408 Midterm 1 Solutions ${ }^{[1]}$

1. Question 1

TRUE/FALSE
(a) The negation of the statement
"There exists an integer j such that $j^{3}-j<5$ " is:
"For every integer j, we have $j^{3}-j \geq 5$."
TRUE, by the rules of negation, "There exists" is negated to "For every," and the inequality $<$ is negated to \geq.
(b) Let A_{1}, \ldots, A_{n} be disjoint sets in a sample space Ω. Let $B \subseteq \Omega$. Then

$$
\mathbf{P}(B)=\sum_{i=1}^{n} \mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)
$$

FALSE. This is the total probability theorem, but with a missing assumption that $\cup_{i=1}^{n} A_{i}=$ Ω. A counterexample is then $B=\Omega$ and $A_{1}=\cdots=A_{n}=\emptyset$. In this case, $\mathbf{P}(B)=1$ but the right side is zero.
(c) Let X_{1}, \ldots, X_{n} be i.i.d random variables drawn from a family of probability density functions $\left\{f_{\theta}: \theta \in \mathbf{R}\right\}$ where $f_{\theta}: \mathbf{R} \rightarrow[0, \infty)$ for all $\theta \in \mathbf{R}$. Then there must exist some integer $k \geq 1, \exists$ some function $t: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and there exists some statistic $Y=t\left(X_{1}, \ldots, X_{n}\right)$ such that Y is a sufficient statistic for θ.

TRUE. the statistic $\left(X_{1}, \ldots, X_{n}\right)$ is always sufficient for θ.
(d) Let X_{1}, \ldots, X_{8} be i.i.d Gaussian random variables, each with mean 1 and variance 2. Define $W:=\sum_{i=1}^{8} X_{i}$. Then W is a Gaussian random variable with mean 1 and variance 2.

FALSE. W has mean 8 and variance 16, e.g. since the mean of W is the sum of the means of X_{1}, \ldots, X_{8}.
(e) Let Y_{1}, Y_{2}, \ldots be a sequence of estimators such that $\mathbf{E} Y_{n}=0$ for all $n \geq 1$. Then Y_{1}, Y_{2}, \ldots converge in probability to 0 .

FALSE. We demonstrated this with an example in class. If \mathbf{P} is the uniform probability law on $[0,1]$, and $Y_{n}(t)=n$ for each $0 \leq t \leq 1 / 2$ and $Y_{n}(t)=-n$ for each $1 / 2<t \leq 1$, then $\mathbf{E} Y_{n}=0$ for all $n \geq 1$, but Y_{1}, Y_{2} does not converge in probability to 0 , since $\mathbf{P}\left(\left|Y_{n}-0\right|>\right.$ $\varepsilon)=1$ for all $0<\varepsilon<1$ and for all $n \geq 1$. But convergence in probability to zero implies that $\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|Y_{n}-0\right|>\varepsilon\right)=0$ for any $\varepsilon>0$.

2. Question 2

(a) Let X be a random variable with $\mathbf{P}(X=0)=1 / 3$ and $\mathbf{P}(X=2)=2 / 3$. Compute $\mathbf{E} X$ and $\mathbf{E}\left(X^{2}\right)$.

By definition of X, we have $\mathbf{E} X=0(1 / 3)+2(2 / 3)=4 / 3$ and $\mathbf{E} X^{2}=0^{2}(1 / 3)+2^{2}(2 / 3)=$ 8/3.
(b) Let Y, Z be independent random variables. Assume that $\mathbf{E}\left(Y^{2}\right)=1, \mathbf{E}\left(Z^{2}\right)=3$ and $\mathbf{E} Z=0$. Compute $\mathbf{E} Y^{4} Z$ and $\mathbf{E} Y^{2} Z^{2}$.

From independence, $\mathbf{E} Y^{4} Z=\mathbf{E} Y^{4} \mathbf{E} Z=0$, since $\mathbf{E} Z=0$. Similarly, $\mathbf{E} Y^{2} Z^{2}=\mathbf{E} Y^{2} \mathbf{E} Z^{2}=$ $1 \cdot 3=3$.
(c) State the Central Limit Theorem. Make sure to include all assumptions.

[^0]Let X_{1}, \ldots, X_{n} be independent identically distributed random variables. Assume that $\mathbf{E}\left|X_{1}\right|<\infty$ and $0<\operatorname{Var}\left(X_{1}\right)<\infty$.

Let $\mu=\mathbf{E} X_{1}$ and let $\sigma=\sqrt{\operatorname{Var}\left(X_{1}\right)}$. Then for any $-\infty \leq a \leq \infty$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\frac{X_{1}+\cdots+X_{n}-\mu n}{\sigma \sqrt{n}} \leq a\right)=\int_{-\infty}^{a} e^{-t^{2} / 2} \frac{d t}{\sqrt{2 \pi}}
$$

3. Question 3

Let Y_{1}, Y_{2}, \ldots be random variables such that $\sqrt{n} Y_{n}$ converges in distribution to a mean zero Gaussian random variable with variance 3 as $n \rightarrow \infty$. Let

$$
f(t):=(t+2)^{4}, \quad \forall t \in \mathbf{R}
$$

Show that, as $n \rightarrow \infty$, the random variables

$$
\sqrt{n}\left(f\left(Y_{n}\right)-f(0)\right)
$$

converge in distribution to a random variable Z, and then compute $\mathbf{E} Z^{2}$.
Solution. From the delta method, $\sqrt{n}\left(f\left(Y_{n}\right)-f(0)\right)$ converges in distribution to Z where Z is a mean zero Gaussian random variable with variance $3\left(f^{\prime}(0)\right)^{2}$. Since $f^{\prime}(0)=4\left(2^{3}\right)=32$, we have $\mathbf{E} Z^{2}=\operatorname{var}(Z)=3\left(f^{\prime}(0)\right)^{2}=3(32)^{2}=3072$.

