Name: \qquad USC ID: \qquad Date: \qquad
Signature: \qquad Discussion Section: \qquad
(By signing here, I certify that I have taken this test while refraining from cheating.)

Exam 1

This exam contains 8 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Problem	Points	Score
1	10	
2	12	
3	8	
4	10	
5	10	
Total:	50	

- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck! ${ }^{a}$

[^0]1. Label the following statements as TRUE or FALSE. If the statement is true, explain your reasoning. If the statement is false, provide a counterexample (if it is appropriate) and explain your reasoning.
(a) (2 points) The negation of the statement
"There exists an integer j such that $j^{3}-j<5$ " is:
"For every integer j, we have $j^{3}-j \geq 5$."
TRUE FALSE (circle one)
(b) (2 points) Let A_{1}, \ldots, A_{n} be disjoint sets in a sample space Ω. Let $B \subseteq \Omega$. Then

$$
\mathbf{P}(B)=\sum_{i=1}^{n} \mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)
$$

TRUE FALSE (circle one)
(c) (2 points) Let X_{1}, \ldots, X_{n} be i.i.d random variables drawn from a family of probability density functions $\left\{f_{\theta}: \theta \in \mathbf{R}\right\}$ where $f_{\theta}: \mathbf{R} \rightarrow[0, \infty)$ for all $\theta \in \mathbf{R}$. Then there must exist some integer $k \geq 1, \exists$ some function $t: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and there exists some statistic $Y=t\left(X_{1}, \ldots, X_{n}\right)$ such that Y is a sufficient statistic for θ.

TRUE FALSE (circle one)
(d) (2 points) Let X_{1}, \ldots, X_{8} be i.i.d Gaussian random variables, each with mean 1 and variance 2. Define $W:=\sum_{i=1}^{8} X_{i}$. Then W is a Gaussian random variable with mean 1 and variance 2 .

TRUE FALSE (circle one)
(e) (2 points) Let Y_{1}, Y_{2}, \ldots be a sequence of estimators such that $\mathbf{E} Y_{n}=0$ for all $n \geq 1$. Then Y_{1}, Y_{2}, \ldots converge in probability to 0 .

TRUE FALSE (circle one)
2. (a) (4 points) Let X be a random variable with $\mathbf{P}(X=0)=1 / 3$ and $\mathbf{P}(X=2)=2 / 3$. Compute $\mathbf{E} X$ and $\mathbf{E}\left(X^{2}\right)$.

(b) (4 points) Let Y, Z be independent random variables. Assume that $\mathbf{E}\left(Y^{2}\right)=1, \mathbf{E}\left(Z^{2}\right)=3$ and $\mathbf{E} Z=0$. Compute $\mathbf{E} Y^{4} Z$ and $\mathbf{E} Y^{2} Z^{2}$.

(c) (4 points) State the Central Limit Theorem. Make sure to include all assumptions.
3. (8 points) Let Y_{1}, Y_{2}, \ldots be random variables such that $\sqrt{n} Y_{n}$ converges in distribution to a mean zero Gaussian random variable with variance 3 as $n \rightarrow \infty$. Let

$$
f(t):=(t+2)^{4}, \quad \forall t \in \mathbf{R}
$$

Show that, as $n \rightarrow \infty$, the random variables

$$
\sqrt{n}\left(f\left(Y_{n}\right)-f(0)\right)
$$

converge in distribution to a random variable Z, and then compute $\mathbf{E} Z^{2}$.
4. (10 points) Let θ be a an unknown real parameter, and suppose a random variable X has PDF

$$
f(x):= \begin{cases}\frac{1}{\theta} & , \text { if } 0 \leq x \leq \theta \\ 0 & , \text { otherwise }\end{cases}
$$

- Find a method of moments estimator for θ. Is your estimator unbiased for θ ?
- Find a method of moments estimator for θ^{2}. Is your estimator consistent for θ^{2} ? Justify your answer.
(In both cases, your estimator should be a function of i.i.d. random variables X_{1}, \ldots, X_{n}, where X_{1} has the same PDF as X.)

5. (10 points) Let $\theta \in \mathbf{R}$ be an unknown parameter. Consider the PDF

$$
f_{\theta}(x):=\left\{\begin{array}{l}
e^{-(x-\theta)}, \quad \text { if } x \geq \theta \\
0, \quad \text { if } x<\theta
\end{array}\right.
$$

Suppose X_{1}, \ldots, X_{n} is a random sample of size n, such that X_{i} has $\operatorname{PDF} f_{\theta}$ for all $1 \leq i \leq n$.
Show that $X_{(1)}=\min _{1 \leq i \leq n} X_{i}$ is a sufficient statistic for θ.
(Scratch paper)

Page 8

[^0]: ${ }^{a}$ September 18, 2023, © 2023 Steven Heilman, All Rights Reserved.

