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Abstract. It is shown that 3 disjoint sets with fixed Gaussian volumes that partition Rn
with nearly minimum total Gaussian surface area must be close to adjacent 120 degree
sectors, when n ≥ 2. These same results hold for any number m ≤ n+ 1 of sets partitioning
Rn, conditional on the solution of a finite-dimensional optimization problem (similar to the
endpoint case of the Plurality is Stablest Problem, or the Propeller Conjecture of Khot and
Naor). When m > 3, the minimal Gaussian surface area is achieved by the cones over
a regular simplex. We therefore strengthen the Milman-Neeman Gaussian multi bubble
theorem to a “stability” statement. Consequently, we obtain the first known dimension-
independent bounds for the Plurality is Stablest Conjecture for three candidates for a small
amount of noise (and for m > 3 candidates, conditional on the solution of a finite-dimensional
optimization problem). In particular, we classify all stable local minima of the Gaussian
surface area of m sets. We focus exclusively on volume-preserving variations of the sets,
avoiding the use of matrix-valued partial differential inequalities. Lastly, we remove the
convexity assumption from our previous result on the minimum Gaussian surface area of a
symmetric set of fixed Gaussian volume.

1. Introduction

This paper is a continuation of [Hei18]. There we showed that 3 disjoint sets with fixed
Gaussian volumes that partition Rn+1 with minimum total Gaussian surface area must be
adjacent 120 degree sectors, when n+ 1 ≥ 2, assuming an extra technical condition. Under
the same technical assumption, we also showed that 4 disjoint sets with fixed Gaussian
volumes that partition Rn+1 with minimum total Gaussian surface area must cones over a
regular simplex when n+ 1 ≥ 3. The analogous statement for any number m of sets in Rn+1

with n + 1 ≥ m − 1 was proven in [MN18b], unconditionally. We refer to [Hei18] for some
discussion and motivation for this problem. The present paper simplifies and improves the
result of [MN18b] in various ways.

When the Gaussian measure is replaced with Lebesgue measure, the main result of this
paper (Theorem 1.6 below) is not known even for two sets. Some recent results [CLM16,
CLM17] have shown that 2 disjoint sets in R2 with fixed Lebesgue measures with nearly
minimum total surface area must be close to a Euclidean “double bubble,” whose boundary
consists of three spherical caps meeting at 120 degree angles. The analogous statement for
three or more sets seems to be quite difficult. Even for two sets in R3 (using Lebesgue measure
instead of the Gaussian measure), this same statement seems difficult. On the other hand,
our results (for the Gaussian measure) hold for any number of m ≤ n+ 2 sets in Rn+1. It is
rather crucial that these results and proofs work for all values of n+ 1 simultaneously such
that n+ 1 ≥ m− 1. That is, these results and proofs are dimension-independent. The case
m > n+ 2 seems nontrivial for technical reasons, but for applications we are only concerned
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with m− 1 ≤ n+ 1. It is rather crucial that the number of independent translations of Rn+1

(i.e. n+ 1) is greater than or equal to m− 1. When m− 1 > n+ 1, this property no longer
holds, and a key part of the proof does not work. Also, the Gaussian results imply some
weak statements for other log-concave measures; see [MN18b, Theorem 10.7]. For two sets,
the main result of the present paper was proven in [BBJ16]. In fact, our methods synthesize
and elaborate upon [BBJ16, Hei18, MN18b]. However, unlike the papers [MN18a, MN18b],
we avoid the use of a matrix-valued differential inequality, and we instead focus only on
(Gaussian) volume-preserving transformations.

There are two applications of an improvement of the result of [MN18b], both of which
are described in more detail in [IM12]. The present work seems to give the first nontrivial
results toward the general conjecture stated in [IM12], thereby achieving the first dimension-
independent applications of the conjecture of [IM12]. First, by a Central Limit Theorem, an
isoperimetric problem for the Gaussian measure can be (essentially) equivalently stated as
an inequality for discrete functions. Such an inequality is called the “plurality is stablest”
conjecture from social choice theory. This problem [IM12] says that if votes are cast in an
election between m candidates, if every candidate has an equal chance of winning, and if no
one person has a large influence on the outcome of the election, then taking the plurality is
the most noise-stable way to determine the winner of the election. That is, plurality is the
voting method where the outcome is least likely to change due to independent, uniformly
random changes to the votes. The latter conjecture is a generalization of the “majority is
stablest conjecture” proven in [MOO10].

The second application of our results is sharp hardness for the MAX-m-CUT problem
[KKMO07, IM12]. The MAX-m-CUT problem asks for the partition of the vertices of an
undirected graph into m disjoint sets that maximizes the number of edges going between the
m sets. This problem is NP-hard, so one cannot solve it in any reasonable time for a large
graph, e.g. with 104 vertices and 106 edges. However, one can find a partition of the vertices
achieving a positive fraction of the maximum number of cut edges in polynomial time [FJ95].
In the case m = 2, this fraction is approximately .87856. And assuming the Unique Games
Conjecture [Kho02, KMS18], the constant .87856 is the best possible [KKMO07]. In the case
m > 2, the analogous result is the conjecture [IM12] that the present paper addresses (for a
certain range of parameters).

We now state the problems of interest more formally.
We ask for the minimum total Gaussian surface area of m disjoint volumes in Rn+1 whose

union is all of Rn+1. The case m = 1 is then vacuous. The case m = 2 results in two half
spaces. That is, a set Ω ⊆ Rn+1 lying on one side of a hyperplane has the smallest Gaussian
surface area

∫
∂Ω
γn(x)dx among all (measurable) sets of fixed Gaussian measure

∫
Ω
γn+1(x)dx

[SC74]. Here, ∀ k ≥ 1, we define

γk(x) := (2π)−k/2e−‖x‖
2/2, 〈x, y〉 :=

n+1∑
i=1

xiyi, ‖x‖2 := 〈x, x〉,

∀x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Rn+1,∫
∂Ω

γn(x)dx := lim inf
ε→0+

1

ε
γn({x ∈ Rn+1 : x /∈ Ω ∧ ∃ y ∈ Ω, ‖x− y‖ < ε}).
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If ∂Ω is a C∞ manifold, then we can interpret
∫
∂Ω
γn(x)dx by locally parameterizing ∂Ω,

then locally integrating the function γn(x) by multiplying by the Jacobian determinant of
the parametrization.

Remark 1.1. Unless otherwise stated, all Euclidean sets in this work are assumed to be
Lebesgue measurable.

1.1. Review of the Gaussian Multi-Bubble Theorem. For an introduction to Gaussian
isoperimetry, see [Hei18, Section 1.1].

The following is our main problem of interest.

Problem 1.2 (Gaussian Multi-Bubble Problem, [Hut97, HMRR02, CCH+08]). Let
m ≥ 3. Fix a1, . . . , am > 0 such that

∑m
i=1 ai = 1. Find measurable sets Ω1, . . .Ωm ⊆ Rn+1

with ∪mi=1Ωi = Rn+1 and γn+1(Ωi) = ai for all 1 ≤ i ≤ m that minimize∑
1≤i<j≤m

∫
(∂Ωi)∩(∂Ωj)

γn(x)dx,

subject to the above constraints.

Ω1

Ω3

Ω2

120o

Figure 1. Optimal Sets for Conjecture 1.3 in the case m = 3, n+ 1 = 2.

Conjecture 1.3 (Gaussian Multi-Bubble Conjecture [HMRR02, CCH+08, IM12]). Let
Ω1, . . .Ωm ⊆ Rn+1 minimize Problem 1.2. Assume that m−1 ≤ n+1. Let z1, . . . , zm ∈ Rn+1

be the vertices of a regular simplex in Rn+1 centered at the origin. Then ∃ w ∈ Rn+1 such
that, for all 1 ≤ i ≤ m,

Ωi = w + {x ∈ Rn+1 : 〈x, zi〉 = max
1≤j≤m

〈x, zj〉}, γn+1(Ωi) = ai. (1)

We sometimes refer to sets Ω1, . . . ,Ωm that minimize Problem 1.2 as Gaussian minimal
bubbles. We refer to any sets satisfying (1) as cones over a regular simplex.

Conjecture 1.3 was proven for m = 3 in [MN18a]. Conjecture 1.3 was then proven for
m = 3, 4 in [Hei18] assuming that the set of triple junction points of the optimal sets has
subexponential volume growth. And Conjecture 1.3 was proven for any m ≥ 3 in [MN18b],
unconditionally.

Still, it would be desirable to strengthen the result of [MN18b], and show that nearly
minimizing sets are close to the simplicial cones described in Conjecture 1.3. This goal was
accomplished for m = 2 in [BBJ16] using a second variation argument, along the lines of
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the arguments used in [MN18a, Hei18, MN18b], but with an added penalty term. Below, we
adapt the argument of [BBJ16] to the case m = 3 unconditionally, and m > 3 conditional
on solving a finite-dimensional optimization problem (see Section 1.4 and 1.15 below.)

As in [BBJ16], we add a “penalty” term to the surface area functional in Problem 1.2.
The penalty term is smaller when the sets are far from those predicted in Conjecture 1.3.
So, the surface area term and penalty term “oppose” each other, since they are each large
or different kinds of sets. If the effect of the penalty is small enough relative to the surface
area term, then the minimizers of Problems 1.2 and 1.4 will hopefully be the same. If so,
the penalty term indicates how far a set is from minimizing Problem 1.2.

Problem 1.4 (Gaussian Multi-Bubble Problem, with Stability Term). Let m ≥ 3.
Let ε > 0. Assume that m − 1 ≤ n + 1. Fix a1, . . . , am > 0 such that

∑m
i=1 ai = 1. Let

w ∈ Rn+1 be defined by (1). For all 1 ≤ i ≤ m, let w(i) := w/ai. Find measurable sets
Ω1, . . .Ωm ⊆ Rn+1 with ∪mi=1Ωi = Rn+1 and γn+1(Ωi) = ai for all 1 ≤ i ≤ m that minimize∑

1≤i<j≤m

∫
(∂Ωi)∩(∂Ωj)

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ωi

(x− w(i))γn+1(x)dx‖2,

subject to the above constraints.

The
√
π/2 factor is added for purely aesthetic reasons in ensuing arguments.

Theorem 1.5 (Main Theorem). Let Ω1, . . . ,Ωm minimize Problem 1.4. Let

ε :=
1

100
(m+ ‖w‖2)−1.

If m ≤ 4, then Ω1, . . . ,Ωm are cones over a regular simplex.
If m ≥ 5, then ∃ ε > 0 in Problem 1.4 such that Ω1, . . . ,Ωm are cones over a regular

simplex (and ε can depend on a1, . . . , am and on m but not on n+ 1.)

Theorem 1.5 then immediately implies the following improvement to Conjecture 1.3.

Theorem 1.6 (Main Corollary, Stable Version of Conjecture 1.3). Let Ω1, . . . ,Ωm be
cones over a regular simplex. If m > 3, assume that Conjecture 1.16 holds. Define w ∈ Rn+1

as in (1). For all 1 ≤ i ≤ m, let w(i) := w/ai. Let Ω′1, . . . ,Ω
′
m such that γn+1(Ωi) = γn+1(Ω′i)

for all 1 ≤ i ≤ m and ∪mi=1Ω′i = Rn+1. Then

m∑
i=1

γn(∂Ω′i) ≥
m∑
i=1

γn(∂Ωi) + ε

m∑
i=1

∥∥∥∥∫
Ωi

(x− w(i))γn+1(x)dx

∥∥∥∥2

−

∥∥∥∥∥
∫

Ω′i

(x− w(i))γn+1(x)dx

∥∥∥∥∥
2

.

Moreover, if m ≤ 4, ε can be chosen to be

ε :=
1

100
(m+ ‖w‖2)−1.

If m ≥ 5, then ∃ ε > 0 such that the above inequality holds (and ε can depend on a1, . . . , am
and on m but not on n+ 1.)

Example 1.7. In the case m = 3,
∑m

i=1 ‖
∫

Ωi
(x− wi)γn+1(x)dx‖2 is maximized by the sets

described in Conjecture 1.3 [KN09]. So, the term on the right tells us how far away the
sets are from the optimal ones. For example, the right side can be lower bounded using an
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elementary rearrangement argument [Hei14, Lemma 2.8], implying following estimate (with
a non-optimal exponent) for w = 0 in Theorem 1.6, i.e. γn+1(Ωi) = 1/3 for all 1 ≤ i ≤ 3 :

3∑
i=1

γn(∂Ω′i) ≥
3∑
i=1

γn(∂Ωi) + 10−10 inf
rotations

R : Rn+1→Rn+1

( 3∑
i=1

γn+1(RΩi \ Ω′i) + γn+1(Ω′i \RΩi)
)4

.

When m > 3, the quantity
∑m

i=1 ‖
∫

Ωi
(x − wi)γn+1(x)dx‖2 should be maximized by the

sets described in Conjecture 1.3, but this is still an open problem [IM12]. See Problem 1.15
in Section 1.4.

1.2. Noise Stability. For applications in computer science and voting theory [KKMO07,
IM12], a generalization of Conjecture 1.3 is most relevant, where the Gaussian surface area
of a set is replaced with a quantity referred to as noise stability with parameter ρ ∈ (−1, 1).
In the limit as ρ→ 1−, the Gaussian surface area can be recovered from noise stability. An
analyst might refer to noise stability as (Gaussian) heat content.

Let f : Rn+1 → [0, 1] be measurable and let ρ ∈ (−1, 1), define the Ornstein-Uhlenbeck
operator with correlation ρ applied to f by

Tρf(x) :=

∫
Rn+1

f(xρ+ y
√

1− ρ2)γn+1dy

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2

∫
Rn+1

f(y)e
− ‖y−ρx‖

2

2(1−ρ2) dy, ∀x ∈ Rn+1.

(2)

Tρ is a parametrization of the Ornstein-Uhlenbeck operator. Tρ is not a semigroup, but it
satisfies Tρ1Tρ2 = Tρ1ρ2 for all ρ1, ρ2 ∈ (0, 1). We have chosen this definition since the usual
Ornstein-Uhlenbeck operator is only defined for ρ ∈ [0, 1].

Definition 1.8 (Noise Stability). Let Ω ⊆ Rn+1. Let ρ ∈ (−1, 1). We define the noise
stability of the set Ω with correlation ρ to be∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x)dx
(2)
= (2π)−(n+1)(1− ρ2)−(n+1)/2

∫
Ω

∫
Ω

e
−‖x‖2−‖y‖2+2ρ〈x,y〉

2(1−ρ2) dxdy.

Equivalently, if X = (X1, . . . , Xn+1), Y = (Y1, . . . , Yn+1) ∈ Rn+1 are (n + 1)-dimensional
jointly Gaussian distributed random vectors with EXiYj = ρ·1(i=j) for all i, j ∈ {1, . . . , n+1},
then ∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x)dx = P((X, Y ) ∈ Ω× Ω).

Problem 1.2 can then be generalized as follows.

Problem 1.9 (Standard Simplex Problem, [IM12]). Let m ≥ 3. Fix a1, . . . , am > 0 such
that

∑m
i=1 ai = 1. Fix ρ ∈ (0, 1). Find measurable sets Ω1, . . .Ωm ⊆ Rn+1 with ∪mi=1Ωi = Rn+1

and γn+1(Ωi) = ai for all 1 ≤ i ≤ m that maximize
m∑
i=1

∫
Rn+1

1Ωi(x)Tρ1Ωi(x)γn+1(x)dx,

subject to the above constraints.

Conjecture 1.3 is generalized to the following.
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Conjecture 1.10 (Standard Simplex Conjecture [IM12]). Let Ω1, . . .Ωm ⊆ Rn+1 max-
imize Problem 1.2. Assume that m− 1 ≤ n+ 1. Fix ρ ∈ (0, 1). Let z1, . . . , zm ∈ Rn+1 be the
vertices of a regular simplex in Rn+1 centered at the origin. Then ∃ w ∈ Rn+1 such that, for
all 1 ≤ i ≤ m,

Ωi = w + {x ∈ Rn+1 : 〈x, zi〉 = max
1≤j≤m

〈x, zj〉}.

It is well known that, as ρ → 1−, the noise stability (when normalized appropriately)
converges to Gaussian surface area. That is, if ∂Ω is a C∞ manifold, then [Kan11, Lemma
3.1] [Led96, Proposition 8.5] [DMN17]

lim
ρ→1−

√
2π

cos−1(ρ)

[
γn+1(Ω)−

∫
Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x)dx

]
=

∫
∂Ω

γn+1(x)dx.