4. Question 4

Let θ be a an unknown real parameter, and suppose a random variable X has PDF

$$
f(x):= \begin{cases}\frac{1}{\theta} & , \text { if } 0 \leq x \leq \theta \\ 0 & , \text { otherwise }\end{cases}
$$

- Find a method of moments estimator for θ. Is your estimator unbiased for θ ?
- Find a method of moments estimator for θ^{2}. Is your estimator consistent for θ^{2} ? Justify your answer.
(In both cases, your answer should be a function of i.i.d. random variables X_{1}, \ldots, X_{n}, where X_{1} has the same PDF as X.)

Solution. We have $\mathbf{E} X=\int_{0}^{\theta}(1 / \theta) x d x=(1 / \theta)\left(x^{2} / 2\right)_{x=0}^{x=\theta}=\theta / 2$, so that $\theta=2 \mathbf{E} X$. So, a method of moments estimator for θ is

$$
\frac{2}{n} \sum_{i=1}^{n} X_{i}
$$

This estimator is unbiased since

$$
\mathbf{E} \frac{2}{n} \sum_{i=1}^{n} X_{i}=\frac{2}{n} \sum_{i=1}^{n} \mathbf{E} X_{i}=\frac{2}{n} \sum_{i=1}^{n}(\theta / 2)=\theta
$$

We also have $\mathbf{E} X^{2}=\int_{0}^{\theta}(1 / \theta) x^{2} d x=(1 / \theta)\left(x^{3} / 3\right)_{x=0}^{x=\theta}=\theta^{2} / 3$, so that $\theta^{2}=3 \mathbf{E} X^{2}$. So, a method of moments estimator for θ^{2} is

$$
\frac{3}{n} \sum_{i=1}^{n} X_{i}^{2}
$$

This estimator is consistent for θ^{2}. Since $\mathbf{E}\left(3 X_{1}^{2}\right)=\theta^{2}$, the weak law of large numbers implies that $\frac{3}{n} \sum_{i=1}^{n} X_{i}^{2}$ converges in probability as $n \rightarrow \infty$ to θ^{2}.

5. Question 5

Let $\theta \in \mathbf{R}$ be an unknown parameter. Consider the PDF

$$
f_{\theta}(x):=\left\{\begin{array}{l}
e^{-(x-\theta)}, \quad \text { if } x \geq \theta \\
0, \quad \text { if } x<\theta
\end{array}\right.
$$

Suppose X_{1}, \ldots, X_{n} is a random sample of size n, such that X_{i} has PDF f_{θ} for all $1 \leq i \leq n$.
Show that $X_{(1)}=\min _{1 \leq i \leq n} X_{i}$ is a sufficient statistic for θ.
Solution. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. If it occurs that $\min _{1 \leq i \leq n} x_{i}<\theta$, then some $1 \leq i \leq n$ satisfies $x_{i}<\theta$, so $f_{\theta}\left(x_{i}\right)=0$ and the joint PDF $\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)$ is also zero. On the other hand, if it occurs that $\min _{1 \leq i \leq n} x_{i} \geq \theta$, then all $1 \leq i \leq n$ satisfy $x_{i} \geq \theta$, and the joint $\operatorname{PDF} \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)=\prod_{i=1}^{n} e^{-\left(x_{i}-\theta\right)}$. That is, we can write

$$
\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)=1_{\left\{\min _{1 \leq i \leq n} x_{i} \geq \theta\right\}} \cdot \prod_{i=1}^{n} e^{-\left(x_{i}-\theta\right)}=e^{n \theta} 1_{\left\{\min _{1 \leq i \leq n} x_{i} \geq \theta\right\}} \cdot \prod_{i=1}^{n} e^{-\left(x_{i}\right)}
$$

The factorization theorem then implies that $t(x):=\min _{1 \leq i \leq n} x_{i}$ gives our sufficient statistic $Y=t\left(X_{1}, \ldots, X_{n}\right)$, since if we define $g_{\theta}(z):=e^{n \theta} 1_{\{z \geq \theta\}}$ and $h(x):=\prod_{i=1}^{n} e^{-\left(x_{i}\right)}$, then we have written the joint PDF as

$$
\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)=g_{\theta}(t(x)) h(x), \quad \forall x \in \mathbf{R}^{n}, \quad \forall \theta \in \mathbf{R}
$$

[^0]: ${ }^{1}$ September 28, 2023, © 2023 Steven Heilman, All Rights Reserved.

