = 1, Γ(5/2) = 3

√
π/4, Γ(3) = 2.

Hint: Recall that Student’s t-distribution with p degrees of freedom has density

fT (s) :=
Γ(p+1

2
)

√
p
√
πΓ(p/2)

(
1 +

s2

p

)−(p+1)/2

, ∀ s ∈ R.

Solution. We have n = m = 2,

X :=
1

n

n∑
i=1

Xi = 2, Y :=
1

m

m∑
i=1

Yi = 3,

S2
X :=

1

n− 1

n∑
i=1

(Xi −X)2 = [(1− 2)2 + (3− 2)2] = 2

S2
Y :=

1

m− 1

m∑
i=1

(Yi − Y )2 = [(2− 3)2 + (4− 3)2] = 2,

S2 :=
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
=

2 + 2

2
= 2.

Then
X − Y − µX + µY

S
√

1
n

+ 1
m
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has Student’s t-distribution with p = n+m− 2 = 2 degrees of freedom. Therefore,

P
(
X − Y − tS

√
1

n
+

1

m
< µX − µY < X − Y + tS

√
1

n
+

1

m

)
=

Γ(p+1
2

)
√
p
√
πΓ(p/2)

∫ t

−t

(
1 +

s2

p

)−(p+1)/2

ds,

Choosing t = 3, we get

P
(
− 1− 3

√
2 < µX − µY < −1 + 3

√
2
)

=
Γ(3

2
)

√
2
√
πΓ(1)

∫ 3

−3

(
1 +

s2

p

)−(2+1)/2

ds

=

√
π/2√
2
√
π

∫ 3

−3

(
1 +

s2

p

)−3/2
ds

=
1

2
√

2

∫ 3

−3

(
1 +

s2

2

)−3/2
ds

That is, we choose [a, b] = [−1− 3
√

2,−1 + 3
√

2].

7. Question 7

Suppose you are given the following three data points in (x, y) coordinates:

(x1, y1) = (−1, 0), (x2, y2) = (0, 0), (x3, y3) = (0, 1).

• Find the parabola of the form y = mx2 + b that best fits these three points. That is,
find m, b ∈ R that minimizes the quantity.

h(m, b) :=
1

2

3∑
i=1

(
yi − (mx2i + b)

)2
.

• Make sure to prove that the minimal m, b that you find actually minimizes h(m, b).
• Finally, plot the points (x1, y1), (x2, y2), (x3, y3) along with the parabola y = mx2 + b

that best fits the points.
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Solution. We have h(m, b) = (1/2)[(m+ b)2 + b2 + (1− b)2]. Then hm(m, b) = m+ b and
hb(m, b) = m + b + b + b − 1 = 3b + m − 1. Solving for hm = hb = 0, we get m = −b and
0 = 3b + m − 1 = 2b − 1, so that b = −m = 1/2. So, the parameters b = 1/2, m = −1/2
are the only critical point of h. Since h is strictly convex, its critical point must be a global
minimum.

The “best-fit” parabola is
y = −(1/2)x2 + 1/2.

Note that y(−1) = 0, y(0) = 1/2. So, the parabola intersects (−1, 0), it lies above (0, 0) and
it lies below (0, 1).

8. Question 8

Consider the following table with turkey data. We have 4 (vegetarian) turkeys, with
various temperatures x (Fahrenheit), and the status y of each turkey is cooked (corresponding
to a value of y = 1) or not cooked (corresponding to a value of y = 0). Using logistic
regression, we would like to find a, b ∈ R, i.e. find a function

h(ax+ b)

that best fits your data, where h(t) = 1/(1 + e−t) for all t ∈ R.
That is, given a temperature x, h(ax+ b) should be close to 1 when the turkey is cooked,

and h(ax+ b) should be close to 0 when the turkey is not cooked.

Turkey Temperature Done? Yes or no.
1 150 no
2 155 yes
3 160 no
4 165 yes

Describe in detail how you would find the a, b ∈ R that best fit the data using a computer
to do logistic regression.

Solution. Let X1, . . . , X4 be i.i.d. real-valued random variables representing the tempera-
tures of the turkeys. Let g : R→ {0, 1} be an unknown function, and let Yi := g(Xi) for all
1 ≤ i ≤ n, so that g(Xi) = 0 if turkey i is not cooked, and g(Xi) = 1 if turkey i is cooked,
for all 1 ≤ i ≤ 4.

By our assumptions, Y1, . . . , Y4 are i.i.d. Bernoulli random variables with some unknown
probability 0 ≤ p ≤ 1 such that p = P(Y1 = 1). Since the logistic function smoothly
transitions from value 0 to value 1, we make the heuristic assumption that there are some
unknown parameters a, b ∈ R such that

p ≈ h(ax+ b) ≈ g(x).

The likelihood function is then

`(a, b) :=
4∏
i=1

pyi(1− p)1−yi =
4∏
i=1

[h(axi + b)]yi [1− h(axi + b)]1−yi ,

∀x1, . . . , x4 ∈ R, ∀ y1, . . . , y4 ∈ {0, 1}.
From a homework exercise, the log-likelihood function has at most one global maximum.

So, if the MLE exists, it is unique.
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To find the MLE, we start at some values of a, b (such as a = b = 0), and we perform the
following iterative procedure many times

• Randomly perturb a, b. (For example, define ã := a+X/100, b̃ := b+ Y/100, where
X, Y are independent standard Gaussians.)

• If `(ã, b̃) > `(a, b), then replace (a, b) with (ã, b̃), and perform the previous step again.
Otherwise, keep the same a, b as before, the perform the previous step again.

Since the log likelihood has at most one global maximum, this stochastic gradient ascent
procedure will eventually reach a value of ` that is close to its global maximum (if that
maximum exists).
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