Consequently, Conjecture 1.10 reduces to Conjecture 1.3 when ρ→ 1−. And we can use this
relation together with Theorem 1.6 to obtain the first known dimension-independent bounds
for Conjecture 1.10 when ρ is close to 1.

Corollary 1.11 (Weak Plurality is Stablest/Standard Simplex Conjecture for
Small Noise). Let Ω1, . . . ,Ωm be cones over a regular simplex. Let w ∈ Rn+1 be defined by
(1). For all 1 ≤ i ≤ m, let w(i) := w/ai. Assume that m− 1 ≤ n + 1. Let Ω′1, . . . ,Ω

′
m such

that γn+1(Ωi) = γn+1(Ω′i) for all 1 ≤ i ≤ m and ∪mi=1Ω′i = Rn+1. Then for all 1/2 < ρ < 1,

m∑
i=1

∫
Rn+1

1Ω′i
(x)Tρ1Ω′i

(x)γn+1(x)dx ≤
m∑
i=1

∫
Rn+1

1Ωi(x)Tρ1Ωi(x)γn+1(x)dx+ o(
√

1− ρ2)

− ε
√

1− ρ2

√
π

2

m∑
i=1

∥∥∥∥∫
Ωi

(x− w(i))γn+1(x)dx

∥∥∥∥2

−

∥∥∥∥∥
∫

Ω′i

(x− w(i))γn+1(x)dx

∥∥∥∥∥
2

.

If m ≤ 4, then we can choose ε := 1
100

(m + ‖w‖2)−1. If m ≥ 5, then ∃ ε > 0 such that the
above inequality holds (and ε can depend on a1, . . . , am and on m but not on n+ 1.)

Remark 1.12. The error term o(
√

1− ρ2) can be written explicitly as

m∑
i=1

∑
j∈{1,...,m} : j 6=i

∫ η=1

η=ρ

1

η

∫
∂Ω′i

〈
Nij(x)−N ij(x), Nij(x)

〉
γn+1(x)dxdη,

where

N ij(x) :=
ρ√

1− ρ2

∫
Rn+1

y1Ω′ci
(ρx+ y

√
1− ρ2)γn+1(y)dy, ∀, x ∈ Rn+1

Example 1.13. For illustrative purposes, we consider just the case m = 3 and γn+1(Ωi) =
1/3 for all 1 ≤ i ≤ 3. Using Example 1.7, Corollary 1.11 can then be written as

m∑
i=1

∫
Rn+1

1Ω′i
(x)Tρ1Ω′i

(x)γn+1(x)dx ≤
m∑
i=1

∫
Rn+1

1Ωi(x)Tρ1Ωi(x)γn+1(x)dx+ o(
√

1− ρ2)

− 10−10
√

1− ρ2

√
π

2
inf

rotations
R : Rn+1→Rn+1

( 3∑
i=1

γn+1(RΩi \ Ω′i) + γn+1(Ω′i \RΩi)
)4
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The only previous bounds for m ≥ 3 in Problem 1.9 seem to be the author’s [Hei14] result
for m = 3 and ρ small (depending on the ambient dimension n + 1), and the estimates of
[DMN17, ?] that bound the ambient dimension n+1 at which the nearly optimal sets become
computable.

Unfortunately, Conjecture 1.10 is false whenever (a1, . . . , am) 6= (1/m, . . . , 1/m) [HMN16].
Therefore, any proof of Conjecture 1.10 when (a1, . . . , am) = (1/m, . . . , 1/m) must somehow
make special use of this assumption. Almost paradoxically, the proof of Conjecture 1.3 by
[MN18b] and the proof of the more general Theorem 1.5 in this work are oblivious to the
choice of the measure restriction (a1, . . . , am). So, at present, it is unclear if the arguments
of [MN18a, Hei18, MN18b] can be extended to deal with all cases of Conjecture 1.10.

1.3. Plurality is Stablest Conjecture. The Standard Simplex Conjecture [IM12] stated
in Conjecture 1.10 is essentially equivalent to an inequality for functions on discrete product
spaces known as the Plurality is Stablest Conjecture. After making several definitions, we
state this conjecture in Conjecture 1.14 below. When m = 2, Conjecture 1.14 is known as
the Majority is Stablest Theorem, proven in [MOO10].

If g : {1, . . . ,m}n → R and 1 ≤ i ≤ n, we denote

E(g) := m−n
∑

ω∈{1,...,m}n
g(ω)

Ei(g)(ω1, . . . , ωi−1, ωi+1, . . . , ωn) := m−1
∑

ωi∈{1,...,m}

g(ω1, . . . , ωn)

∀(ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ {1, . . . ,m}n.

Infi(g) := E[(g − Eig)2].

Let

∆m := {(y1, . . . , ym) ∈ Rm : y1 + · · ·+ ym = 1, ∀ 1 ≤ i ≤ m, yi ≥ 0}.
If f : {1, . . . ,m}n → ∆m, we denote the coordinates of f as f = (f1, . . . , fm). For any
ω ∈ Zn, we denote ‖ω‖0 as the number of nonzero coordinates of ω. The noise stability of
g : {1, . . . ,m}n → R with parameter −1 < ρ < 1 is

Sρg := m−n
∑

ω∈{1,...,m}n
g(ω)Eρg(δ)

= m−n
∑

ω∈{1,...,m}n
g(ω)

∑
σ∈{1,...,m}n

(
1− (m− 1)ρ

m

)n−‖σ−ω‖0 (1− ρ
m

)‖σ−ω‖0
g(σ).

Equivalently, conditional on ω, Eρg(δ) is defined so that for all 1 ≤ i ≤ n, δi = ωi with

probability 1−(m−1)ρ
m

, and δi is equal to any of the other (m− 1) elements of {1, . . . ,m} each

with probability 1−ρ
m

, and so that δ1, . . . , δn are independent.
The noise stability of f : {1, . . . ,m}n → ∆m with parameter −1 < ρ < 1 is

Sρf :=
m∑
i=1

Sρfi.
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Let m ≥ 2, k ≥ 3. For each j ∈ {1, . . . ,m}, let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm be the jth

unit coordinate vector. Define the plurality function PLURm,n : {1, . . . ,m}n → ∆m for m
candidates and n voters such that for all ω ∈ {1, . . . ,m}n.

PLURm,n(ω) :=


ej , if |{i ∈ {1, . . . ,m} : ωi = j}| > |{i ∈ {1, . . . ,m} : ωi = r}| ,

∀ r ∈ {1, . . . ,m} \ {j}
1
m

∑m
i=1 ei , otherwise.

Conjecture 1.14 (Plurality is Stablest, Discrete Version). For any m ≥ 2, ρ ∈ [0, 1],
ε > 0, there exists τ > 0 such that if f : {1, . . . ,m}n → ∆m satisfies Infi(fj) ≤ τ for all
1 ≤ i ≤ n and for all 1 ≤ j ≤ m, and if Ef = 1

m

∑m
i=1 ei, then

Sρf ≤ lim
n→∞

SρPLURm,n + ε.

Corollary 1.11 also has an equivalent statement for functions on discrete product spaces.
However, the error term becomes rather unwieldy so we will not write down the discrete
version of Corollary 1.11. In order to obtain such a result, one begins with a function
f : {1, . . . ,m}n → ∆m and then applies the procedure of [IM12, Lemma 2.14, Lemma 2.15,
Theorem 7.1]: express f as a multilinear polynomial of products of an orthonormal basis
of {1, . . . ,m}, smooth the polynomial slightly by applying the discrete Ornstein-Uhlenbeck
operator, project its values (in Rm) to the closest point in ∆m, and then adjust the values
of the smoothed polynomial slightly so it takes values in the extreme points of ∆m. So, the
sets Ω′1, . . . ,Ω

′
m appearing in the error term from Corollary 1.11 would be

Ω′i := {x ∈ Rn(m−1) : ‖Qf (x)− ei‖ = min
j∈{1,...,m}

‖Qf (x)− ej‖}, ∀ 1 ≤ i ≤ m,

where Qf is the (slightly smoothed) multilinear polynomial defined by f ; an additional small
error would appear in the inequality as well. We omit the details and refer instead to [IM12]

1.4. Propeller Conjecture. A variant of the following conjecture was stated in [KN09,
KN13]. See [KN09, KN13]where this problem is motivated by a kernel clustering problem
from machine learning and by generalized Grothendieck inequalities. Problem 1.15 is more
closely related to the ρ→ 0 case of Conjecture 1.10.

Problem 1.15. Let m > 3. Fix a1, . . . , am > 0 such that
∑m

i=1 ai = 1. Let w ∈ Rn+1 be
defined by (1). For all 1 ≤ i ≤ m, let w(i) := w/ai. Find measurable sets Ω1, . . .Ωm ⊆ Rn+1

with ∪mi=1Ωi = Rn+1 and γn+1(Ωi) = ai for all 1 ≤ i ≤ m that maximize√
π

2

m∑
i=1

‖
∫

Ωi

(x− w(i))γn+1(x)dx‖2,

subject to the above constraints.

Conjecture 1.16. Assume that m − 1 ≤ n + 1. The sets Ω1, . . .Ωm ⊆ Rn+1 maximizing
Problem 1.15 are simplicial cones over a regular simplex.

We have restricted Problem 1.15 to m > 3 since the case m = 3 was solved already in
[KN09, KN13]. As it is stated, this problem is not a finite-dimensional optimization problem.
However, a first variation argument (see (25) or [KN09, Lemma 3.3]) implies that the optimal
sets in Problem 1.15 have boundaries that are the union of a bounded number of simplices.
Therefore, Problem 1.15 really is a finite-dimensional optimization problem.
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1.5. Symmetric Sets. The following problem apparently appeared first in [Bar01]. See
[Hei17] for a discussion of its significance and relation to other problems; see also [BJ] for a
subsequent result that solves Problem 1.17 for values of a close to 0 or 1 by modifying and
extending the techniques of [BBJ16].

Problem 1.17 (Symmetric Gaussian Problem, [Bar01]). Let 0 < a < 1. Find measur-
able Ω ⊆ Rn+1 with Ω = −Ω and γn+1(Ω) = a that minimizes∫

∂Ω

γn(x)dx.

As discussed in [Hei17], if pn+1 = pn+1(a) is the minimum value of Problem 1.17 for fixed
n+ 1 and fixed 0 < a < 1, it is expected that pn+1 = pn+2 = pn+3 = · · · for sufficiently large
n+ 1, unless a = 1/2.

We point out an improvement to the main result of [Hei17] that removes the convexity
assumption there.

Theorem 1.18. Let 0 < a < 1. Assume that pn+1(a) = pn+2(a) = pn+3(a) = · · · for
sufficiently large n+ 1. Let Ω minimize Problem 1.2 and let Σ := ∂Ω. If∫

Σ

(‖Ax‖2 − 1)γn(x)dx > 0,

or ∫
Σ

(‖Ax‖2 − 1 + 2 sup
y∈Σ
‖Ay‖2

2→2)γn(x)dx < 0,

then, after rotating Ω, ∃ r > 0 and ∃ 0 ≤ k ≤ n so that Σ = rSk × Rn−k.

In this Theorem, Sk := {(x1, . . . , xk+1) ∈ Rk+1 : x2
1 + · · · + x2

k+1 = 1} and A = Ax is the
second fundamental form of x ∈ Σ (see Section 3.1 and (13).)

Thanks to a discussion with Frank Morgan, there is a very specific guess for the optimal
sets in Problem 1.17. That is, there exists a sequence of intervals · · · [a3, a2)∪ [a2, a1)∪ [a1, 1]
with a0 = 1 such that [1/2, 1] ⊇ ∪∞N=1[aN , aN−1] and such that, for every N ≥ 1, and for
every a ∈ [aN , aN−1], the minimum value of Problem 1.17 is achieved by the ball centered at
the origin in RN (for any n+ 1).

1.6. Organization.

• A simplified proof of the Multi-Bubble Theorem (Conjecture 1.3) is in Section 2.
• Theorem 1.18 is proven at the end of Section 2.
• Ancillary results for the Main Theorem 1.5 appear in ensuing sections, especially

Sections 7 and 8.
• The Main Theorem 1.5 is proven in Section 11. Theorem 1.6 is an immediate conse-

quence of Theorem 1.5.
• Corollary 1.11 is proven in Section 12.

2. Simplified Proof of Multi-Bubble Conjecture

In this section, we combine parts of the arguments of [MN18b, Hei18] and [MR15], pro-
viding a simplified proof of Conjecture 1.3. Some of the material is repeated from [Hei18] in
order for this proof to be self-contained.
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Proof of Conjecture 1.3. For brevity, we occasionally omit the arguments of functions and
vector fields.

Let Ω1, . . . ,Ωm ⊆ Rn+1 minimize Problem 1.2. For any 1 ≤ i < j ≤ m, denote Σij :=
(∂∗Ωi)∩ (∂∗Ωj) (see Definition 3.1) and for any x ∈ Σij, let Nij ∈ Rn+1 be the normal vector
at x pointing from Ωi into Ωj with unit length, so that ‖Nij‖ = 1. Let X : Rn+1 → Rn+1 be
a vector field and ∀ 1 ≤ i < j ≤ m denote fij := 〈X,Nij〉. For any s ∈ (−1, 1), and for any
1 ≤ i ≤ m, we consider the sets perturbed according to the vector field X:

Ω
(s)
i := {x+ sX(x) : x ∈ Ωi}.

Standard calculations (Lemma 4.2) give the first and second derivatives with respect to s of
the Gaussian volumes and surface areas of these sets [Hei18, Lemma 3.2]. For example,

d

ds
|s=0γn+1(Ω

(s)
i ) =

∫
∂∗Ωi

∑
j∈{1,...,m} : j 6=i

〈X,Nij〉γn+1(x)dx, ∀ 1 ≤ i ≤ m. (3)

If X is chosen to be volume-preserving, i.e. if d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for all 1 ≤ i ≤ m, then

the second derivative of Gaussian surface area satisfies [Hei18, Lemma 3.10] (Lemma 4.8
with ε = 0)

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx =
∑

1≤i<j≤m

−
∫

Σij

fijLijfijγn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
[∇νijfij + qijfij]fij + [∇νjkfjk + qjkfjk]fjk

+ [∇νkifki + qkifki]fki

)
γn(x)dx.

(4)
Here

Lij := ∆− 〈x,∇〉+ ‖A‖2 + 1, Lij := ∆− 〈x,∇〉, ∀ 1 ≤ i < j ≤ m, (5)

where ∆ is the Laplacian (sum of second derivatives) on the surface Σij, ∇ is the gradient
on Σij, A = Ax is the matrix of first order partial derivatives of the unit exterior normal

vector N(x) (see (13)), ‖A‖2 is the sum of the squares of entries of A at x ∈ Σij, νij is the

unit exterior normal to ∂Σij and qij := [〈∇νkjνkj, Nkj〉+ 〈∇νkiνki, Nki〉]/
√

3, so that

qij + qjk + qki = 0, ∀ 1 ≤ i < j < k ≤ m, (6)

since Nij = −Nji by Definition of Nij.
We now state two Lemmas. Assuming these Lemmas, we prove Conjecture 1.3, thereby

simplifying the proof of [MN18b].

Lemma 2.1 (Dimension Reduction). Suppose Ω1, . . .Ωm ⊆ Rn+1 minimize Problem 1.2.
Then there exists 0 ≤ ` ≤ m − 1 and there exist Ω′1, . . . ,Ω

′
m ⊆ R` such that, after rotating

Ω1, . . . ,Ωm, we have

Ωi = Ω′i × Rn−`+1.
10



Moreover ` can be chosen to be the dimension of the span of{(∫
∂∗Ω1

∑
j∈{1,...,m} :

j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} :

j 6=m

〈v,Nmj〉γn(x)dx
)
∈ Rm : v ∈ Rn+1

}
.

Lemma 2.2 (Flatness). For all 1 ≤ i ≤ m, ∂Ωi consists of a union of relatively open
subsets of hyperplanes.

