
Probability Theory 170A Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 18, in the discussion section.

Homework 6

Exercise 1. Suppose there are ten separate bins. You first randomly place a sphere randomly
in one of the bins, where each bin has an equal probability of getting the sphere. Once again,
you randomly place another sphere uniformly at random in one of the bins. This process
occurs twenty times, so that twenty spheres have been placed in bins. What is the expected
number of empty bins at the end?

Exercise 2. You want to complete a set of 100 baseball cards. Cards are sold in packs of
ten. Assume that each individual card in the pack has a uniformly random chance of being
any element in the full set of 100 baseball cards. (In particular, there is a chance of getting
identical cards in the same pack.) How many packs of cards should you buy in order to
get a complete set of cards? That is, what is the expected number of packs of cards you
should buy in order to get a complete set of cards? (Hint: First, just forget about the packs
of cards, and just think about buying one card at a time. Let N be the number of cards
you need to buy in order to get a full set of cards, so that N is a random variable. More
generally, for any 1 ≤ i ≤ 100, let Ni be the number of cards you need to buy such that
you have exactly i distinct cards in your collection (and before buying the last card, you
only had i − 1 distinct cards in your collection). Note that N1 = 1. Define N0 = 0. Then
N = N100 =

∑100
i=1(Ni − Ni−1). You are required to compute EN . You should be able to

compute E[Ni − Ni−1]. This is the expected number of additional cards you need to buy
after having already collected i− 1 distinct cards, in order to see your ith new card.)

Exercise 3. Suppose we are drawing cards out of a standard 52 card deck without replacing
them. How many cards should we expect to draw out of the deck before we find (a) a King?
(b) a Heart?

Exercise 4. Let f : R→ R be twice differentiable function. Assume that f is convex. That
is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That is, for
any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.

Exercise 5. Let n be a positive integer, and let 0 < p < 1. Let Ω = {0, 1}n. Any ω ∈ Ω
can then be written as ω = (ω1, . . . , ωn) with ωi ∈ {0, 1} for each i ∈ {1, . . . , n}. Let P be
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the probability law so that, for any ω ∈ Ω, we have

P(ω) =
n∏

i=1

pωi(1− p)1−ωi = p
∑n

i=1 ωi(1− p)n−
∑n

i=1 ωi .

For each i ∈ {1, . . . , n}, define Xi : Ω→ R so that Xi(ω) = ωi for any ω ∈ Ω. That is, if Ω
and P model the flipping of n distinct biased coins, then Xi = 1 when the ith coin is heads,
and Xi = 0 when the ith coin is tails.

First, show that P(Ω) = 1. Then, compute the expected value of Xi for each i ∈ {1, . . . , n}.
Next, compute the expected value of Y =

∑n
i=1 Xi. Finally, prove that Y is a binomial

random variable with parameters n and p.

Exercise 6 (Inclusion-Exclusion Formula). This Exercise gives an alternate proof of the
following identity, which is known as the Inclusion-Exclusion Formula: Let A1, . . . , An ⊆ Ω.
Then:

P(∪ni=1Ai) =
n∑

i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Let Y be a random variable such that Y = 1 on ∪ni=1Ai, and such that Y = 0 otherwise.
(That is, Y (ω) = 1 for any ω ∈ ∪ni=1Ai, and Y (ω) = 0 for any other ω ∈ Ω.) For any
i ∈ {1, . . . , n}, let Xi be a random variable such that Xi = 1 on Ai, and Xi = 0 otherwise.

• Show that Y = 1−
∏n

i=1(1−Xi).
• Expand out the product in the previous item, and take the expected value of both

sides of the result. Deduce the Inclusion-Exclusion formula.

Exercise 7. You are trapped in a maze. Your starting point is a room with three doors.
The first door will lead you to a corridor which lets you exit the maze after three hours of
walking. The second door leads you through a corridor which puts you back to the starting
point of the maze after seven hours of walking. The third door leads you through a corridor
which puts you back to the starting point of the maze after nine hours of walking. Each
time you are at the starting point, you choose one of the three doors with equal probability.

Let X be the number of hours it takes for you to exit the maze. Let Y be the number of the
door that you initially choose.

• Compute E(X|Y = i) for each i ∈ {1, 2, 3}, in terms of EX.
• Compute EX.