We now complete the proof of Conjecture 1.3. By Lemma 2.2, Lij simplifies to just
∆− 〈x,∇〉+ 1. For every connected component C of Ω1, . . . ,Ωm, let XC be the vector field
that is equal to the exterior unit normal vector field of C on ∂∗C and XC = 0 on every other
connected component of Ω1, . . . ,Ωm that does not intersect C. (Such a vector field exists
by Lemma 3.3.) Let U be the linear span of all such vector fields XC , as C ranges over the

connected components of Ω1, . . . ,Ωm. Note that d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij
γn(x)dx < 0 for all

nonzero X ∈ U by (4), since the second term of (4) is zero for all X ∈ U . If there are more
than m connected components of Ω1, . . . ,Ωm, then we can form a nontrivial linear combina-

tion of these vector fields to get nonzero (fij)1≤i<j≤m such that d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for all

1 ≤ i ≤ m−1 (and also for i = m since ∪mi=1Ωi = Rn+1), and d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij
γn(x)dx <

0. This contradicts that Ω1, . . . ,Ωm minimize Problem 1.2. So, there must be exactly m
connected components of Ω1, . . . ,Ωm. The regularity condition, Lemma 3.3 then concludes
the proof. We know that each of Ω1, . . . ,Ωm is connected with flat boundary pieces, the
sets Ω1, . . . ,Ωm meet in threes at 120 degree angles, and they meet in fours like the cone
over the three-dimensional regular simplex. In the case m = 3, there are only three possible
configurations for the sets (up to rotation). And for general m, there are only finitely many
possible configurations of the sets (up to rotation). So, we can conclude the proof by either
(i) checking the Gaussian surface area of each such case directly, (ii) using the matrix-valued
partial differential inequality and maximal principle argument of [MN18b], or (iii) appealing
directly to the result of [MN18b]. �

Remark 2.3. The last paragraph of the above proof actually classifies all stable local minima
of
∑

1≤i<j≤m
∫

Σij
γn(x)dx. Such stable local minima must satisfy:

• ∀ 1 ≤ i ≤ m, Ωi has exactly one connected component.
• ∀ 1 ≤ i ≤ m, ∂Ωi is the union of at most m−1 relatively open subsets of hyperplanes.
• Assumption 3.4 holds (i.e. the regularity result stated there holds).

For a fixed m, there are then only finitely many stable local minima of the Gaussian surface
area, up to rotations.

Remark 2.4. This statement is still insufficient to prove the stronger Theorem 1.6. A priori,
there could be a sequence of sets with nearly minimal Gaussian perimeter that only become
close to the minimal sets at a very slow rate.

Proof of Lemma 2.1. For any v ∈ Rn+1, define

T (v) :=
(∫

∂∗Ω1

∑
j∈{1,...,m} : j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} : j 6=m

〈v,Nmj〉γn(x)dx
)
.

Then T : Rn+1 → Rm is linear. By the rank-nullity theorem, the dimension of the kernel of
T plus the dimension of the image of T is n+ 1. Since the sum of the indices of T (v) is zero
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for any v ∈ Rn+1 (since Nij = −Nji ∀ 1 ≤ i < j ≤ m by Definition 4.3), the dimension ` of
the image of T is at most m− 1.

Let v in the kernel of T . For any 1 ≤ i < j ≤ m, let fij := φ〈v,Nij〉. Let X := φv be the
chosen vector field. Since Ω1, . . . ,Ωm minimize Problem 1.2,

0 ≤ d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx.

From Lemmas 4.8 (with ε = w = 0), 4.10, 5.5, 4.7, and then letting φ increase monotonically
to 1 (as in Lemma 5.5),

0 ≤
∑

1≤i<j≤m

−
∫

Σij

fijLijfijγn(x)dx. (7)

When v ∈ Rn+1 is a constant and X := v is a constant vector field, a calculation shows that
[MR15, BBJ16] [Hei17, Lemma 4.2], Lemma 3.5 with ε = 0,

Lij〈v,Nij〉 = 〈v,Nij〉, ∀ 1 ≤ i < j ≤ m. (8)

That is, (〈v,Nij〉)1≤i<j≤m is an eigenfunction of (Lij)1≤i<j≤m with eigenvalue 1 (see Remark
6.1). So, (7) says

0 ≤
∑

1≤i<j≤m

−
∫

Σij

f 2
ijγn(x)dx.

The last quantity must then be zero. In summary, for any v in the kernel of T , ∀ 1 ≤ i <
j ≤ m, fij(x) = 〈v,Nij(x)〉 = 0 for all x ∈ Σij. That is, ∃ 0 ≤ ` ≤ m − 1 as stated in the
conclusion of Theorem 2.1, since the image of T is the span of{(∫

∂∗Ω1

∑
j∈{1,...,m} :

j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} :

j 6=m

〈v,Nmj〉γn(x)dx
)
∈ Rm : v ∈ Rn+1

}
.

�

Proof of Lemma 2.2. Assume for now that n+1 > m−1 so that n−`+1 ≥ n−(m−1)+1 > 0
in Theorem 2.1. Then after rotating Ω1, . . . ,Ωm, we have

Ωi = Ω′i × R.

Let {αij}1≤i<j≤m be constants guaranteed to exist by Lemma 6.2. Let fij := αij for all
1 ≤ i < j ≤ m. Define now a new function gij := xn+1fij. Since fij is only a function of the
variables x1, . . . , xn, we have 〈∇f,∇(xn+1)〉 = 0. So, for any 1 ≤ i < j ≤ m, the product
rule for Lij (Remark 3.6) gives

Lijgij
(5)
= xn+1Lijfij + fijLijxn+1 + 〈∇f,∇(xn+1)〉 = xn+1Lijfij − fijxn+1

(5)
= ‖A‖2 gij.

Here Lij := ∆ − 〈x,∇〉. By (3) and Fubini’s Theorem, if we first integrate with respect
to xn+1, we see that (gij)1≤i<j≤m is automatically Gaussian volume-preserving, so that (3)
is zero for all 1 ≤ i < j ≤ m. Then the second-variation condition (Lemmas 4.8 with
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ε = w = 0) applies, and we get by (4)

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx = −
∑

1≤i<j≤m

∫
Σij

x2
n+1α

2
ij ‖A‖

2 γn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

x2
n+1

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx.

After integrating in xn+1 and applying Fubini’s Theorem, this becomes

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx = −
∑

1≤i<j≤m

∫
Σ′ij

α2
ij ‖A‖

2 γn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σ′ij∩∂∗Σ′jk∩∂∗Σ

′
ki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx.

By summing over all circular permutations of (αij)1≤i<j≤m, the last term becomes zero by
(6). So, there exists (αij)1≤i<j≤m such that the last term is nonpositive. That is, there exists
nonzero (αij)1≤i<j≤m such that

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx ≤ −
∑

1≤i<j≤m

∫
Σij

α2
ij ‖A‖

2 γn(x)dx

So, in the case n + 1 > m − 1, we must have ‖A‖ = 0 identically, for all 1 ≤ i < j ≤ m.
Since the minimum value of Problem 1.2 can only decrease as n+ 1 increases, we also have
‖A‖ = 0 in the remaining case n+ 1 = m− 1.

�

2.1. Symmetric Sets. It seems appropriate to now prove Theorem 1.18.

Proof of Theorem 1.18. Let Ω ⊆ Rn+1 minimize Problem 1.17. Let Σ := ∂Ω. The second
inequality of the Theorem was already shown in [Hei17]. So, it suffices to show the first
inequality. It further suffices by the argument of [Hei17, Corollary 6.2] to show that δ ≤ 2
where

δ = δ(Σ) := sup
f : Σ→R

f a C∞ compactly
supported function

∫
Σ
fLfγn(x)dx∫

Σ
f 2γn(x)dx

.

We therefore argue by contradiction. Assume δ > 2. From [Hei17, Lemma 5.1], there is a
nonzero compactly supported Dirichlet eigenfunction f of L such that Lf = δf and such
that f(x) = f(−x) for all x ∈ Σ. By the assumption of Theorem 1.18, we may assume that
Ω = Ω′ × R and f does not depend on xn+1. Consider the function g(x) := (x2

n+1 − 1)f(x).
This function also satisfies g(x) = g(−x) for all x ∈ Rn+1. By Fubini’s Theorem, this
function automatically preserves the Gaussian volume of Ω, i.e.∫

Σ

(x2
n+1 − 1)fγn(x)dx =

∫
R
(x2

n+1 − 1)γ1(xn+1)

∫
Σ′
fγn−1(x1, . . . , xn)dx1 · · · dxn = 0.
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As in the above proof, since f does not depend on xn+1, 〈∇f,∇(x2
n+1 − 1)〉 = 0, and by the

product rule for L (Remark 3.6) we have

Lg
(5)
= (x2

n+1 − 1)Lf + fL(x2
n+1 − 1) + 〈∇f,∇(x2

n+1 − 1)〉

= (x2
n+1 − 1)Lf + f(2− 2x2

n+1)
(5)
= (δ − 2)g.

From Lemmas 4.8 (with ε = w = 0) and 4.7,

d2

ds2
|s=0

∫
Σ(s)

γn(x)dx =

∫
Σ

−fLfγn(x)dx = −(δ − 2)

∫
Σ

f 2γn(x)dx < 0.

This inequality violates the minimality of Ω, achieving a contradiction, and completing the
proof. �

3. Preliminaries and Notation

We say that Σ ⊆ Rn+1 is an n-dimensional C∞ manifold with boundary if Σ can be locally
written as the graph of a C∞ function on a relatively open subset of {(x1, . . . , xn) ∈ Rn : xn ≥
0}. For any (n+ 1)-dimensional C∞ manifold Ω ⊆ Rn+1 with boundary, we denote

C∞0 (Ω;Rn+1) := {f : Ω→ Rn+1 : f ∈ C∞(Ω;Rn+1), f(∂∂Ω) = 0,

∃ r > 0, f(Ω ∩ (B(0, r))c) = 0}.
(9)

We also denote C∞0 (Ω) := C∞0 (Ω;R). We let div denote the divergence of a vector field in
Rn+1. For any r > 0 and for any x ∈ Rn+1, we let B(x, r) := {y ∈ Rn+1 : ‖x− y‖ ≤ r}
be the closed Euclidean ball of radius r centered at x ∈ Rn+1. Here ∂∂Ω refers to the
(n− 1)-dimensional boundary of Ω.

Definition 3.1 (Reduced Boundary). A measurable set Ω ⊆ Rn+1 has locally finite
surface area if, for any r > 0,

sup

{∫
Ω

div(X(x))dx : X ∈ C∞0 (B(0, r),Rn+1), sup
x∈Rn+1

‖X(x)‖ ≤ 1

}
<∞.

Equivalently, Ω has locally finite surface area if ∇1Ω is a vector-valued Radon measure such
that, for any x ∈ Rn+1, the total variation

‖∇1Ω‖ (B(x, 1)) := sup
partitions

C1,...,Cm of B(x,1)
m≥1

m∑
i=1

‖∇1Ω(Ci)‖

is finite [CL12]. If Ω ⊆ Rn+1 has locally finite surface area, we define the reduced boundary
∂∗Ω of Ω to be the set of points x ∈ Rn+1 such that

N(x) := − lim
r→0+

∇1Ω(B(x, r))

‖∇1Ω‖ (B(x, r))

exists, and it is exactly one element of Sn := {x ∈ Rn+1 : ‖x‖ = 1}.

Lemma 3.2 (Existence). There exist measurable Ω1, . . . ,Ωm ⊆ Rn+1 minimizing Problem
1.4.

Lemma 3.3 (Regularity). Let Ω1, . . .Ωm minimize Problem 1.4. Then Assumption 3.4
holds.
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Proof. We need to verify that the sets Ω1, . . . ,Ωm satisfy the assumptions of the regularity
results of [Dav09, Dav10] for m = 2, 3, [Whi95] announced for any m ≥ 2, proved in [CES17].
In this proof, we let P denote the surface area of a set, and we let Pγ denote the Gaussian
surface area of a set. Fix x ∈ ∂Ωi′ for some i′ ∈ {1, . . . ,m} and fix 0 < r < 1. Since
Ω1, . . .Ωm minimize problem 1.4, for every disjoint F1, . . . , Fm ⊆ Rn+1 with locally finite
perimeter such that Fi∆Ωi ⊆ B2r(x) it holds that

m∑
i=1

Pγ(Ωi) ≤
m∑
i=1

Pγ(Fi) + Cγn+1(Fi∆Ωi) (10)

for some constant C depending on ‖x‖. If we choose F1 := Ω1 ∪Br(x) and Fi := Ωi \Br(x)
for all 2 ≤ i ≤ m, we get

m∑
i=1

Pγ(Ωi) ≤ Pγ(Ω1 ∪Br(x)) +
m∑
i=2

Pγ(Ωi \Br(x)) + Cγn+1(Br(x)).

On the other hand, arguing as in [Mag12, Lemma 12.22],

Pγ(Ω1 ∪Br(x)) + Pγ(Ω1 ∩Br(x)) ≤ Pγ(Ω1) + Pγ(Br(x)).

Pγ(Ωi ∪Br(x)c) + Pγ(Ωi ∩Br(x)c) ≤ Pγ(Ωi) + Pγ(Br(x)c). ∀ 2 ≤ i ≤ m.

The previous three inequalities give

Pγ(Ω1 ∩Br(x)) +
m∑
i=2

Pγ(Ωi ∪Br(x)c) ≤
m∑
i=1

Pγ(Br(x)) + Cγn+1(Br(x)) ≤ Crn.

The left-hand side can be estimated by

Pγ(Ω1 ∩Br(x)) +
m∑
i=2

Pγ(Ωi ∪Br(x)c) ≥ ce−‖x‖
2

m∑
i=1

P (Ωi ∩Br(x)).

Therefore we obtain
m∑
i=1

P (Ωi ∩Br(x)) ≤ C0r
n (11)

for some constant C0 = C0(‖x‖). Note that for every y ∈ Br(x) and 0 < r < 1 we have∣∣∣e−‖x‖2/2 − e−‖y‖2/2∣∣∣ ≤ Cr.

for some constant C. Therefore, (10) and (11) imply that for all sets F1, . . . , Fm ⊆ Rn+1

with locally finite perimeter such that Fi∆Ωi ⊆ Br(x) and 0 < r < 1 it holds that

m∑
i=1

P (Ωi ∩Br(x)) ≤
m∑
i=1

P (Fi ∩Br(x)) + Crn+1.

for some constant C depending on ‖x‖. �

Let Y1 ⊆ R2 denote three half-lines meeting at a single point with 120-degree angles
between them. Let T ′ ⊆ R3 be the one-dimensional boundary of a regular tetrahedron
centered at the origin, and let T2 ⊆ R3 be the cone generated by T ′, so that T2 = {rx ∈
R3 : r ≥ 0, x ∈ T ′}.
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Assumption 3.4. The sets Ω1, . . .Ωm ⊆ Rn+1 satisfy the following conditions. First,
∪mi=1Ωi = Rn+1,

∑m
i=1 γn+1(Ωi) = 1. Also, Σ := ∪mi=1∂Ωi can be written as the disjoint

union Mn ∪Mn−1 ∪Mn−2 ∪Mn−3 where 0 < α < 1 and

(i) Mn is a locally finite union of embedded C∞ n-dimensional manifolds.
(ii) Mn−1 is a locally finite union of embedded C∞ (n − 1)-dimensional manifolds, near

which M is locally diffeomorphic to Y1 × Rn−1.
(iii) Mn−2 is a locally finite union of embedded C1,α (n− 2)-dimensional manifolds, near

which M is locally diffeomorphic to T2 × Rn−2.
(iv) Mn−3 is relatively closed, (n − 3)-rectifiable, with locally finite (n − 3)-dimensional

Hausdorff measure.

Below, when Σij := (∂∗Ωi) ∩ (∂∗Ωj) for some 1 ≤ i < j ≤ m, we denote ∂∗Σij :=
Mn−2 ∩ (∂Ωi) ∩ (∂Ωj), where Mn−2 is defined in Assumption 3.4.

3.1. Submanifold Curvature. Here we cover some basic definitions from differential ge-
ometry of submanifolds of Euclidean space.

Let ∇ denote the standard Euclidean connection, so that if X, Y ∈ C∞0 (Rn+1,Rn+1),
if Y = (Y1, . . . , Yn+1), and if u1, . . . , un+1 is the standard basis of Rn+1, then ∇XY :=∑n+1

i=1 (X(Yi))ui. Let N be the outward pointing unit normal vector of an n-dimensional
orientable hypersurface Σ ⊆ Rn+1. For any vector x ∈ Σ, we write x = xT + xN , so that
xN := 〈x,N〉N is the normal component of x, and xT is the tangential component of x ∈ Σ.

Let e1, . . . , en be a (local) orthonormal frame of Σ ⊆ Rn+1. That is, for a fixed x ∈ Σ, there
exists a neighborhood U of x such that e1, . . . , en is an orthonormal basis for the tangent
space of Σ, for every point in U [Lee03, Proposition 11.17].

Define the mean curvature of Σ by

H := div(N) =
n∑
i=1

〈∇eiN, ei〉. (12)

Define the second fundamental form A = (aij)1≤i,j≤n of Σ so that

aij = 〈∇eiej, N〉, ∀ 1 ≤ i, j ≤ n. (13)

Compatibility of the Riemannian metric says aij = 〈∇eiej, N〉 = −〈ej,∇eiN〉 + ei〈N, ej〉 =
−〈ej,∇eiN〉, ∀ 1 ≤ i, j ≤ n. So, multiplying by ej and summing this equality over j gives

∇eiN = −
n∑
j=1

aijej, ∀ 1 ≤ i ≤ n. (14)

Using 〈∇NN,N〉 = 0,

H
(12)
=

n∑
i=1

〈∇eiN, ei〉
(14)
= −

n∑
i=1

aii. (15)

When Σ := ∂Ω itself has a boundary that is a C∞ (n− 1)-dimensional manifold, we let ν
denote the unit normal of ∂Σ pointing exterior to Σ.

16



3.2. Colding-Minicozzi Theory for Mean Curvature Flow. A key aspect of the Cold-
ing -Minicozzi theory is the study of eigenfunctions of the differential operator L, defined for
any C∞ function f : Σ→ R by

Lf := ∆f − 〈x,∇f〉+ f + ‖A‖2 f. (16)

Lf := ∆f − 〈x,∇f〉. (17)

Note that there is a factor of 2 difference between our definition of L and the definition of L
in [CM12]. Here e1, . . . , en is a (local) orthonormal frame for an orientable C∞ n-dimensional
hypersurface Σ ⊆ Rn+1 with ∂∗Σ = ∅, ∆ :=

∑n
i=1∇ei∇ei be the Laplacian associated to

Σ, ∇ :=
∑n

i=1 ei∇ei is the gradient associated to Σ, A = Ax is the second fundamental

form of Σ at x, and ‖Ax‖2 is the sum of the squares of the entries of the matrix Ax. Let
divτ :=

∑n
i=1∇ei〈·, ei〉 be the (tangential) divergence of a vector field on Σ. Note that L is

an Ornstein-Uhlenbeck-type operator. In particular, if Σ is a hyperplane, then Ax = 0 for
all x ∈ Ω, so L is exactly the usual Ornstein-Uhlenbeck operator, plus the identity map.

Lemma 3.5 (Linear Eigenfunction of L, [MR15, BBJ16] [Hei17, Lemma 4.2]). Let Σ ⊆
Rn+1 be an orientable C∞ n-dimensional hypersurface. Let λ ∈ R, z ∈ Rn+1. Suppose

H(x) = 〈x,N〉+ λ− ε〈x, z〉, ∀x ∈ Σ. (18)

Let v ∈ Rn+1. Then

L〈v,N〉 = 〈v,N〉 − ε〈v, z〉+ ε〈v,N〉〈z,N〉. (19)

Proof. Let 1 ≤ i ≤ n. Then

∇ei〈v,N〉 = 〈v,∇eiN〉
(14)
= −

n∑
j=1

aij〈v, ej〉. (20)

Fix x ∈ Σ. Choosing the frame such that ∇T
ek
ej = 0 at x for every 1 ≤ j, k ≤ n, we then

have ∇ekej = akjN at x by (13), so using also Codazzi’s equation,

∇ei∇ei〈v,N〉 = −
n∑
j=1

∇eiaij〈v, ej〉 −
n∑
j=1

aij〈v,∇eiej〉

= −
n∑
j=1

∇ejaii〈v, ej〉 −
n∑
j=1

aijaij〈v,N〉.
(21)

Therefore,

∆〈v,N〉 =
n∑
i=1

∇ei∇ei〈v,N〉
(15)∧(21)

= 〈v,∇H〉 − ‖A‖2 〈v,N〉.

So far, we have not used any of our assumptions. Using now (18), and that A is symmetric,

〈v,∇H〉 (14)
= −

n∑
i,j=1

〈x, ej〉aij〈v, ei〉 − ε
n∑
i=1

〈v, ei〉〈ei, z〉
(20)
= 〈x,∇〈v,N〉〉 − ε〈v, zT 〉

Since z = zT + zN , zT = z − 〈z,N〉N . So, in summary,

∆〈v,N〉 = 〈x,∇〈v,N〉〉 − ‖A‖2 〈v,N〉 − ε〈v, z〉+ ε〈v,N〉〈z,N〉.
We conclude by (16). �
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Remark 3.6. Let f, g ∈ C∞(Σ). Using (16), we get the following product rule for L.

L(fg) = f∆g + g∆f + 2〈∇f,∇g〉 − f〈x,∇g〉 − g〈x,∇f〉+ ‖A‖2 fg + fg

= fLg + gLf + 2〈∇f,∇g〉.

4. First and Second Variation

We will apply the calculus of variations to solve Problem 1.4. Here we present the rudi-
ments of the calculus of variations.

Some of the results in this section are well known to experts in the calculus of variations,
and many of these results were re-proven in [BBJ16], or adapted from [HMRR02].

Let Ω ⊆ Rn+1 be an (n+1)-dimensional C2 submanifold with reduced boundary Σ := ∂∗Ω.
Let N : Σ→ Sn be the unit exterior normal to Σ. Let X : Rn+1 → Rn+1 be a vector field.

Let div denote the divergence of a vector field. We write X in its components as X =
(X1, . . . , Xn+1), so that divX =

∑n+1
i=1

∂
∂xi
Xi. Let Ψ: Rn+1 × (−1, 1)→ Rn+1 such that

Ψ(x, 0) = x,
d

ds
Ψ(x, s) = X(Ψ(x, s)), ∀x ∈ Rn+1, s ∈ (−1, 1). (22)

For any s ∈ (−1, 1), let Ω(s) := Ψ(Ω, s). Note that Ω(0) = Ω. Let Σ(s) := ∂∗Ω(s), ∀
s ∈ (−1, 1).

Definition 4.1. We call {Ω(s)}s∈(−1,1) as defined above a variation of Ω ⊆ Rn+1. We also

call {Σ(s)}s∈(−1,1) a variation of Σ = ∂∗Ω.

Equations (23) and (24) below are proven in e.g. [Hei18, Lemma 3.2]

Lemma 4.2 (First Variation). Let X ∈ C∞0 (Rn+1,Rn+1). Let f(x) = 〈X(x), N(x)〉 for
any x ∈ Σ. Then

d

ds
|s=0γn+1(Ω(s)) =

∫
Σ

f(x)γn+1(x)dx. (23)

d

ds
|s=0

∫
Σ(s)

γn(x)dx =

∫
Σ

(H(x)− 〈N(x), x〉)f(x)γn(x)dx+

∫
∂∗Σ

〈X, ν〉γn(x)dx. (24)

Let z :=
∫

Ω
xγn+1(x)dx. Let w ∈ Rn+1 and define w := w/

∫
Ω
γn+1(x)dx. Then

d

ds
|s=0

√
π

2
‖
∫

Ω(s)

(x− w)γn+1(x)dx‖2 =

∫
Σ

〈z − w, x− w〉f(x)γn(x)dx. (25)

Proof. We only prove (25). Let JΨ(x, s) := |det(DΨ(x, s))| be the Jacobian determinant of
Ψ, ∀ x ∈ Rn+1, ∀ s ∈ (−1, 1). Then [CS07, Equation (2.28)] says

d

ds
|s=0JΨ(x, s) = divX(x), ∀x ∈ Σ. (26)
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So, the Chain Rule, JΨ(x, 0) = 1 (which follows by (22)), and (22) imply

1

2

d

ds
|s=0

∥∥∥∥∫
Ω(s)

(x− w)γn+1(x)dx

∥∥∥∥2

=
1

2

d

ds
|s=0

∥∥∥∥∫
Ω

(Ψ(x, s)− w)JΨ(x, s)γn+1(Ψ(x, s))dx

∥∥∥∥2

=

∫
Ω

(
〈z − w,X(x)〉+ 〈z − w, x− w〉(div(X(x))− 〈X(x), x〉)

)
γn+1(x)dx

=

∫
Ω

div(X(x)〈z − w, x− w〉γn+1(x))dx =

∫
Σ

〈X(x), N(x)〉〈z − w, x− w〉γn+1(x)dx.

(27)
In the last line, we used the divergence theorem. We conclude by writing γn+1 = (2π)−1/2γn.

�

Definition 4.3. We let X ∈ C∞0 (Rn+1,Rn+1) and for any 1 ≤ i < j ≤ m, we denote
fij(x) := 〈X(x), Nij(x)〉 for all x ∈ Σij. Recall that Nij is the unit normal vector pointing
from Ωi into Ωj, and Hij := div(Nij) is the mean curvature of Nij. And νij is the unit normal
to ∂∗Σij pointing exterior to Σij.

Σki

Σjk

Σij

Ωi

Ωk

Ωj

Nki

Njk

Nij

νij
νjk

νki

Figure 2. Notation for sets and normal vectors.

The following Lemma is a modification of [Hei18, Lemma 3.5].

Lemma 4.4 (First Variation for Minimizers). Suppose Ω1, . . . ,Ωm minimize Problem
1.4. For all 1 ≤ i ≤ m, let z(i) :=

∫
Ωi
xγn+1(x)dx ∈ Rn+1, let w ∈ Rn+1 and let w(i) :=

w/
∫

Ωi
γn+1(x)dx, z(i) := z(i)/

∫
Ωi
γn+1(x)dx. Then ∀ 1 ≤ i < j ≤ m, ∃ λij ∈ R such that

λij = Hij(x)− 〈x,Nij(x)〉+ ε〈x, z(i) − z(j)〉+ ε〈w,w(i) − w(j) + z(j) − z(i)〉,
∀x ∈ Σij, ∀ 1 ≤ i < j ≤ m

0 = λij + λjk + λki, ∀ 1 ≤ i < j < k ≤ m such that Σij ∩ Σjk ∩ Σki 6= ∅
0 = νij + νjk + νki, ∀ 1 ≤ i < j < k ≤ m such that Σij ∩ Σjk ∩ Σki 6= ∅.

 (28)
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Proof. From Lemma 3.3, Assumption 3.4 holds. From (24) and (25), if X ∈ C∞0 (Rn+1,Rn+1)

d

ds
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

∫
Σij

(Hij − 〈Nij, x〉)fijγn(x)dx

+
∑

1≤i<j<k≤m

∫
(∂∗Σij)∩(∂∗Σjk)∩(∂∗Σki)

〈X, νij + νjk + νki〉γn(x)dx

+ ε
m∑
i=1

∑
j∈{1,...,m} : j 6=i

∫
Σij

〈x− w(i), z(i) − w〉fijγn(x)dx.

We can then choose X to be supported in the neighborhood of two or three points to deduce
the above. The final assertion follows by Lemma 3.3, i.e. Assumption 3.4(ii). We also rewrite
the last term as (using Nij = −Nji by Definition 4.3),

m∑
i=1

∑
j∈{1,...,m} : j 6=i

∫
Σij

〈x− w(i), z(i) − w〉fijγn(x)dx

=
∑

1≤i<j≤m

∫
Σij

fij

(
〈x, z(i) − z(j)〉+

〈
w,
( 1

γn+1(Ωi)
− 1

γn+1(Ωi)

)
w

− z(i)

γn+1(Ωi)
+

z(j)

γn+1(Ωj)

〉)
γn(x)dx.

�

For any 1 ≤ i < j ≤ m, let f : C∞0 (Σij)→ R and define

Lijf(x) := ∆f(x)− 〈x,∇f(x)〉+ ‖Ax‖2 f(x) + f(x), ∀x ∈ Σij. (29)

Lijf(x) := ∆f(x)− 〈x,∇f(x)〉, ∀x ∈ Σij. (30)

The Lemma below can be compared with the corresponding [HMRR02, Proposition 3.3]
and [BBJ16, Proposition 3].

Lemma 4.5 (Second Variation for Minimizers). Let X ∈ C∞0 (Rn+1,Rn+1). Suppose
Ω1, . . . ,Ωm minimize Problem 1.2. Define z(i) :=

∫
Ωi
xγn+1(x)dx. Let (λij)1≤i<j≤m from
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(28). Then

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

=
∑

1≤i<j≤m

(
−
∫

Σij

fijLijfijγn(x)dx+ λij
d

ds
|s=0

∫
Σ

(s)
ij

fij(x)γn(x)dx

+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X, νij〉γn(x)dx
)

+ ε
( m∑
i=1

√
2π‖

∑
j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
m∑
i=1

∑
j∈{1,...,m} : j 6=i

∫
Σij

fij〈X, z(i) − w〉γn(x)dx

+
m∑
i=1

∑
j∈{1,...,m} : j 6=i

∫
Σij

〈x− w(i), z(i) − w〉(div(X)− 〈x,X〉)fijγn(x)dx
)
.

(31)

Proof. Let Σ be an n-dimensional C∞ hypersurface with boundary. We let ′ denote ∂
∂s
|s=0.

From Lemma 4.2 we have

d2

ds2
|s=0

∫
Σ(s)

γn(x)dx =

∫
Σ

(H(x)− 〈N(x), x〉)′f(x)γn(x)dx

+

∫
Σ

(H(x)− 〈N(x), x〉)[f(x)γn(x)dx]′ +
d

ds
|s=0

∫
∂∗Σ(s)

〈X, ν〉γn(x)dx.

From (22), x′ = X = XN +XT = fN +XT . Also, H ′ = −∆f −‖A‖2 f , N ′ = −∇f , [CM12,
A.3, A.4] (the latter calculations require writing Σ(s) in the form {x+ sN(x) +Ox(s

2) : x ∈
Σ}). So,

(H − 〈N, x〉)′ = −∆f − ‖A‖2 f − 〈N, fN +XT 〉 − 〈x,∇f〉 (16)
= −Lf.

In summary,

d2

ds2
|s=0

∫
Σ(s)

γn(x)dx = −
∫

Σ

fLfγn(x)dx

+

∫
Σ

(H(x)− 〈N(x), x〉)[fij(x)γn(x)dx]′ +
d

ds
|s=0

∫
∂∗Σ(s)

〈X, ν〉γn(x)dx.

Summing over all 1 ≤ i < j ≤ m, and applying (28),

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx =
∑

1≤i<j≤m

−
∫

Σij

fijLijfijγn(x)dx

+ λij

∫
Σij

[fij(x)γn(x)dx]′ +
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X, νij〉γn(x)dx.

Finally, adding the terms from Lemma 10.2 completes the proof. �

Below, we need the following combinatorial Lemma, the case m = 3 being treated in
[HMRR02, Proposition 3.3].
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Lemma 4.6. Let m ≥ 3. Let

D1 := {(xij)1≤i 6=j≤m ∈ R(m2 ) : ∀ 1 ≤ i 6= j ≤ m, xij = −xji,
∑

j∈{1,...,m} : j 6=i

xij = 0}.

D2 := {(xij)1≤i 6=j≤m ∈ R(m2 ) : ∀ 1 ≤ i 6= j ≤ m, xij = −xji,
∀ 1 ≤ i < j < k ≤ m xij + xjk + xki = 0}.

Let x ∈ D1 and let y ∈ D2. Then
∑

1≤i<j≤m xijyij = 0.

It is well-known that compactly supported variations such that d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for

all 1 ≤ i ≤ m can be modified such that dk

dsk
|s=0γn+1(Ω

(s)
i ) = 0 for all 1 ≤ i ≤ m and for

all k ≥ 1 while preserving the second variation. Such an application of the implicit function
theorem appears e.g. in [HMRR02, Proposition 3.3] or [BdC84, Lemma 2.4]. This argument
can be extended to noncompact variations [BBJ16, Lemma 1].

The Lemma below can be compared with the corresponding result [HMRR02, Lemma 3.2]
and [MN18a, Lemmas 4.12 and 5.2].

Lemma 4.7 (Extension Lemma for Existence of Volume-Preserving Variations).
For any 1 ≤ i < j ≤ m, let fij ∈ C∞0 (Σij) satisfy

∀ 1 ≤ i < j < k ≤ m, ∀x ∈ Σij ∩ Σjk ∩ Σki, fij(x) + fjk(x) + fki(x) = 0. (32)

Then there exists a vector field X ∈ C∞0 (Rn+1,Rn+1) such that

∀ 1 ≤ i < j ≤ m, ∀x ∈ Σij, 〈X(x), Nij(x)〉 = fij(x). (33)

If additionally

∀ 1 ≤ i ≤ m,
∑

j∈{1,...,m} : j 6=i

∫
Σij

fijγn(x)dx = 0, (34)

then X can also be chosen to be volume preserving:

∀ 1 ≤ i ≤ m, ∀ s ∈ (−ε, ε), γn+1(Ω
(s)
i ) = γn+1(Ωi).

Proof. By assumption, ∃ a vector field Z : Rn+1 → Rn+1 such that

〈Z(x), Nij(x)〉 = fij(x), ∀x ∈ C, ∀ 1 ≤ i < j ≤ m.

Then Z can be extended to all of ∪1≤i<j≤mΣij by e.g. Whitney Extension. Let I be a
subset of {(i, j) : 1 ≤ i < j ≤ m} of size m − 1. For all (i, j) ∈ I, let gij : Σij → R be
compactly supported, nonnegative, C∞ functions and let g̃ij be any smooth extension of gij
to Rn+1 that is supported in a neighborhood of the interior Σij, disjoint from all Σi′j′ with

(i′, j′) 6= (i, j). Similarly, let Ñij be any smooth extension of Nij to Rn+1. Consider the map

Ψ̃ : Rn+1 × (−1, 1)× (−1, 1)m−1 → Rn+1 defined by

Ψ̃(x, s, {tij}(i,j)∈I) := x+ sZ +
∑

(i,j)∈I

tij g̃ijÑij, ∀ s ∈ (−1, 1), {tij}(i,j)∈I ∈ (−1, 1)m−1.

And consider the vector-valued function

V (s, {tij}(i,j)∈I) :=
(
γn+1(Ω

(s,{tij}(i,j)∈I)

1 ), . . . , γn+1(Ω
(s,{tij}(i,j)∈I)
m )

)
.
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Then V : Rm → Rm, and the image of V is at most (m − 1)-dimensional, since the sum of
the entries of V is equal to 1. Consider the equation V = constant. Then the Jacobian of V
has maximal rank. So, by the Implicit Function Theorem, for every (i, j) ∈ I, there exists a
function tij : (−1, 1)→ R such that V (s, {tij(s)}(i,j)∈I) = constant for all s ∈ (−1, 1). Since
the Jacobian of V has maximal rank and (34) holds, it follows from the chain rule that t′ij(0) =

0 for all (i, j) ∈ I. So, if we let X be the vector field for Ψ(x, s) := Ψ̃(x, s, {tij(s)}(i,j)∈I)
satisfying (22). Then (33) holds for X. �

Lemma 4.8 (Volume-Preserving Second Variation for Minimizers). Let Ω1, . . . ,Ωm

minimize Problem 1.2. ∀ 1 ≤ i < j ≤ m, let fij ∈ C∞0 (Σij) satisfy (32) and (34). Let
X be the vector field guaranteed to exist from Lemma 4.7. For all 1 ≤ i ≤ m, let z(i) :=∫

Ωi
xγn+1(x)dx. Then

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

fij[Lijfij − ε〈X, z(i) − z(j)〉]γn(x)dx+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X, νij〉γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

Proof. Assumption 3.4 holds by Lemma 3.3. From Lemma 4.4, (28) holds. Since the volumes
are preserved, for any 1 ≤ i ≤ m, we have

∑
j 6=i

d
ds
|s=0

∫
Σ

(s)
ij
fij(x)γn(x)dx = 0. Combining

Lemmas 4.5 and 4.6 shows that the middle term from Lemma 4.5 vanishes. �

Remark 4.9. ∀ 1 ≤ i < j < k ≤ m, and ∀ x ∈ (∂∗Σij) ∩ (∂∗Σjk) ∩ (∂∗Σki), define

qij(x) := [〈∇νkjνkj, Nkj〉+ 〈∇νkiνki, Nki〉]/
√

3.

Note that qij + qjk + qki = 0 since Nij = −Nji by Definition 4.3 and qij = qji.
Compared to [HMRR02], note that we have the opposite sign convention for the second

fundamental form and for νij.

Lemma 4.10 ([HMRR02, Lemma 3.6]). ∀ 1 ≤ i < j ≤ m, let fij ∈ C∞0 (Σij) satisfy (32).
Then

d

ds
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

〈X, νij〉γn(x)dx

=
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

〈X,∇X(νij + νjk + νki)〉γn(x)dx

=
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
[∇νijfij + qijfij]fij + [∇νjkfjk + qjkfjk]fjk

+ [∇νkifki + qkifki]fki

)
γn(x)dx.

Applying the above Lemma, we get
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Lemma 4.11. If for all 1 ≤ i < j < k ≤ m we have fij ∈ C∞0 (Σij) satisfying (32) and

∇νijfij + qijfij = ∇νjkfjk + qjkfjk = ∇νkifki + qkifki, ∀ 1 ≤ i < j < k ≤ m,

then
d

ds
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

〈X, νij〉γn(x)dx = 0.

5. Second Variation as a Quadratic Form

Definition 5.1 (Admissible Functions). Define F be the set of functions (fij)1≤i<j≤m
such that

• ∀ 1 ≤ i < j ≤ m, fij : Σij → R,
∫

Σij
f 2
ijγn(x)dx <∞ and

∫
Σij
‖∇fij‖2 γn(x)dx <∞.

• ∀ 1 ≤ i < j < k ≤ m, ∀x ∈ Σij ∩ Σjk ∩ Σki, fij(x) + fjk(x) + fki(x) = 0.

The second condition is well-defined by e.g. a (local) Sobolev Trace inequality [FP13].

Definition 5.2 (Quadratic Form Associated to Second Variations). For any F =
(fij)1≤i<j≤m, G = (gij)1≤i<j≤m ∈ F , define the following quantities if they exist:

Q(F,G) :=
∑

1≤i<j≤m

−
∫

Σij

gijLijfijγn(x)dx+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki(

[∇νijfij + qijfij]gij + [∇νjkfjk + qjkfjk]gjk + [∇νkifki + qkifki]gki

)
γn(x)

(35)

〈F,G〉 :=
∑

1≤i<j≤m

∫
Σij

fijgijγn(x)dx. (36)

Using (29), define L : ∪1≤i<j≤m C
∞
0 (Σij)→ ∪1≤i<j≤mC

∞
0 (Σij) by

L((fij)1≤i<j≤m) := (Lijfij)1≤i<j≤m. (37)

Using also (30) define
L((fij)1≤i<j≤m) := (Lijfij)1≤i<j≤m. (38)

Lemma 5.3 (Integration by Parts). Let F,G ∈ F ∩ C∞0 (∪1≤i<j≤mΣij). Then

Q(F,G) :=
∑

1≤i<j≤m

∫
Σij

[〈∇fij,∇gij〉 − fijgij(‖A‖2 + 1)]γn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

[qijfijgij + qjkfjkgjk + qkifkigki]γn(x)dx.

In particular, Q(F,G) = Q(G,F ), so that Q is symmetric.

Proof. From the divergence theorem for an n-dimensional C∞ orientable hypersurface Σ with
C∞ boundary, if f, g : Σ→ R, then∫

Σ

(Lf)gγn(x)dx
(17)
=

∫
Σ

(∆f − 〈x,∇f〉)gγn(x)dx =

∫
Σ

divτ (γn(x)∇f)gdx

=

∫
Σ

(
[divτ (gγn(x)∇f)]− 〈∇f,∇g〉

)
γn(x)dx =

∫
∂Σ

〈∇f, ν〉gγn(x)−
∫

Σ

〈∇f,∇g〉γn(x)dx.

As usual, ν denotes the exterior pointing unit normal to ∂Σ. Substituting into the definition
of Q(F,G) and using (17) and (16) completes the proof. �
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Lemma 5.4 ([BBJ16, Lemma 1]). Let Ω1, . . . ,Ωm satisfy Assumption 3.4. Then there exists
a sequence of C∞ functions η1 ≤ η2 ≤ · · · : ∪mi=1∂

∗Ωi → [0, 1] supported in Mn∪Mn−1∪Mn−2

(using the notation of Assumption 3.4) such that

∀x ∈ ∪mi,j=1∂
∗Ωij, lim

u→∞
ηu(x) = 1,

lim
u→∞

∑
1≤i<j≤m

∫
Σij

[(1− ηu)2 + ‖∇(1− ηu)‖2]γn(x)dx = 0.

Proof. By Assumption 3.4, ∪mi=1∂Ωi \ (Mn ∪ Mn−1 ∪ Mn−2) has zero (n − 2)-dimensional
Hausdorff measure, so the assertion follows e.g. by [BBJ16, Lemma 1]. �

Lemma 5.5 (Non-Compact Variations). Let Ω1, . . . ,Ωm satisfy Assumption 3.4. Let
F,G ∈ F . Assume that ∑

1≤i<j≤m

∫
Σij

|Lijfij|2 γn(x)dx <∞.

Assume ∀ 1 ≤ i < j < k ≤ m, ∀ x ∈ (∂∗Σij) ∩ (∂∗Σjk) ∩ (∂∗Σki), the following holds at x.

∇νijfij + qijfij = ∇νjkfjk + qjkfjk = ∇νkifki + qkifki. (39)

Then Q(F, F ) and Q(F,G) are well-defined real numbers. Moreover,

Q(F, F ) = −〈LF, F 〉, Q(F,G) = −〈LF,G〉.

Also, ∃ a sequence φ1, φ2, . . . ∈ C∞0 (Σ) with 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ 1 on Rn+1 converging
pointwise to 1 such that

lim
u→∞

Q(φuF,G) = lim
u→∞

Q(φuF, φuG) = Q(F,G).

Proof. Let Σ := ∪1≤i<j≤mΣij. Let φ ∈ C∞0 (Σ) with 0 ≤ φ ≤ 1, φ = 1 when ‖x‖ ≤ r, φ = 0
when ‖x‖ > r + 2 and ‖∇φ‖ ≤ 1 on Σ. From Lemma 5.3,

Q(φF,G)−Q(F, φG) =
∑

1≤i<j≤m

∫
Σij

(
fij〈∇φ,∇gij〉+ gij〈∇φ,∇gij〉

)
γn(x)dx.

So, as r →∞, |Q(φF,G)−Q(F, φG)| converges to 0 by the Dominated Convergence Theo-
rem and the Cauchy-Schwarz inequality, using F,G ∈ F and Definition 5.1. By the assump-

tion (39) on F , Q(F, φG)
(35)
=
∑

1≤i<j≤m−
∫

Σij
φgijLijfijγn(x)dx. So, as r → ∞, Q(F, φG)

converges to 〈−LF,G〉. Therefore, as r → ∞, Q(φF,G) also converges to 〈−LF,G〉. The
second assertion follows from the first, since |Q(φF, φG)−Q(F, φ2G)| converges to zero as
r →∞ as well. �

6. Curvature Bounds

Below we denote Σ := ∪1≤i<j≤mΣij.

Remark 6.1. Let v ∈ Rn+1. For all 1 ≤ i < j ≤ m let fij : Σij → R be defined by
fij := 〈v,Nij〉. Then for all 1 ≤ i < j ≤ m, Lijfij = fij by Lemma 3.5 and Lemma 4.4.
Also, the term in Lemma 4.10 is zero, since X := v is the constant vector field in this case,
i.e. (39) holds.
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Lemma 6.2. Let Λ be the set of solutions of the middle equation of (28). Then Λ is a vector
space of dimension equal to m − 1. Also, Λ has an orthonormal basis (with respect to 〈·, ·〉
defined in Lemma 4.6) consisting of vectors all of whose components are nonzero.

Proof. From Lemma 4.6, Λ has dimension equal to m − 1. Consider the sets described in
Conjecture 1.3. These sets satisfy Hij(x) = 0 for every x ∈ Σij, and they also satisfy all
equations from (28), for any y ∈ Rm−1. We can then treat Nij as being constant functions
of y, so that λij(y) = −〈y,Nij〉 for all 1 ≤ i < j ≤ m is a solution of the equations (28).
By considering any y ∈ Rm−1, linear algebra also implies then that Λ has dimension at least
m−1, since the only y ∈ Rm−1 such that 〈y,Nij〉 = 0 for all 1 ≤ i < j ≤ m is y = 0. Finally,
choosing an orthonormal basis of y’s of Rm−1 so that each basis element is not perpendicular
to Nij for all 1 ≤ i < j ≤ m, then we have m− 1 nonvanishing solutions of (28). �

For any hypersurface Σ ⊆ Rn+1 (possibly with boundary), we define

δ = δ(Σ) := − inf
G∈F∩C∞0 (Σ): 〈G,G〉=1

Q(G,G). (40)

By the definition of δ,

Σ1 ⊆ Σ2 =⇒ δ(Σ1) ≤ δ(Σ2). (41)

Lemma 6.3 (Existence of Fundamental Tone). Assume δ := δ(Σ) < ∞. Then there
exists F ∈ F such that

Q(F, F ) = min
G∈F : 〈G,G〉=1

Q(G,G). (42)

If F ∈ F satisfies (42), then the following hold. F is an eigenfunction of L so that

LF = δF.

Moreover, ∀ 1 ≤ i < j < k ≤ m, ∀ x ∈ (∂∗Σij) ∩ (∂∗Σjk) ∩ (∂∗Σki), the following holds at x.

∇νijfij + qijfij = ∇νjkfjk + qjkfjk = ∇νijfij + qijfij.

Proof. First note that the set of functions G specified in (42) is nonempty by Lemma 6.2.
Fix x in the interior of Σ. Let Σ1 ⊆ Σ2 ⊆ · · · be a sequence of compact C∞ hypersurfaces

(with boundary) such that ∪∞k=1Σk = Σ. For each k ≥ 1, let Fk be a Dirichlet eigenfunc-
tion of L on Σk such that LFk = δ(Σk)Fk, and such that Fk does not change sign on any
connected component of Σ. By multiplying by a constant, we may assume Fk(x) = 1 for
all k ≥ 1. Since δ(Σk) increases to δ(Σ) < ∞ as k → ∞ by (40), the Harnack inequality
implies that there exists c = c(Σk, δ(Σ)) such that 1 ≤ supy∈B Fk(y) ≤ c infy∈B Fk(y) ≤ c
for some neighborhood B of x. Elliptic theory then gives uniform C2,σ bounds for the func-
tions F1, F2, . . . on each compact subset of Σ. So, by Arzelà-Ascoli there exists a uniformly
convergent subsequence of F1, F2, . . . which converges to a solution LF = δ(Σ)F on Σ with
F (x) = 1 such that F does not change sign on any connected component of Σ. The Harnack
inequality then implies F is nonzero on any connected component of Σ.

Let G ∈ F . For any t ∈ R, define

c(t) :=
Q(F + tG, F + tG)

〈F + tG, F + tG〉
−Q(F, F ).
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By definition of F , we have c(t) ≥ 0 ∀ t ∈ R. Therefore, c′(0) = 0. By Lemma 5.3,
Q(F,G) = Q(G,F ), so

c(t) =
Q(F, F ) + 2tQ(F,G) + t2Q(G,G)

〈F, F 〉+ 2t〈F,G〉+ t2〈G,G〉
−Q(F, F ),

0 = c′(0) =
〈F, F 〉Q(F,Q)−Q(F, F )〈F,G〉

〈F, F 〉2
.

Therefore, for any G ∈ F ,

Q(F,G) =
Q(F, F )

〈F, F 〉
〈F,G〉.

Fix 1 ≤ i < j ≤ m. Choosing G smooth and localized away from C then implies that

LF = −Q(F,F )
〈F,F 〉 F =: −δF on Σij for every 1 ≤ i < j ≤ m, away from their boundaries. Fix

1 ≤ i < j < k ≤ m. Choose the vector field X (where gpq := 〈X,Npq〉 for all 1 ≤ p < q ≤ m)
now such that gij = −gjk = 1 and gki = 0 at some x ∈ (∂∗Σij)∩ (∂∗Σjk)∩ (∂∗Σki), and such
that X is supported in a neighborhood of x. Then the definition of Q(F,G) implies that
∇νijfij + qijfij = ∇νjkfjk + qjkfjk. (This argument is valid as long as the sign of fij, fjk, fki
are not all the same at x. It cannot occur that all three of these numbers have the same sign,
since they must sum to zero at x, and by the definition of F , these three functions cannot
all have the same sign in a neighborhood of x, by the limiting definition of F .)

�

A rearrangement argument implies the following decay for the Gaussian surface area of
optimal sets far from the origin.

Lemma 6.4 ([MN18a, Lemma 4.3]). Let Ω1, . . . ,Ωm minimize Problem 1.2. Then for all
r >
√
n+ 1 + ‖w‖∑

1≤i<j≤m

γn(Σij ∩ {x ∈ Rn+1 : ‖x− w‖ > r}) ≤ 3mγn({x ∈ Rn+1 : ‖x‖ = r}).

Also, for all u ∈ Rn+1 with ‖u‖ = 1, and for all r > 1 + ‖w‖,∑
1≤i<j≤m

γn(Σij ∩ {x ∈ Rn+1 : |〈x− w, u〉| > r}) ≤ 2me−(r+‖w‖)2/2.

Proof. We prove both statements simultaneously. Let H(w, r) denote either the ball {x ∈
Rn+1 : ‖x− w‖ ≤ r} or the slab {x ∈ Rn+1 : |〈x− w, u〉| ≤ r}. Let α, r > 0. Without loss
of generality, assume that

γn+1(Ω1 ∩H(w, r)c) ≤ γn+1(Ω2 ∩H(w, r)c) ≤ · · · ≤ γn+1(Ωm ∩H(w, r)c).

Let r = b0 ≤ b1 ≤ · · · ≤ bm such that for all 1 ≤ i ≤ m, γn+1(Ωi∩H(w, r)c) = γn+1(H(w, bi)\
H(w, bi−1)). For any 1 ≤ i ≤ m, define

Ω̃i := (Ωi \H(w, r)) ∪ (H(w, bi) \H(w, bi−1)), Σ̃ij := (∂∗Ω̃i) ∩ (∂∗Ω̃j).
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Then γn+1(Ωi) = γn+1(Ω̃i) for all 1 ≤ i ≤ m. Also, since Ω1, . . . ,Ωm minimize Problem 1.2,∑
1≤i<j≤m

γn(Σij) + ε

√
π

2

m∑
i=1

‖
∫

Ωi

(x− w(i))γn+1(x)dx‖2

≤
∑

1≤i<j≤m

γn(Σ̃ij) + ε

√
π

2

m∑
i=1

‖
∫

Ω̃i

(x− w(i))γn+1(x)dx‖2.

Using
√

π
2

∑m
i=1 ‖

∫
Ω̃i

(x − w(i))γn+1(x)dx‖2 −
√

π
2

∑m
i=1 ‖

∫
Ωi

(x − w(i))γn+1(x)dx‖2 ≤ 0 and
rearranging gives∑

1≤i<j≤m

γn(Σij ∩ {x ∈ Rn+1 : ‖x‖ > r})
m∑
i=1

γn(∂H(w, bi−1) ∪ ∂H(w, bi))

In the case that H(w, bi) is a ball for each 1 ≤ i ≤ m, this quantity is bounded by 2mγn({x ∈
Rn+1 : ‖x− w‖ = r}), using also r >

√
n+ 1 + ‖w‖. In the case that H(w, bi) is a slab for

each 1 ≤ i ≤ m, this quantity is bounded by 2mγn({x ∈ Rn+1 : ‖x1 − ‖w‖‖ = r}), using
also r > 1 + ‖w‖. In the �

Lemma 6.5. Let Ω ⊆ Rn+1. Let z :=
∫

Ω
xγn+1(x)dx. Then

‖z‖ ≤ 1√
2π
.

Proof. By duality of the `2 norm, let ω ∈ Rn+1 with ‖ω‖ = 1 such that∥∥∥∥∫
Ω

xγn+1(x)dx

∥∥∥∥ =
〈 ∫

Ω

xγn+1(x)dx, ω
〉

=

∫
Ω

〈x, ω〉γn+1(x)dx.

Then ∥∥∥∥∫
Ω

xγn+1(x)dx

∥∥∥∥ ≤ ∫
{x∈Rn+1 : 〈x,ω〉≥0}

〈x, ω〉γn+1(x)dx =

∫ ∞
0

x1γ1(x1)dx1 =
1√
2π
.

�

Lemma 6.6. Let Ω1, . . . ,Ωm minimize Problem 1.4. Then δ <∞.

Proof. Consider a Dirichlet eigenfunction supported in a large ball. By Lemma 6.3,

LF = δF.

Moreover, ∀ 1 ≤ i < j < k ≤ m, ∀ x ∈ (∂∗Σij) ∩ (∂∗Σjk) ∩ (∂∗Σki), the following holds at x.

∇νijfij + qijfij = ∇νjkfjk + qjkfjk = ∇νijfij + qijfij. (43)

Let ` from Lemma 2.2. Suppose ` < m − 1, so that, after rotation we may assume
that Ωi = Ω′i × R for all 1 ≤ i ≤ m. Assume for the sake of contradiction that δ can be
arbitrarily large. By replacing F with F (· · · , xn+1) + F (· · · ,−xn+1), we may assume that
F (· · · , xn+1) = F (· · · ,−xn+1). Then G := xn+1F contradicts the minimality of Ω1, . . . ,Ωm

since

Lijgij
(5)
= xn+1Lijfij + fijLijxn+1 + 〈∇f,∇(xn+1)〉 = xn+1Lijfij − fijxn+1.

Here Lij := ∆ − 〈x,∇〉. By (3) and Fubini’s Theorem, if we first integrate with respect to
xn+1, we see that (gij)1≤i<j≤m is automatically Gaussian volume-preserving, so that (3) is
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zero for all 1 ≤ i < j ≤ m. Then the second variation condition from Lemma 4.8 applies,
and we get

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

)

=
∑

1≤i<j≤m

−
∫

Σij

fij[Lijfij − ε〈X, z(i) − z(j)〉]γn(x)dx+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X, νij〉γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

The middle term is zero by Lemma 4.10 and (43). The ε term is bounded by
∥∥z(i) − z(j)

∥∥ f 2
ij,

and the last term is bounded by the Cauchy-Schwarz inequality as

ε
√

2π
∑

1≤i,j≤m

∫
Σij

∥∥x− w(i)
∥∥2
γn+1(x)dx ·

∫
Σij

f 2
ijγn+1(x)dx.

The term on the left is bounded by Lemma 6.4. In summary,

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

)

≤ −
∑

1≤i<j≤m

∫
Σij

f 2
ijγn(x)dx ·

(
δ − ε

∥∥z(i) − z(j)
∥∥− ∫

Σij

∥∥x− w(i)
∥∥2
γn+1(x)dx

)
.

So, in the case ` < m − 1, we cannot have arbitrarily large δ, since this would contradict
the minimality of Ω1, . . . ,Ωm for Problem 1.4. (The two right-most terms are bounded by
Lemmas 6.4 and 6.5.)

In the case ` = m − 1, there exists v ∈ Rn+1, such that 〈v,N〉 + F is volume preserving,
i.e. (3) holds for all 1 ≤ i ≤ m. Then Lemma 6.7 together with Lemma 10.2 gives

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

)

=
∑

1≤i<j≤m

∫
Σij

(
− fijLijfij − fij〈v,Nij〉 − 〈X, v〉+ ε〈X, z(i) − z(j)〉 − ‖v‖2 + 〈x, v〉2

− 2

∫
Σij

(Hij − 〈x,Nij〉)fij〈x, v〉γn(x)dx+

∫
Σij

(Hij − 〈x,Nij〉)[fijγn(x)dx]′

+ ε
∑

1≤i<j≤m

∫
Σij

(
〈x, z(i) − z(j)〉+ 〈w,w(i) − w(j) + z(j) − z(i)〉

)
[fijγn(x)dx]′

+ ε
√

2π
m∑
i=1

‖
∑
j 6=i

∫
Σij

(fij + 〈v,Nij〉)(x− w(i))‖2
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Applying (28), and using
∑

1≤i<j≤m λij
∫

Σij
[fijγn(x)dx]′ = 0 by Lemma 4.6,

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

)

=
∑

1≤i<j≤m

∫
Σij

(
− fijLijfij − fij〈v,Nij〉 − 〈X, v〉+ ε〈X, z(i) − z(j)〉 − ‖v‖2 + 〈x, v〉2

− 2

∫
Σij

(Hij − 〈x,Nij〉)fij〈x, v〉γn(x)dx+ λij

∫
Σij

[fijγn(x)dx]′

+ ε
√

2π
m∑
i=1

‖
∑
j 6=i

∫
Σij

(fij + 〈v,Nij〉)(x− w(i))‖2

=
∑

1≤i<j≤m

∫
Σij

(
− fijLijfij − fij〈v,Nij〉 − 〈X, v〉+ ε〈X, z(i) − z(j)〉 − ‖v‖2 + 〈x, v〉2

− 2

∫
Σij

(Hij − 〈x,Nij〉)fij〈x, v〉γn(x)dx+ ε
√

2π
m∑
i=1

‖
∑
j 6=i

∫
Σij

(fij + 〈v,Nij〉)(x− w(i))‖2

Using again (28) and several applications of the Cauchy-Schwarz inequality, the first term is
δf 2

ij, while the remaining terms are all bounded by products of (
∑

1≤i<j≤m
∫

Σij
f 2
ijγn(x)dx)1/2,

(
∑

1≤i<j≤m
∫

Σij
〈v,Nij〉2γn(x)dx)1/2 and other finite terms (repeating the bounds from the

case ` < m− 1.) So, it is once again impossible that δ can be made arbitrarily large. That
is, we have found a contradiction in either case. We conclude that δ <∞. �

Lemma 6.7. Let x(0) = x, x(s)′ = v, x(s)′′ = 0, and let Ω(s), Σ(s) as in Section 4. Then

d

ds

∫
Σ(s)+x(s)

γn(x)dx

=
∑

1≤i<j≤m

∫
Σij

(
− fijLfij − fij〈v,Nij〉 − 〈X, v〉 − ‖v‖2

)
γn(x)dx+

∫
Σij

〈x, v〉2γn(x)dx

− 2λij

∫
Σij

fij〈x, v〉γn(x)dx+ λij

∫
Σij

[fijγn(x)dx]′

+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X + v, νij〉γn(x)dx.

Proof. Let Σ be an n-dimensional C∞ hypersurface with boundary. We let ′ denote ∂
∂s
|s=0.

d

ds

∫
Σ(s)+x(s)

γn(x)dx =

∫
Σ(s)

[
(H(x)− 〈N(x), x+ x(s)〉)f(x)− 〈x+ x(s), x(s)′〉

]
γn(x+ x(s))dx

+

∫
∂∗Σ(s)

〈X + x(s)′, ν〉γn(x+ x(s))dx.
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Taking another derivative,

d2

ds2
|s=0

∫
Σ(s)+x(s)

γn(x)dx =

∫
Σ

(H(x)− 〈N(x), x+ x(s)〉)′f(x)− 〈(x+ x(s))′, x(s)′〉γn(x)dx

+

∫
Σ

[(H − 〈x,N〉)f(x)− 〈x, x(s)′〉]2γn(x)dx

+

∫
Σ

(H − 〈x,N〉)f ′(x)− 〈x, x(s)′′〉+
d

ds
|s=0

∫
∂∗Σ(s)

〈X + x(s)′, ν〉γn(x+ x(s))dx.

From (22), x′ = X = XN +XT = fN +XT . Also, H ′ = −∆f −‖A‖2 f , N ′ = −∇f , [CM12,
A.3, A.4] (the latter calculations require writing Σ(s) in the form {x+ sN(x) +Ox(s

2) : x ∈
Σ}). So,

(H − 〈N, x+ x(s)〉)′ = −∆f − ‖A‖2 f − 〈N, fN +XT + x(s)′〉 − 〈x,∇f〉 (16)
= −Lf − 〈v,N〉.

〈(x+ x(s))′, x(s)′〉 = 〈X + v, v〉 = 〈X, v〉+ ‖v‖2 .

In summary,

d2

ds2
|s=0

∫
Σ(s)

γn(x)dx =

∫
Σ

(
− fLf − f〈v,N〉 − 〈X, v〉 − ‖v‖2

)
γn(x)dx

+

∫
Σ

[(H − 〈x,N〉)f(x)− 〈x, v〉]2γn(x)dx

+

∫
Σ

(H − 〈x,N〉)f ′(x) +
d

ds
|s=0

∫
∂∗Σ(s)

〈X + v, ν〉γn(x)dx

+

∫
∂∗Σ

〈X + x(s)′′, ν〉γn(x)dx+

∫
∂∗Σ

〈X + v, ν〉〈x,−v〉γn(x)dx.

Summing over all 1 ≤ i < j ≤ m,

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx =
∑

1≤i<j≤m

∫
Σij

(
− fijLfij − fij〈v,Nij〉 − 〈X, v〉

− ‖v‖2
)
γn(x)dx+

∫
Σij

((Hij − 〈x,Nij〉)fij − 〈x, v〉)2γn(x)dx

+

∫
Σij

(Hij − 〈x,Nij〉)f ′ijγn(x)dx+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X + v, νij〉γn(x)dx

=
∑

1≤i<j≤m

∫
Σij

(
− fijLfij − fij〈v,Nij〉 − 〈X, v〉 − ‖v‖2

)
γn(x)dx+

∫
Σij

〈x, v〉2γn(x)dx

− 2

∫
Σij

(Hij − 〈x,Nij〉)fij〈x, v〉γn(x)dx

+

∫
Σij

(Hij − 〈x,Nij〉)(f ′ij +Hij − 〈x,Nij〉)γn(x)dx+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X + v, νij〉γn(x)dx
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=
∑

1≤i<j≤m

∫
Σij

(
− fijLfij − fij〈v,Nij〉 − 〈X, v〉 − ‖v‖2

)
γn(x)dx+

∫
Σij

〈x, v〉2γn(x)dx

− 2

∫
Σij

(Hij − 〈x,Nij〉)fij〈x, v〉γn(x)dx+

∫
Σij

(Hij − 〈x,Nij〉)[fijγn(x)dx]′

+
d

ds
|s=0

∫
∂∗Σ

(s)
ij

〈X + v, νij〉γn(x)dx.

�

The following curvature bound is adapted from [MR15, Lemma 5.1].

Lemma 6.8. Let Ω1, . . . ,Ωm minimize Problem 1.2. Then ∀ φ ∈ C∞0 (Σ),∑
1≤i<j≤m

∫
Σij

φ2 ‖A‖2 γn(x)dx ≤
∑

1≤i<j≤m

∫
Σij

(
(δ − 1)φ2 + ‖∇φ‖2

)
γn(x)dx.

Proof. Let G := {αij}1≤i<j≤m be a solution to the system of middle equations of (28). Let
φ ∈ C∞0 (Rn+1). By the definition (40) of δ,

−Q(φG, φG) ≤ δ〈φG, φG〉.

That is, by Lemma 5.3∑
1≤i<j≤m

∫
Σij

α2
ij(−‖∇φ‖

2 + φ2(‖A‖2 + 1))γn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

φ2
(
qijα

2
ij + qjkα

2
jk + qkiα

2
ki

)
γn(x)

≤ δ
∑

1≤i<j≤m

∫
Σij

φ2α2
ijγn(x)dx.

Summing these quantities over all permutations of {1, . . . ,m}, i.e. permuting {αij}1≤i<j≤m,
the middle term vanishes by Remark 4.9, and we get∑

1≤i<j≤m

∫
Σij

(−‖∇φ‖2 + φ2(‖A‖2 + 1))γn(x)dx ≤ δ
∑

1≤i<j≤m

∫
Σij

φ2γn(x)dx.

Rearranging completes the proof.
�

Lemma 6.9 ([Zhu16, Lemma 6.2]). Let Ω1, . . . ,Ωm minimize Problem 1.2. If
∫

Σ
(|φ|2 +

‖∇φ‖2)γn(x)dx <∞ and if φ is bounded, then∫
Σ

φ2(‖A‖2 + 1)γn(x)dx ≤
∫

Σ

(‖∇φ‖2 + (δ − 1)φ2)γn(x)dx.

Proof. Apply Lemma 6.8, Lemma 5.4 and Fatou’s Lemma. �

The following Lemmas follow from Lemma 6.9.
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Lemma 6.10. Let Ω1, . . . ,Ωm minimize Problem 1.2. Then∑
1≤i<j≤m

∫
∂∗Ωij

‖A‖2 γn(x)dx <∞.

Consequently, for any v ∈ Rn+1, by (14),∑
1≤i<j≤m

∫
∂∗Ωij

‖∇〈v,N〉‖2 γn(x)dx <∞

Proof. Use Lemma 6.9, (14) and Lemma 6.6. �

7. Dimension Reduction

Recall that for all 1 ≤ i ≤ m,

z(i) :=

∫
Ωi

xγn+1(x)dx ∈ Rn+1. (44)

Theorem 7.1 (Dimension Reduction for Gaussian Minimal Bubbles). Suppose
Ω1, . . .Ωm ⊆ Rn+1 minimize Problem 1.4 with ε := 1

100
(m + ‖w‖2)−1. There exists 0 ≤

` ≤ m− 1 and there exist Ω′1, . . . ,Ω
′
m ⊆ R` such that, after rotating Ω1, . . . ,Ωm, we have

Ωi = Ω′i × Rn−`+1.

Moreover ` can be chosen to be the dimension of the span of{(∫
∂∗Ω1

∑
j∈{1,...,m} :

j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} :

j 6=m

〈v,Nmj〉γn(x)dx
)
∈ Rm : v ∈ Rn+1

}
.

Proof. For any v ∈ Rn+1, define

T (v) :=
(∫

∂∗Ω1

∑
j∈{1,...,m} : j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} : j 6=m

〈v,Nmj〉γn(x)dx
)
.

Then T : Rn+1 → Rm is linear. By the rank-nullity theorem, the dimension of the kernel of
T plus the dimension of the image of T is n+ 1. Since the sum of the indices of T (v) is zero
for any v ∈ Rn+1 (since Nij = −Nji ∀ 1 ≤ i < j ≤ m by Definition 4.3), the dimension ` of
the image of T is at most m− 1.

Let v in the kernel of T . For any 1 ≤ i < j ≤ m, let fij := φ〈v,Nij〉. Let X := φv be the
chosen vector field. Since Ω1, . . . ,Ωm minimize Problem 1.4,

0 ≤ d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2.

From Lemmas 4.8, 4.10, 5.5, 4.7, and then letting φ increase monotonically to 1 (as in Lemma
5.5),

0 ≤
∑

1≤i<j≤m

−
∫

Σij

fij[Lijfij − ε〈X, z(i) − z(j)〉]γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.
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Since T (v) = 0, 〈v, z(i)〉 = 0 for all 1 ≤ i ≤ m by Lemma 7.2. So,

0 ≤
∑

1≤i<j≤m

−
∫

Σij

fijLijfijγn(x)dx+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

By Lemma 3.5,

0 ≤
∑

1≤i<j≤m

∫
Σij

−f 2
ij + εfij〈v, z(i) − z(j)〉 − εf 2

ij〈z(i) − z(j), N〉γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

Using again T (v) = 0, we get

0 ≤
∑

1≤i<j≤m

∫
Σij

−f 2
ij − εf 2

ij〈z(i) − z(j), N〉γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

For each 1 ≤ i ≤ m, by duality of the `2 norm, ∃ ω(i) ∈ Rn+1 with ‖ω(i)‖ = 1 such that

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖ =
〈 ∑
j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx, ω(i)
〉

=
∑

j∈{1,...,m} : j 6=i

∫
Σij

〈(x− w(i)), ω(i)〉fijγn+1(x)dx.

So, we apply the Cauchy-Schwarz inequality to the last term to get

0 ≤
∑

1≤i<j≤m

−
∫

Σij

f 2
ijγn(x)dx ·

(
1− ε

∥∥z(i) − z(j)
∥∥− ε√2π

∫
Σij

〈x− w(i), ω(i)〉2γn(x)dx

)
.

By Lemma 6.5 and the second part of Lemma 6.4, if ε < 1
100

(m+‖w‖2)−1, then the last term is
positive. In summary, for any v in the kernel of T , ∀ 1 ≤ i < j ≤ m, fij(x) = 〈v,Nij(x)〉 = 0
for all x ∈ Σij. That is, ∃ 0 ≤ ` ≤ m − 1 as stated in the conclusion of Theorem 2.1, since
the image of T is the span of{(∫

∂∗Ω1

∑
j∈{1,...,m} :

j 6=1

〈v,N1j〉γn(x)dx, . . . ,

∫
∂∗Ωm

∑
j∈{1,...,m} :

j 6=m

〈v,Nmj〉γn(x)dx
)
∈ Rm : v ∈ Rn+1

}
.

�

The Divergence Theorem implies the following

Lemma 7.2. Let Ω ⊆ Rn+1 be a C∞ manifold with boundary. Then∫
Ω

xγn+1(x)dx = −
∫
∂Ω

Nγn+1(x)dx. (45)

34



8. Flatness

Recall the definition of z(i) from (44).

Lemma 8.1 (Flatness, Version 1). Suppose Ω1, . . .Ωm ⊆ Rn+1 minimize Problem 1.4 with
ε := 1

100
(m+ ‖w‖2)−1. Then for all 1 ≤ i < j ≤ m, z(i) − z(j) is parallel to Nij; moreover if

z(i) − z(j) 6= 0, then Σij is a union of relatively open subsets of hyperplanes.

Proof of Lemma 8.1. Assume for now that n+1 > m−1 so that n−`+1 ≥ n−(m−1)+1 > 0
in Theorem 2.1. Then after rotating Ω1, . . . ,Ωm, we have

Ωi = Ω′i × R.

Let {αij}1≤i<j≤m be constants guaranteed to exist by Lemma 6.2. Let fij := αij for all
1 ≤ i < j ≤ m. Define now a new function gij := xn+1fij. Since fij is only a function of the
variables x1, . . . , xn, we have 〈∇f,∇(xn+1)〉 = 0. So, for any 1 ≤ i < j ≤ m, the product
rule for Lij (Remark 3.6) gives

Lijgij
(5)
= xn+1Lijfij + fijLijxn+1 + 〈∇f,∇(xn+1)〉 = xn+1Lijfij − fijxn+1. (46)

Here Lij := ∆ − 〈x,∇〉. By (3) and Fubini’s Theorem, if we first integrate with respect to
xn+1, we see that (gij)1≤i<j≤m is automatically Gaussian volume-preserving, so that (3) is
zero for all 1 ≤ i < j ≤ m. Then the second-variation condition applies, and we get, using
Lemma 4.8

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

gij[Lijgij − ε〈X, z(i) − z(j)〉]γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2.

Using the definition of gij this simplifies to

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

∫
Σij

[−x2
n+1α

2
ij ‖A‖

2 + εαijx
2
n+1〈X, z(i) − z(j)〉]γn(x)dx

+ ε
√

2π
m∑
i=1

∥∥∥∥∥∥
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))xn+1αijγn+1(x)dx

∥∥∥∥∥∥
2

.
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Or, after integrating with respect to xn+1,

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

=
∑

1≤i<j≤m

∫
Σ′ij

[−α2
ij ‖A‖

2 + εαij〈X, z(i) − z(j)〉]γn−1(x)dx

+ ε
√

2π
m∑
i=1

( ∑
j∈{1,...,m} : j 6=i

∫
Σ′ij

αijγn(x)dx
)2

.

The quantity 〈X, z(i) − z(j)〉 is the only term in the above expression that can possibly
depend on the tangential component of X (i.e. X −〈X,Nij〉Nij). This term can be changed
arbitrarily by adding a tangential component to X while leaving the other terms the same.
Therefore, for all 1 ≤ i < j ≤ m, we must have z(i)− z(j) parallel to Nij. So, if any z(i)− z(j)

is nonzero, Nij must be a constant multiple of z(i) − z(j), so that Σij is flat �

Remark 8.2. The above argument crucially relies on Theorem 7.1. Without Theorem 7.1,
the vector field X could not satisfy the properties used above, while preserving the Gaussian
volumes of all of the sets.

Remark 8.3. It is possible to show that z(i)− z(j) 6= 0 for all 1 ≤ i < j ≤ m in Lemma 8.1,
albeit with a nonexplicit constant ε.

To see this, suppose there exists a sequence ε1 > ε2 > · · · tending to zero such that,
without loss of generality, z(1) − z(2) 6= 0 for a minimizer of∑

1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ εk

√
π

2

m∑
i=1

‖
∫

Ωi

(x− w(i))γn+1(x)dx‖2, ∀k ≥ 1.

Suppose the minimal sets are Ω1,k, . . . ,Ωm,k. By Theorem 7.1, we may assume Ω1,k, . . . ,Ωm,k ⊆
Rm−1. In fact, by Theorem 7.1, we may assume that Ω1,k, . . . ,Ωm,k ⊆ Rm−2. We now argue
as in [BBJ16, Proposition 1]. By taking a subsequence (and relabeling the original sequence
as this subsequence), ∃ Ω1, . . . ,Ωm ⊆ Rm−2 such that 1Ωi,k converges to 1Ωi as k →∞, for all
1 ≤ i ≤ m, in the local L1(γm−2) sense. But this violates Conjecture 1.3, i.e. the (uniqueness
part of the) main result of [MN18b]. The sets of minimal surface area cannot be described
as subsets of Rm−2.

In the cases m ≤ 4, we can upgrade Remark 8.3 in order to get an explicit bound on ε.
Cases of larger m seem increasingly difficult at present.

Lemma 8.4 (Flatness, Version 2). Suppose Ω1, . . .Ωm ⊆ Rn+1 minimize Problem 1.4 with
ε := 1

100
(m + ‖w‖2)−1. If 1 ≤ m ≤ 5, then for all 1 ≤ i ≤ m, ∂Ωi consists of a union of

relatively open subsets of hyperplanes.

Proof. From Lemma 6.2, there exists an (m− 1)-dimensional space of X such that for each
1 ≤ i < j ≤ m, 〈X,Nij〉 =: αij is constant on Σij. Let v ∈ Rn+1 and for any 1 ≤ i < j ≤ m
consider the functions

fij := αij + 〈v,Nij〉. (47)
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More specifically, consider the second variation of this function from Lemma 4.8. This
quantity is equal to

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

(αij + 〈v,Nij〉)[Lij(αij + 〈v,Nij〉)− ε〈X, z(i) − z(j)〉]γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
[∇νijfij + qijfij]fij + [∇νjkfjk + qjkfjk]fjk

+ [∇νkifki + qkifki]fki

)
γn(x)dx.

From Lemma 3.5, Lij〈v,Nij〉 = 〈v,Nij〉 − ε〈v, z(i) − z(j)〉 + ε〈v,Nij〉〈Nij, z
(i) − z(j)〉 and by

Remark 6.1, ∀ 1 ≤ i < j < k ≤ m, ∀ x ∈ ∂∗Σij ∩ ∂∗Σjk ∩ ∂∗Σki,

∇νij〈v,Nij〉+ qij〈v,Nij〉 = ∇νjk〈v,Njk〉+ qjk〈v,Njk〉 = ∇νki〈v,Nki〉+ qki〈v,Nki〉. (48)

Therefore, using also (5), ∇αij = 0 for all 1 ≤ i < j ≤ m, and fij + fjk + fki = 〈X,Nij +
Njk +Nki〉 = 0, since Nij +Njk +Nki = 0 by Lemma 3.3,

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

(αij + 〈v,Nij〉)
(
αij(‖A‖2 + 1) + 〈v,Nij〉 − ε〈v, z(i) − z(j)〉

+ ε〈v,Nij〉〈Nij, z
(i) − z(j)〉 − ε〈X, z(i) − z(j)〉

)
γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
[qijαij]fij + [qjkαjk]fjk + [qkiαki]fki

)
γn(x)dx.

(49)
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Integrating by parts, (which is justified by Lemmas 5.3 and 6.10),

∑
1≤i<j≤m

∫
Σij

αij

(
〈v,Nij〉 − ε〈v, z(i) − z(j)〉+ ε〈v,Nij〉〈Nij, z

(i) − z(j)〉
)
γn(x)dx

(19)
=

∑
1≤i<j≤m

∫
Σij

αijLij〈v,Nij〉γn(x)dx

=
∑

1≤i<j≤m

∫
Σij

αijdivτ [γn(x)∇〈v,Nij〉] + αij〈v,Nij〉(‖A‖2 + 1)γn(x)dx

=
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
αij∇νij〈v,Nij〉+ αjk∇νjk〈v,Njk〉+ αki∇νki〈v,Nki〉

)
γn(x)dx

+
∑

1≤i<j≤m

∫
Σij

αij〈v,Nij〉(‖A‖2 + 1)γn(x)dx.

Above we denoted divτ as the (tangential) divergence on Σij. Subtracting the last term from
the first term, we get

∑
1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

αij∇νij〈v,Nij〉+ αjk∇νjk〈v,Njk〉+ αki∇νki〈v,Nki〉γn(x)dx

= −
∑

1≤i<j≤m

∫
Σij

αij

(
〈v,Nij〉 ‖A‖2 + ε〈v, z(i) − z(j)〉 − ε〈v,Nij〉〈Nij, z

(i) − z(j)〉
)
γn(x)dx.

Substituting back into (49), and then canceling terms using (48),
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d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

(
(αij + 〈v,Nij〉)2 + ‖A‖2 α2

ij

)
γn(x)dx

+ ε
∑

1≤i<j≤m

∫
Σij

αij

(
〈v, z(i) − z(j)〉 − 〈v,Nij〉〈Nij, z

(i) − z(j)〉
)
γn(x)dx

+ ε
∑

1≤i<j≤m

∫
Σij

(αij + 〈v,Nij〉)
(
〈v, z(i) − z(j)〉 − 〈v,Nij〉〈Nij, z

(i) − z(j)〉

+ 〈X, z(i) − z(j)〉
)
γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
αij[fijqij +∇νij〈v,Nij〉] + αjk[fjkqjk +∇νjk〈v,Njk〉]

+ αki[fkiqki +∇νki〈v,Nki〉]
)
γn(x)dx

=
∑

1≤i<j≤m

−
∫

Σij

(
(αij + 〈v,Nij〉)2 + ‖A‖2 α2

ij

)
γn(x)dx

+ ε
∑

1≤i<j≤m

∫
Σij

(αij + 〈v,Nij〉)
(
〈v, z(i) − z(j)〉 − 〈v,Nij〉〈Nij, z

(i) − z(j)〉
)
γn(x)dx

+ ε
∑

1≤i<j≤m

∫
Σij

(αij + 〈v,Nij〉)〈X, z(i) − z(j)〉γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx.
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From Lemma 8.1, 〈v− 〈v,Nij〉, z(i)− z(j)〉 = 0 for all 1 ≤ i < j ≤ m. Since X = αNij + v,
we then rewrite the middle term and get

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

(
(αij + 〈v,Nij〉)2(1− ε

∥∥z(i) − z(j)
∥∥) + ‖A‖2 α2

ij

)
γn(x)dx

+ ε
√

2π
m∑
i=1

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx.

For each 1 ≤ i ≤ m, by duality of the `2 norm, ∃ ω(i) ∈ Rn+1 with ‖ω(i)‖ = 1 such that

‖
∑

j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖ =
〈 ∑
j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx, ω(i)
〉

=
∑

j∈{1,...,m} : j 6=i

∫
Σij

〈(x− w(i)), ω(i)〉fijγn+1(x)dx.

So, we apply the Cauchy-Schwarz inequality to the middle term to get

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)

=
∑

1≤i<j≤m

−
∫

Σij

(
(αij + 〈v,Nij〉)2

[
1− ε

∥∥z(i) − z(j)
∥∥− ε√2π

∫
Σij

〈x− w(i), ω(i)〉γn(x)dx
]

+ ‖A‖2 α2
ij

)
γn(x)dx

+
∑

1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx.

By Lemma 6.5 and the second part of Lemma 6.4, if ε < 1
100

(m + ‖w‖2)−1, then the first
term is positive. So, it remains to find αij values such that the last term is nonpositive.

In the case m = 3, there is nothing to prove. If (without loss of generality) z(1) − z(2) =
0, then Theorem 7.1 and Lemma 7.2 imply that Ω1, . . . ,Ωm ⊆ R. On the other hand,
z(i) − z(j) 6= 0 for all 1 ≤ i < j ≤ m, then Lemma 8.1 implies that each Σij is flat. So, in
either case there is nothing to prove.

We therefore consider m = 4. If (without loss of generality) z(1)−z(2) = 0 and z(3)−z(4) =
0, then Theorem 7.1 and Lemma 7.2 imply that Ω1, . . . ,Ωm ⊆ R. If, z(i) − z(j) 6= 0 for all
1 ≤ i < j ≤ m, then Lemma 8.1 implies that each Σij is flat. So, the only remaining case to
consider is that (without loss of generality) z(1) − z(2) = 0 and z(i) − z(j) 6= 0 for every other
1 ≤ i < j ≤ m. Lemma 8.1 implies that each Σij is flat for every 1 ≤ i < j ≤ m except
i = 1, j = 2. Looking back at the definition of qij before (6), we see that most terms of the
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following sum are zero except for four of them:∑
1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx

=

∫
∂∗Σ12∩∂∗Σ23∩∂∗Σ31

(
α2

23q23 + α2
31q31

)
γn(x)dx

+

∫
∂∗Σ12∩∂∗Σ24∩∂∗Σ41

(
α2

24q24 + α2
41q41

)
γn(x)dx.

Moreover, since Nij = −Nji, we have q23 = −q31 and q24 = −q41 so that∑
1≤i<j<k≤m

∫
∂∗Σij∩∂∗Σjk∩∂∗Σki

(
α2
ijqij + α2

jkqjk + α2
kiqki

)
γn(x)dx

=

∫
∂∗Σ12∩∂∗Σ23∩∂∗Σ31

(
α2

23 − α2
31

)
q23γn(x)dx+

∫
∂∗Σ12∩∂∗Σ24∩∂∗Σ41

(
α2

24 − α2
41

)
q24γn(x)dx.

So, choosing αij such that αij = 1{i=3} − 1{j=3} or αij = 1{i=4} − 1{j=4}, or any linear
combination of these two, the above quantity is zero.

In summary, there exists a 4-dimensional space of vector fields of the form X = v+αijNij

(two dimensions of vectors v since Ω1, . . . ,Ωm ⊆ R2, and two dimensions of the αij terms
just described) such that

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)
< 0,

if the Gaussian volumes of the sets are preserved by the vector field. Since this space is
4-dimensional, there must exist a nonzero vector field X such that

d2

ds2
|s=0

( ∑
1≤i<j≤m

∫
Σ

(s)
ij

γn(x)dx+ ε

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2
)
< 0,

and d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for all 1 ≤ i ≤ 3 (and also for i = 4 since ∪4

i=1Ωi = Rn+1.) This
violates the minimality of the sets, achieving a contradiction, and concluding the proof when
m = 4.

The case m = 5 seems more difficult since there are more possibilities for the sign of the
quadratic form in α2

ij terms, so we do not attempt it here. �

9. A General Second Variation Formula

The main technical ingredient to investigate noise stability is a general second variation
formula for quadratic integral functionals, Theorem 9.1 below. We investigate this formula
in the next few sections.

Let Ω ⊆ Rn+1 be a C∞ manifold with boundary. Suppose Ω has reduced boundary Σ,
and let N : Σ → Sn−1 denote the unit exterior normal to Σ. Let X : Rn+1 → Rn+1 be a
vector field. Let div denote the divergence of a vector field. We write X in its components
as X = (X1, . . . , Xn+1), so that divX =

∑n+1
i=1

∂
∂xi
Xi. Let Ψ: Rn+1 × (−1, 1) → Rn+1 such

that Ψ(x, 0) = x and such that d
ds
|s=0Ψ(x, s) = X(Ψ(x, s)) for all x ∈ Rn+1, s ∈ (−1, 1). For
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any s ∈ (−1, 1), let Ω(s) = Ψ(Ω, s). Note that Ω(0) = Ω. Let G : Rn+1 × Rn+1 → R be a
Schwartz function. For any x ∈ Rn+1 and any s ∈ (−1, 1), define

V (x, s) :=

∫
Ω(s)

G(x, y)dy. (50)

Below, when appropriate, we let dx denote Lebesgue measure, restricted to a surface
Σ ⊆ Rn+1.

Theorem 9.1 (General Second Variation Formula, [CS07, Theorem 2.6]; also [Hei15,
Theorem 1.10]). Let F (Ω) :=

∫
Rn+1

∫
Rn+1 1Ω(x)G(x, y)1Ω(y)dxdy. Then

1

2

d2

ds2
F (Ω(s))|s=0 =

∫
Σ

∫
Σ

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉dxdy

+

∫
Σ

div(V (x, 0)X(x))〈X(x), N(x)〉dx.

Remark 9.2. The functional F (Ω) is sometimes called an interaction energy in the optimal
transport literature.

10. Applications of the Second Variation Formula

10.1. Second Variation of Gaussian Measure. Our first use of Theorem 9.1 will be the
computation of the second variation of the Gaussian measure of a set.

Lemma 10.1. Let G(x, y) = γn+1(x)γn+1(y), ∀ x, y ∈ Rn+1. Let Ω ⊆ Rn+1 be a C∞ manifold
with boundary. Let

F (Ω) :=

∫
Rn+1

∫
Rn+1

1Ω(x)G(x, y)1Ω(y)dxdy = (γn+1(Ω))2.

Let z =
∫

Ω
ydγn+1(y) ∈ Rn+1. Then

1

2

d2

ds2
F (Ω(s))|s=0 = (

∫
Σ

〈X(x), N(x)〉γn+1(x)dx)2

+ γn+1(Ω)

∫
Σ

(div(X(x))− 〈X(x), x〉)〈X(x), N(x)〉γn+1(x).

Proof. We compute d2

ds2
F (Ω(s)) =

∑n+1
i=1

d2

ds2
Fi(Ω

(s)). Using (50) define

V (x, s) =

∫
Ω(s)

G(x, y)dy = (

∫
Ω(s)

dγn+1(y))γn+1(x), ∀x ∈ Rn+1, ∀ s ∈ (−1, 1). (51)
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Applying Theorem 9.1,

1

2

d2

ds2
F (s)|s=0 =

∫
Σ

∫
Σ

〈X(x), N(x)〉〈X(y), N(y)〉γn+1(x)γn+1(y)dxdy

+

∫
Σ

div(V (x, 0)X(x))〈X(x), N(x)〉dx

(51)
= (

∫
Σ

〈X(x), N(x)〉γn+1(x)dx)2 +

∫
Σ

div(γn+1(x)X(x))〈X(x), N(x)〉dx(

∫
Ω

γn+1(y)dy)

= (

∫
Σ

〈X(x), N(x)〉γn+1(x)dx)2 + γn+1(Ω)

∫
Σ

(div(X(x))− 〈X(x), x〉)〈X(x), N(x)〉γn+1(x).

�

10.2. Second Variation of Gaussian Moments. Our next use of Theorem 9.1 will be
the computation of the second variation of the squared Gaussian moment of a set.

Lemma 10.2. Let G(x, y) =
∑n+1

i=1 (xi − wi)(yi − wi)γn+1(x)γn+1(y), ∀ x, y ∈ Rn+1. Let
Ω ⊆ Rn+1 be a C∞ manifold with boundary Σ. Let

F (Ω) :=

∫
Rn+1

∫
Rn+1

1Ω(x)G(x, y)1Ω(y)dxdy = ‖
∫

Ω

(x− w)γn+1(x)dx‖2.

Let z :=
∫

Ω
ydγn+1(y) ∈ Rn+1 and let f(x) := 〈X(x), N(x)〉 for all x ∈ Σ. Then

1

2

d2

ds2
F (Ω(s))|s=0 = ‖

∫
Σ

(x− w)f(x)γn+1(x)dx‖2 +

∫
Σ

f(x)〈X(x), z − w〉γn+1(x)dx

+

∫
Σ

〈x− w, z − w〉
(

div(X(x))− 〈X(x), x〉
)
〈X(x), N(x)〉γn+1(x).

Proof. For any i ∈ {1, . . . , n}, let Gi(x, y) = (xi − wi)(yi − wi)γn+1(x)γn+1(y), for all x, y ∈
Rn+1, and let

Fi(Ω) :=

∫
Rn+1

∫
Rn+1

1Ω(x)Gi(x, y)1Ω(y)dxdy = (

∫
Ω

(xi − wi)dγn+1(x))2.

Then F (Ω) =
∑n+1

i=1 Fi(Ω).So, let us compute d2

ds2
F (Ω(s)) =

∑n+1
i=1

d2

ds2
Fi(Ω

(s)). For any i ∈
{1, . . . , n}, using (50) define

Vi(x, s) =

∫
Ω(s)

Gi(x, y)dy = (

∫
Ω(s)

(yi − wi)dγn+1(y))(xi − wi)γn+1(x),

∀x ∈ Rn+1, ∀ s ∈ (−1, 1).

(52)
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Applying Theorem 9.1, for any i ∈ {1, . . . , n},
1

2

d2

ds2
Fi(s)|s=0 =

∫
Σ

∫
Σ

(xi − wi)(yi − wi)〈X(x), N(x)〉〈X(y), N(y)〉γn+1(x)γn+1(y)dxdy

+

∫
Σ

div(Vi(x, 0)X(x))〈X(x), N(x)〉dx

(52)
= (

∫
Σ

(xi − wi)〈X(x), N(x)〉γn+1(x)dx)2

+

∫
Σ

div((xi − wi)γn+1(x)X(x))〈X(x), N(x)〉dx(

∫
Ω

(yi − wi)γn+1(y)dy).

(53)
Note that, for any j ∈ {1, . . . , n},
∂

∂xj
((xi − wi)γn+1(x)X(j)(x)) = (xi − wi)(−xjX(j) +

∂

∂xj
X(j))γn+1(x) + 1{i=j}X

(j)γn+1(x).

(54)
Substituting (54) into (53),

1

2

d2

ds2
Fi(s)|s=0 = (

∫
Σ

(xi − wi)〈X(x), N(x)〉γn+1(x)dx)2

+

∫
Σ

(
− (xi − wi)〈X(x), x〉+ (xi − wi)div(X) +X(i)

)
· 〈X(x), N(x)〉γn+1(x)dx(

∫
Ω

(yi − wi)dγn+1(y)).

(55)

The definition of z then concludes the proof.
�

11. Proof of Main Theorem

Given the results of Sections 7 and 8, the proof of Theorem 1.5 is essentially identical to
the argument from the ε = 0 case given in Section 2.

Proof of Theorem 1.5. Let Ω1, . . . ,Ωm ⊆ Rn+1 minimize Problem 1.4. By Lemma 8.1, Lij
simplifies to just ∆ − 〈x,∇〉 + 1. For every connected component C of Ω1, . . . ,Ωm, let XC

be the vector field that is equal to the exterior unit normal vector field of C on ∂∗C and
XC = 0 on every other connected component of Ω1, . . . ,Ωm that does not intersect C. (Such
a vector field exists by Lemma 3.3.) Let U be the linear span of all such vector fields XC , as
C ranges over the connected components of Ω1, . . . ,Ωm. If there are more than m connected
components of Ω1, . . . ,Ωm, then d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij
γn(x)dx < 0 for all nonzero X ∈ U .

So, there exist nonzero (fij)1≤i<j≤m such that d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for all 1 ≤ i ≤ m − 1

(and also for i = m since ∪mi=1Ωi = Rn+1). we form a nontrivial linear combination X of

each of these vector fields to once again get d
ds
|s=0γn+1(Ω

(s)
i ) = 0 for all 1 ≤ i ≤ m and

d2

ds2
|s=0

∑
1≤i<j≤m

∫
Σ

(s)
ij
γn(x)dx < 0. So, there must be exactly m connected components of

Ω1, . . . ,Ωm. The regularity condition, Lemma 3.3 then concludes the proof. We know that
each of Ω1, . . . ,Ωm is connected with flat boundary pieces, the sets Ω1, . . . ,Ωm meet in threes
at 120 degree angles, and they meet in fours like the cone over the three-dimensional regular
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simplex. In the case m = 3, there are only three possible configurations for the sets (up
to rotation). And for general m, there are only finitely many possible configurations of the
sets. So, we can conclude the proof by either (i) checking the surface area of each such case
directly, (ii) using the matrix-valued partial differential inequality and maximal principle
argument of [MN18b], or (iii) appealing directly to the result of [MN18b]. �

12. Noise Stability

Proof of Corollary 1.11. For any s > 0, x ∈ Rn+1, and for any f : Rn+1 → [0, 1], let Tρf(x)
as in (2). It is well known [Hei14, Section 9] that, for all 0 < ρ < 1, x ∈ Rn+1.

d

dρ
Tρf =

1

ρ
(−∆Tρf + 〈x,∇Tρf〉).

Using the divergence theorem,

d

dρ

∫
Ω

Tρ1Ω(x)γn+1(x)dx =
1

ρ

∫
Ω

−LTρ1Ω(x)γn+1(x)dx = −1

ρ

∫
Ω

div(γn+1(x)∇Tρ1Ω(x))dx

= −1

ρ

∫
∂Ω

〈∇Tρ1Ω(x), N(x)〉dx.

(56)
Changing variables and differentiating,

∇Tρ1Ωc(x) =
ρ√

1− ρ2

∫
Rn+1

y1Ω(ρx+ y
√

1− ρ2)γn+1(y)dy, ∀x ∈ Rn+1.

Therefore, limρ→1− ρ
−1
√

2π(1− ρ2)∇Tρ1Ωc(x) = −N(x) for all x ∈ ∂Ω. That is,

∇Tρ1Ω(x) = −
√

2π(1− ρ2)

ρ
N(x) + o(

√
1− ρ2), ∀x ∈ ∂Ω. (57)

Also, limρ→1− ρ
−1
√

2π(1− ρ2)∇Tρ1Ωc(x) = 0 for all x /∈ ∂Ω. So, using f = 1Ω,

γn+1(Ω)−
∫
Rn+1

1Ω(x)Tρ1Ω(x))γn+1(x)dx

=

∫ η=1

η=ρ

d

dη

∫
Rn+1

1Ω(x)Tη1Ω(x))γn+1(x)dxdη

(56)
=

∫ η=1

η=ρ

−1

η

∫
∂Ω

〈∇Tη1Ω(x), N(x)〉γn+1(x)dxdη

(57)
=

∫ η=1

η=ρ

(
o((1− η2)−1/2) +

1√
2π(1− η2)

∫
∂Ω

〈N(x), N(x)〉γn+1(x)dx
)
dη

= o(
√

1− ρ2) +

√
1− ρ2

√
π

∫
∂Ω

γn+1(x)dx = o(
√

1− ρ2) +

√
1− ρ2

2π

∫
∂Ω

γn(x)dx.

�
45



13. A Closing Remark

When m > 3, Theorem 1.5 relies on a solution of Problem 1.15. We include here an
intriguing observation concerning Problem 1.15.

Lemma 13.1. Let Ω1, . . . ,Ωm maximize Problem 1.15. Suppose Ωi = Ω′i×R for all 1 ≤ i ≤
m. Let v ∈ Rn+1 be a fixed vector. Let X be the vector field

X := xn+1v.

Then

d2

ds2
|s=0

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2 = 0.

Proof. As above, we denote fij := 〈X,Nij〉 and z(i) :=
∫

Ωi
xγn+1(x)dx. By (3) and Fubini’s

Theorem, if we first integrate with respect to xn+1, we see that (fij)1≤i<j≤m is automatically
Gaussian volume-preserving, so that (3) is zero for all 1 ≤ i < j ≤ m. Consequently, the
last term of Lemma 10.2 is automatically zero, and we get

d2

ds2
|s=0

√
π

2

m∑
i=1

‖
∫

Ω
(s)
i

(x− w(i))γn+1(x)dx‖2

=
m∑
i=1

√
2π‖

∑
j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

+
∑

1≤i<j≤m

∫
Σij

fij〈v, z(i) − w〉γn(x)dx

We now show that each of these terms are negatives of each other.

∑
1≤i<j≤m

∫
Σij

fij〈v, z(i) − w〉γn(x)dx =
∑

1≤i<j≤m

∫
Σij

x2
n+1〈v,Nij〉〈v, z(i) − w〉γn(x)dx

=
∑

1≤i<j≤m

∫
Σ′ij

〈v,Nij〉〈v, z(i) − w〉γn−1(x)dx =
∑

1≤i<j≤m

〈v, z(i) − w〉
∫

Σ′ij

〈v,Nij〉γn−1(x)dx

=
∑

1≤i<j≤m

〈v, z(i) − w〉
∫

Σij

〈v,Nij〉γn(x)dx =
∑

1≤i<j≤m

〈v, z(i) − w〉

〈
v,

∫
Σij

Nijγn(x)dx

〉

=
√

2π
∑

1≤i<j≤m

〈v, z(i) − w〉

〈
v,

∫
Σij

Nijγn+1(x)dx

〉
(45)
=
√

2π
m∑
i=1

〈v, z(i) − w〉〈v, z(i)〉

= −
√

2π
m∑
i=1

〈v, z(i)〉2.
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The last line used
∑m

i=1 zi = 0 which follows by ∪mi=1Ωi = Rn+1. For the other term we first
integrate with respect to xn+1 and use Fubini’s Theorem to get

m∑
i=1

√
2π‖

∑
j∈{1,...,m} : j 6=i

∫
Σij

(x− w(i))fijγn+1(x)dx‖2

=
m∑
i=1

√
2π
( ∑
j∈{1,...,m} : j 6=i

∫
Σij

(xn+1 − w(i)
n+1)xn+1〈v,Nij〉γn+1(x)dx

)2

=
m∑
i=1

√
2π
( ∑
j∈{1,...,m} : j 6=i

∫
Σ′ij

〈v,Nij〉γn(x)dx
)2

=
m∑
i=1

√
2π
( ∑
j∈{1,...,m} : j 6=i

∫
Σij

〈v,Nij〉γn+1(x)dx
)2 (45)

=
m∑
i=1

√
2π〈v, z(i)〉2.
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